DETECTING OPTIMALITY AND EXTRACTING SOLUTIONS IN
POLYNOMIAL OPTIMIZATION WITH THE TRUNCATED GNS
CONSTRUCTION

MARIA LOPEZ QUIJORNA

ABsTRACT. A basic closed semialgebraic subset of R™ is defined by simultaneous
polynomial inequalities p1 > 0,...,p,n > 0. We consider Lasserre’s relaxation hi-
erarchy to solve the problem of minimizing a polynomial over such a set. These
relaxations give an increasing sequence of lower bounds of the infimum. In this
paper we provide a new certificate for the optimal value of a Lasserre relaxation be
the optimal value of the polynomial optimization problem. This certificate is that
a modified version of an optimal solution of the Lasserre relaxation is a generalized
Hankel matrix. This certificate is more general than the already known certificate
of an optimal solution being flat. In case we have optimality we will extract the
potencial minimizers with a truncated version of the Gelfand-Naimark-Segal con-
struction on the optimal solution of the Lasserre relaxation. We prove also that
the operators of this truncated construction commute if and only if the matrix of
this modified optimal solution is a generalized Hankel matrix. This generalization
of flatness will bring us to reprove a result of Curto and Fialkow on the existence
of quadrature rule if the optimal solution is flat and a result of Xu and Mysovskikh
on the existence of a Gaussian quadrature rule if the modified optimal solution is
generalized Hankel matrix. At the end, we provide a numerical linear algebraic
algorithm for dectecting optimality and extracting solutions of a polynomial opti-
mization problem.

1. NoTATION

Throughout this paper, we suppose n € N = {1,2,...} and abbreviate (X1,...,X») by
X. We let R[X] denote the ring of real polynomials in n indeterminates. We denote
No := NU{0}. For o € N§, we use the standard notation :

laf := a1+ + ap and X = X1 - X0

For a polynomial p € R[X] we denote p = > paX“ (@ € R). For d € Ny, by the notation
R[X]a == {3 |0j<4 @aX” | aa € R} we will refer to the vector space of polynomials with
degree less or equal to d. Polynomials all of whose monomials have exactly the same
degree d € Ny are called d-forms. They form a finite dimensional vector space that we will
denote by:
RX] s = {3 aaX® | a0 € R}
|a|=d
so that
Rlz]s = R[X]o @ - -- ® R[X]q4.

We will denote by sj := dim R[X]; and by 74 := dimR[X]_x. For d € Ny we denote R[X]}
the dual space of R[X]q i.e. the set of linear forms from R[X]4 to R and for ¢ € R[X]5, we
denote by ¢ := l|r[x],, , the restriction of the linear form ¢ to the space R[X]2q—2. For
d € Ng and a € R" we denote ev, € R[X]} the linear form such that for all p € R[X]q4,

eva(p) = p(a).
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2 MARIA LOPEZ QUIJORNA
2. INTRODUCTION

Let polynomials f,p1,...,pm € R[X] with m € Ny be given. A polynomial optimization
problem involves finding the infimum of f over the so called basic closed semialgebraic set
S, defined by:

(1) S:={zxeR"| pi(z) >0,...,pm(z) >0}

and also, if it is possible, a polynomial optimization problem involves extracting optimal
points or minimizers i.e. elements in the set:

S i={z*e€S|VzeSs f(z*) < f(x)}

So from now on we will denote as (P), to refer us to the above defined polynomial opti-
mization problem, that is to say:

(2) (P) minimize f(z) subject to x € S

The optimal value of (P), i.e. the infimum of f(x) where x ranges over all feasible solutions
S will be denoted by P~*, that is to say:

(3) P*:= inf{ f(z) |z € S} € {—oc}URU {0}

Note that P* = +oo if S =0 and P* = —co if and only if f is unbounded from below on
S, for example if S = R™ and f is of odd degree.

For d € Ny let us define:

(4) Vai=(1,X1,Xz,...,Xn, X1, X1 X2,..., X1 X,
X3 XoXs, .. X2, ..., XHT
as a basis for the vector space of polynomials in n variables of degree at most d. Then
1 X X, - Xxé
X X2 XX, - xixé
VdVdT — _X2 X1X2 X22 Xngf c ]R[XE?ZXS&
Xi XX XoXi - XX

Let us substitute for every monomial X € R[X]24 a new variable Y,. This matrix has
the following form:

Yo,..00 Yu,..0 You,..0 Yo,.. 1
Ya,...0 Yo, .00 Yai,..00 - Ya, ..

(5)  My:= You1,..,00 Yai...0 Yoz2..,0 - Yoi.4 |¢ R[Y]54%
Yo,..op Ya,...o9 Yoni,..a ' Yo,. 24

Definition 2.1. Every matrix M € R°?**¢ with the same shape than the matrix is
called a generalized Hankel matrix of order d. We denote the linear space of generalized
Hankel matrix of order d by:

Hg:={ Ma(y) | y € R}

For p € R[X]), denote dj, := [*=9°8? | and consider the following symmetric matrix:

P pX1 pXo X
pX1 pX2 pPX1Xo - pXiXor
6) pViVa,=| PX2 pXoXy pX3 o pXoXy | ¢ R[X];P

pXSP pXi XS pXaPXs .- pXi'r
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Definition 2.2. For p € R[X], the localizing matrix of p of degree k is the matrix
resulting from substituting every monomial X such that |a| < k in (6] for a new variable

Y,. We denote this matrix by My , € R[X]idp oy

Definition 2.3. For a ¢t x ¢ real symmetric matrix A, the notation A > 0 means that A
is positive semidefinite, i.e. aT Aa > 0 for all a € RE.

In order to give further characterizations of positive semidefiniteness, let us remember a
very well know theorem in linear algebra.

Reminder 2.4. Suppose A € R**' is symmetric. Then there is a diagonal matrix
D e R and U € R*™*? orthogonal matrix, i.e. UUT = UTU = I, such that UT AU = D

Reminder 2.5. Let A € R"*" symmetric. The following are equivalent:
(1) A= o.
(2) All eigenvalues of A are nonnegative.
(3) There exists B € R*** such that A = BT B.

Definition 2.6. Let (P) be a polynomial optimization problem as in and let k €
NoU{oo} such that f,p1,...,pm € R[X]s. The Moment relaxation (or Lasserre relaxation)
of (P) of degree k is the following semidefinite optimization problem:

(7) (Pr) minimize Z faYa subject to
lal<k
Mi1(y) =0, yeo,...00=1, My, (y) =0

the optimal value of (Py) that is to say, the infimum over all

y= (Z/(O,A.A,ow .. ’7y(0,m,kz)) € R%*
that ranges over all feasible solutions of (Py) is denoted by P; € {—co} UR U {oo}.
Given a polynomial optimization problem (P) as in and M := My(y) € R°¥*%d an

optimal solution of (Psq), it is always possible to find a matrix Wi € R°4*"< such that
M can be decomposed in a block matrix of the following form (see below for a proof):

_ Ay | AuWa
v= (T a)

This useful result can be also found in [23] and in 3| Lemma 2.3]. Define the following
matrix:

s Ay ‘ AW
' Wi A ‘ WEAMWur

In this paper we prove that M is well-defined, that is to say it does not depend from the
election of Wy, and assuming that WAEAMWM is a generalized Hankel matrix we will
use a new method to find a decomposition:

(8) M = Z )\in(ai)Vd(ai)T
i=1
where r := rank M ,a1,...,a, € R" and A\; > 0,...,\, > 0. In this paper we will show

that for some polynomial optimization problems if we have that Wiy Ay W is generalized
Hankel and the nodes are contained in S, even if M is not flat i.e. WAT/IAMWM # Cm
(see the definition in , we can still claim optimality, that is to say that ai,...,a,
are global minimizers. We will also see some examples to discard optimality or in other
words to discard that M has a factorization as in , see Let us advance two results
concerning optimality.

Theorem 2.7. Let (P) be a polynomial optimization problem as in and suppose that

My (y) € R®¢*%d ig an optimal solution of (P2q) and My(y) is a generalized Hankel matrix.
Then there are ai,...,a, € R" points and A1 > 0,..., A\, > 0 weights such that:

©) Ma(y) = 3" AValai)Vala))

i=1
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where r = rank Ay, Moreover if {a1,...,a,} C S and f € R[X]24—1 then ai,...
global minimizers of (P) and P* = P;; = f(a;) for all i € {1,...,r}.

,Qy are

Proof. The correspondence given in [3.5] together with the Theorem [7.1] will give us the
proof. O

Remark 2.8. Let (P) be a polynomial optimization problem without constraints. Sup-

—~

pose My(y) € R**°d is an optimal solution of (Paq) with My(y) a generalized Hankel
matrix and that f € R[X]24—1. Applying Theorem We get the decomposition @D, and
since we can ensure that a1,...,a» C .S =R" then they are global minimizers of (P) and
P =P, = f(a;) for all i € {1,...,r}.

Example 2.9. Let us considerer the following polynomial optimization problem taken
from [8, Problem 4.7]:

minimize  f(z) = —12z1 — Tz2 + z5
subject to — 2:1041l +2—22=0
0<z <2
0<z2<3

We get the optimal value P; = —16.7389 associated to the following optimal solution:

1 X, X, X2 XiXe X2

1

X1

X

Ma(y) = X%
1

X1Xo

X3

1.0000
0.7175
1.4698

0.7175
0.5149
1.0547

1.4698
1.0547
2.1604

0.5149
0.3694
0.7568

1.0547
0.7568
1.5502

2.1604
1.5502
3.1755

0.5149
1.0547

2.1604

0.3694
0.7568
1.5502

0.7568
1.5502
3.1755

0.2651
0.5430
1.1123

and the modified moment matrix of Ms(y) is the following:

0.5430
1.1123
2.2785

1.1123
2.2785
8.7737

)

(11)

1.0000
0.7175
1.4698

—~

0.7175
0.5149
1.0547

1.4698
1.0547
2.1604

0.5149
0.3694
0.7568

1.0547
0.7568
1.5502

2.1604
1.5502
3.1755

Ma(y) = | 55149

1.0547
2.1604

0.3694
0.7568
1.5502

0.7568
1.5502
3.1755

0.2651
0.5430
1.1123

0.5430
1.1123
2.2785

1.1123
2.2785
4.6675

—~

We get that M2(y) is a generalized Hankel matrix and f € R[X1, X2]s to conclude opti-
mality, according with Theorem it remains to calculate the factorization and check
if the points are in S. We will see in Section 5 in [5.20] how to compute this factorization,
in this case, it is easy to see that:

—~

Ma(y) = Va(a, B)Va(a, )"
where o := 0.7175 and 8 := 1.4698. One can verify that («,8) € S and therefore we can
conclude that P; = P* = —16.7389 is the optimal value and (¢, 8) is a minimizer.
Theorem 2.10. Let (P) be a polynomial optimization problem given as in and
suppose that the p; from are all of degree at most 1 (so that S is a polyhedron). Suppose

that My (y) € R°*° is an optimal solution of (P24) and that My(y) is a generalized Hankel
matrix. Then there are a1,...,a, € S and A\ > 0,..., A, > 0 weights such that:

Ma(y) = Z Aiva(ai)va(ai)”

Moreover if f € R[X]24—1 then a,...
fla;) forall i =1,...,r.

,ar are global minimizers of (P) and P* = Py =

Proof. The correspondence given in Corollary [3.5] together with the Theorem [7.3] will give
us the result. O
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Example 2.11. Let us consider the following polynomial optimization problem, taken
from [10, page 18], whose objective function is the Moztkin polynomial [14, Prop.1.2.2]:
f(z) = zias + aizs — 3atas + 1

—2<z <2

—2<x2<2

minimize

subject to

We get the optimal value P§ = 6.2244 - 10~ from the following optimal solution of (Ps):

(12) M = My (y) = Am ‘ AW
= 8,1 = T
’ WirAm ‘ Cwm
where:
(13)
1 X4 Xo x? X1 Xo x3 x3 X?xq X1 X3
1 1.0000 —0.0005 —0.0004 1.0000 —0.0000 1.0000 —0.0005 —0.0004 —0.0005
X1 (—0.0005 1.0000 —0.0000 —0.0005 —0.0004 —0.0005 1.0000 —0.0000 1.0000
X% —0.0004 —0.0000 1.0000 —0.0004 —0.0005 —0.0004 —0.0000 1.0000 —0.0000
Xl 1.0000 —0.0005 —0.0004 1.0000 —0.0000 1.0000 —0.0005 —0.0004 —0.0005
X1Xo —0.0000 —0.0004 —0.0005 —0.0000 1.0000 —0.0000 —0.0004 —0.0005 —0.0004
Ay = X§ 1.0000 —0.0005 —0.0004 1.0000 —0.0000 1.0000 —0.0005 —0.0004 —0.0005
X7 —0.0005 1.0000 —0.0000 —0.0005 —0.0004 —0.0005 1.0001 —0.0000 1.0001
X%XQ —0.0004 —0.0000 1.0000 —0.0004 —0.0005 —0.0004 —0.0000 1.0001 —0.0000
xlxg —0.0005 1.0000 —0.0000 —0.0005 —0.0004 —0.0005 1.0001 —0.0000 1.0001
X2 —0.0004 —0.0000 1.0000 —0.0004 —0.0005 —0.0004 —0.0000 1.0001 —0.0000
(14)
1 0 1 0 1
4 3 2y 2 3 4
0 0 0 0 0 . X3 X3x, X?x3 X1X3 X3
6 0 0 0 0 X1 6.4115  —0.0000 2.0768  —0.0000 1.7719
0 0 0 0 0 Xng —0.0000 2.0768  —0.0000 1.7719  —0.0000
Was = g é 8 (1] 8 and Cpp = xlxé 2.0768 —0.0000  1.7719 —0.0000  2.0768
o 0o o o o X1X3 | ~0.0000 1.7719  —0.0000 2.0768  —0.0000
0o 0 0 0 o X35 1.7719  —0.0000 2.0768  —0.0000 6.4115
0 0 0 0 ©
00 0 0 0
In this case:
1.0000  —0.0000 1.0000  —0.0000 1.0000
—0.0000 1.0000  —0.0000 1.0000  —0.0000
W*Ay W = 1.0000  —0.0000 1.0000  —0.0000 1.0000
—0.0000 1.0000  —0.0000 1.0000  —0.0000
1.0000  —0.0000 1.0000  —0.0000 1.0000

is a Hankel matrix, what implies that M is generalized Hankel and since we are minimizing
over a polyhedron defined by linear polynomials by Theorem [2.10] Py = P*.

The goal of this paper is to find optimality conditions and extracting global minimizers
from an optimal solution of the moment relaxation. That is to say given a polynomial
optimization problem (P) as in (2]) and an optimal solution of the moment relaxation (P)
as in[2.6] find conditions to conclude that the optimal value is also the optimal value of the
original polynomial optimization problem, i.e. P* = P; and in this case extracting global
minimizers. In the first section we outline Lasserres approach [11] to solve polynomial
optimization problems with the language of linear forms, at the end of this section we
will reformulate the problem of optimality, that is to say we reformulate the problem of
finding a decomposition of the modified moment matrix as in @ to the problem of finding
a commutative truncated version of the Gelfand-Naimark-Segal construction for a linear
form L € R[X]5, with d € Np U {oo}, which take nonnegative values in > R[X]3. The
truncated GNS construction for this linear form will be defined in Section 4 and at the
end of this section we give a proof of the very useful result of Smul’jan [23] using the
inner product defined in the truncated GNS construction. In Section 5 we prove that
if the truncated GNS multiplication operators of the optimal solution commute we are
able to get the factorization or in other words we find a Gaussian quadrature rule m
representation for the linear form. In this section we will also prove that the commutativity
of the truncated GNS operators is a more general fact than the very well know flatness
condition, that is the case Cps = WJEAMWM, but the reverse it does not always hold (see

[5.19][46} (47), for examples), at the end of this section we review a result of Curto

x3
.0004
.0000
.0000
.0004
.0005
.0004
.0000
.0001
.0000
.0001
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and Fialkow for the characterization of linear forms with quadrature rule on the whole
space with minimal number of nodes. In Section 6 we prove the main result, which is that
the truncated GNS multiplication operators of M commute if and only if WAEAMWM is
a Hankel matrix. This fact will help us to detect optimality in polynomial optimization
problems and to slightly generalize some classical results of Dunkl, Xu ,Mysovskikh, Moller
and Putinar |7, Theorem 3.8.7],|]16, 17],[I8} pages 189-190] on Gaussian quadratue rules.
with underlying ideas of [I8]. In the last section we group all the results about optimality
and global minimizers for an optimal solution of the moment relaxation, at the end we also
give an algorithm for detecting the optimality and extracting minimizers with numerical
examples.

3. FORMULATION OF THE PROBLEM

To solve polynomial optimization problems we use the very well known moment relaxations
defined in An introduction in to moment relaxations can also be found for instance
in: |I1I],[13], and [2I]. Likewise we will give the equivalent definition using linear forms
instead of matrices in We will now outline Lasserre’s [I1I] approach to solve this
problem. This method constructs a hierarchy of semidefinite programming relaxations,
which are generalization of linear programs, and possible to solve efficiently, see [22] and
[13] for an introduction. In each relaxation of degree k we build convex set, obtained
through the linearization of a equivalent polynomial optimization problem of (P) defined
in . This equivalent formulation of the relaxation consists in adding infinitely many
redundant inequalites of the form p > 0 for all p € 3" R[X]*p; NR[X]) (with the notation
S"R[X]?*p; we mean the set of all finite sums of elements of the form p*p;, for p € R[X]).
The set of this redundant inequalities builds a cone, which is a set containing 0, closed
under addition and closed under multiplication for positive scalars. The cone generated
for this redundant inequalities is called truncated quadratic module generated by the
polynomials p1, ..., pm, as we see in Definition [3.1] This relaxations give us an increasing
sequence of lower bounds of the infimum P*, as you can see in Lasserre proved that
this sequence converge asymptotically to the infimum if we assume some arquimedean
property in the cone generetated for the redundant inequalities, see |21} Theorem 5] for a
proof.

Definition 3.1. Let pi,...,pm € R[X] and k£ € Ng U {oc0}. We define the k-truncated
quadratic module M, generated by p1,...,pm as:

gy Menpe) = (RLxT: N Y RIXP) + (RIX)e N Y RIXT P )

15
+ o+ (RIX]e N D RIX]*pm ) € RIX]s

where here R[X] := R[X]. We use the notation M (p1,...,pm) : = Moo (P1,...,Pm), t0
refer to the quadratic module generated by the polynomials p1,...,pm € R[X].

Remark 3.2. Note that:

!
R[X]s N> R[X]’p= {Z hip | hi € R[X],2deg(hs) < k — deg(p)}

=1

For a proof this see [21] Page 5].

Lemma 3.3. Let k € N, p € R[X]; \ {0} and d := L%eg(mj. Let L € R[X];. Then it
holds:

(16) L()_R[X)e NRIX]*p) C Rzo <= Mip(y) = 0
where yo 1= L(X®) for all @« € N” with |a| < k.
Proof. Let us set the matrices Ao € R*@*% for |a| < k, as the matrices such that:

deVdT — Z KaAa c R[X}des{l~
|l <k
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and yo := L(X®) for |a] < k.
LS RIX]i NRIX]?p) CRso &2 Vh € R[X]4, L(h?p) >0
< VH e R, L((H"V,)(V] H)p) >0
< VH e R, L(H pV,V{iH)>0
= VHeR™, L(HT( Y X“A)H)>0
lal<k

= VHER™ L(Y X“H'A.H)>0
la|<k

Ligé)}ear\vll_lE]de7 Z L(XQ)HTAaHZO
la|<k

< VHER™, H' (D> yaAa)H >0

«

= > Yada m0 = My,(y) =0
lal<k

d

Due to Lemma [3.3] the following definition of a Moment relaxation using linear forms is
equivalent to the definition given in [2.6

Definition 3.4. Let (P) be a polynomial optimization problem given as in and let k €
NoU{oo} such that f,p1,...,pm € R[X]k. The Moment relaxation (or Lasserre relaxation)
of (P) of degree k is the semidefinite optimization problem:

(Py) minimize L(f) subject to L e R[X]j
L) =1
L(Mk(p1, ..., pm)) € Rxo

the optimal value of (Py) i.e., the infimum over all L(f) where L ranges over all optimal
solutions of (Py) is denoted by P} € {—oco} UR U {c0}.

Corollary and Notation 3.5. Let d € Ng. The correspondence:
L (LX), 151<d

) cato)

R[X]2a — R
X° = Ya

defines a bijection between the linear forms L € R[X]5, such that L(3 R[X]3]) € R>o and
the set of positive semidefinite generalized Hankel matrices of order d i.e. Hyg N R;doxsd.

Let L € R[X]3, such that L(3>R[X]3]) € R>q we denote My := (L(X*"?))|,,5/<a and
let My(y) = 0 for y € R°¢ we denote:

L,y : RiX]2a — R, X% = ya.

Proof. The well-definedness of both maps follows from Lemma Now, let L € R[X]34
such that L(>_R[X]2) C Rso then:

L, i R[X]og — R, X% > L(X%)

since notice that My = (L(X*™))|a).151<a = Ma(L(0),...,L(X2%)). Hence Ly, = L.
On the other side, let M4(y) = 0 for y € R°¢ then:

My = Earg) X))t 18120 = Yatp)alis1<a = Ma(y).

Notation 3.6. We denote the following isomorphism of vector spaces by:

poly : R% — R[X]q,a — atVy
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Proposition 3.7. Let d € Ny and L € R[X]5; then:
L(pg) = PTMLQ for all p,q € R[X]q
where P := poly™'(p) and Q := poly~'(q).

Proof. As usual let us set the matrices A, € R%*%d for || < 2d as the matrices such
that:
VaVi = > XA, € RIX];274,

lo| <k
Then:
L(pg) = L(P"VaViQ) = L(P" ) X"A.Q) =
lee|<2d
> LX")PTA.Q=P"( Y L(X")A.)Q=P"MLQ

|| <2d la|<2d
O

Definition 3.8. Let L € R[X]; . A quadrature rule for L on U C R[X]4 is a function
w : N — Ry defined on a finite set N C R", such that:

(17) L(p) = Y w(z)p(x)

zeN
for all p € U. A quadrature rule for L is a quadrature for L on R[X]s. We call the
elements of NV the nodes of the quadrature rule.

Proposition 3.9. Let (P) be the polynomial optimization problem given in with
fip1,- .o, pm € R[X]k. Then the following holds:
(i) PP>PL>---> Py > Pp.

(ii) Let L € R[X]; with L(1) = 1. Suppose L has a quadrature rule with nodes in S,
then L is a feasible solution of (Py) with L(f) > P*.

(iii) Suppose (Py) has an optimal solution L*, which has a quadrature rule on R[X];
for some ! € {1,...,k} with f € R[X]; and the nodes are in S. Then L*(f) = P*,
moreover we have P* = Py, for m > 0 and the nodes of the quadrature rule are
global minimizers of (P).

(iv) In the situation of (iii), suppose moreover that (P) has an unique global minimizer
z*, then L*(f) = f(z*) and z* = (L*(X1),..., L"(X»)).

Proof. (i) P* > P, since if z is a feasible solution for (P) then ev, € R[X]" is a
feasible solution for P., with the same value, that is f(x) = ev,(f). It remains to
prove P > Py for | € N>, U {oco}. For this let L be a feasible solution of (P,), as
My (p1,...,pm) € Mi(p1,...,pm) then Lig[x), is a feasible solution of (P%) with the same
optimal value.

(ii) Suppose L has a quadrature rule with nodes ai,...,an € S and weights A\; >
0,...,Axy > 0. From L(1) = 1 we get >~ A; = 1 and since the nodes are in S it
holds L(My(p1,...,pm)) € R>o. Hence L is a feasible solution of (Ps). Moreover the
following holds:

N N
P*=L1)P"=> MNP <> Nif(a) = L(f)
=1 i=1

where the inequality follows from the fact that P* < f(z) for all z € S.

(iii) Suppose L* is an optimal solution of (Py) then L*(f) = P; < P* using (i) and on
other side since L*(1) = 1 and L™ has a quadrature rule on R[X]; with nodes in S and
f € R[X];, there exist a1,...,an € S nodes, and A1 > 0,...,An > 0 weights, such that:

N N
(18) Pi=L"(f) =) _X\if(a:) =Y AP =P

Therefore L*(f) = P*, and since P, = P* we get equality everywhere in (i) and we can
conclude that P* = Py, for m > 0. It remains to show that the nodes are global minim-
imizers of (P), but this is true since in we have equality everywhere, and if we factor
out we get >~ \i(f(a;) — P*) =0, as \; > 0 and f(a;) — P* >0forallie€{1,...,N},
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implying f(a;) = P* for alli € {1,...,N}.
(iv) Using (iii) we have that L*(f) = P* = f(z"), and continuing with the same notation
as in the proof of (iii) we got by uniqueness of the minimizer z*, that a; = z* for all
i € {1,...,N}. This implies that L™ = ev,+ on R[X];, and evaluating in the polynomials
Xi,...,Xn~n € R[X]1 we got that:

L*(X;) = ever (X)) = of for all s € {1,...,N}.

That is to say, 2" = (L*(X1),...,L"(X»)). O

We can now reformulate our problem as:

Given d € Ny and L € R[X]5,., such that L(3R[X]3,;) € Rso, we would like to
obtain for all p € R[X]2442:
e Nodes z1,...,z, € R" and and weights A1,..., A, > 0 such that:

L(p) = Z Xip(x:)

in other words:
® T11,..-,T1mny--yTrly-.-,Trn € R and al,...,ar € R such that:

L(p) = Z alp(zin, ... Tin)
=1

again with other words:

® Tii1,...,T1ny--,Lrly...,Trn € Rand ai,...,a, € R such that:
p(xlyl,...,wl,n) al ail
L(p) = < : o >
P(Tr1ye ey Trn) an an
again written differently:
® Til,...,Tln,-- s Trl,y.-.,Trn € R and a € R" such that:
Z1,1 T1i,n ai ai
Tr,1 Tron an an

s

again with less words:
e Diagonal matrices D1,..., D, € R™*" and a € R" such that:

L(p) = (p(D1,...,Dp)a,a)

Reminder 3.10. Let r,n € Nand Mi,..., M, € R™*" symmetric commuting matrices.
Then there exist an orthogonal matrix P € R"*" such that P*M,P is a diagonal matrix
for all i € {1,...,n}.

Using this theorem we can continue with our reformulation of the problem: given d € Ny
and L € R[X]5,,, such that L(} R[X]7,,) C R, to find a quadrature rule for L is the

same as to find commuting symmetric matrices M, ..., M, € R™*" and a vector a € R”
such that:
(19) L(p) = (p(Ml,...,Mn)a,a>

We end the reformulation of the problem once and for all with the languages of endomor-
phisms, instead of matrices. That is to say: given d € Ng and L € R[X]3,4,, such that
L(3>°R[X]3,1) € Rxo, we would like to obtain a finite dimensional euclidean vector space
V', commuting self-adjoint endomorphisms M, ..., M, of V and a € V such that:

(20) L(p) = (p(M, ..., My)a, a)
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Remark 3.11. Gelfand, Naimark and Segal gave a solution for the case we allow to the
space V to be infinite dimensional and the linear form to be stricly positive in the sums
of squares, that is to say, in the case we are given a linear form L € R[X]* such that
L(p?) > 0 for all p # 0. The solution was given by defining the inner product:

(21) (p,q) == L(pq)

and defining the self adjoint operators M;, for all ¢ € {1,...,n}, on the infinite dimensional
vector space R[X], in the following way:

M; : RIX] — R[X], p— Xip
Taking a := 1 € R[X] we have the searched equality (20).

From now on we will assume we are given a linear form L € R[X]34,, for d € No U {oo}
such that L(> R[X]3,,) C R>q or what is the same due to and My, is positive
semidefinite, unless L is defined explicitely in other way.

4. TRUNCATED GNS-CONSTRUCTION

In this section we will explain how we can define the euclidean vector space and multi-
plications operators required in (20)) from this positive semidefinite linear form L, in a
similar way as in the Gelfand-Neimark-Segal construction [3.11]

First, we will get rid of the problem that, L(p2) = 0 does not imply p = 0 for every
p € R[X]ay1, that is to say does not define an inner product if the linear form is
positive semidefinite. By grouping together the polynomials with this property we will be
able to define an inner product, on a quotient space. As a consequence, we will obtain
an euclidean vector space. With respect to the multiplication operators, we will need to
do the orthogonal projection on the class of polynomials with one degree less, in such a
way that when we do the multiplication for the variable X; we are not out of our ambient
space. This construction was already done in [I§].

Definition and Notation 4.1. We define and denote the truncated GNS kernel of L:
U :={p € R[X]a41 | L(pg) = 0 for all ¢ € R[X]at1}

Proposition 4.2. The truncated GNS kernel of L is a vector subspace in R[X]gy1.
Moreover:

(22) UL ={p € R[X]at1 | L(p®) = 0}

Proof. The fact that Uz is a vector subspace follows directly from the linearity of L. Let
us prove the equality (22). For this let us denote A := {p € R[X]a41 | L(p*) = 0}. The
inclusion Uy, C A is trivial. For the other inclusion we will demonstrate first, due to L is
positive semidefinite and linear, that the Cauchy-Schwarz inequality holds:

(23) L(pq)* < L(p*)L(q")
Indeed, for all t € R and p, ¢ € R[X]44+1 we have:
0 < L((p + tq)*) = L(p") + 2tL(pq) + t*L(q”)

Therefore the polynomial  := L(p?) + 2X L(pq) + X*L(¢?) € R[X]2 is non negative, i.e.
r(x) > 0 for all € R. In the case L(¢®) # 0, the discriminant of r has to be less or equal
to zero i.e. 4L(pq)® —4L(p°L(¢”)) < 0 and we get the desired inequality (23). In the case
L(¢?) = 0, then L(pg) = 0 and trivially we get also the inequality . As a consequence
if p € A then L(p?) = 0, and this implies due to (23), L(pg) = 0 for all ¢ € R[X]4, and
therefore p € Uy. O

Definition and Notation 4.3. We define and denote the GNS representation space of
L, as the following quotient of vector spaces:

R[X]a41

24 -
(24) Vi U,
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For every p € R[X]411 we will write p” to refer us to the class of p in Vz. We define and
denote the GNS inner product of L, in the following way:

(25) (",3")r = L(pg)
for every p,q € R[X]a+1.
Proposition 4.4. (Vi, (., . )1), is a symmetric bilinear form:

Proof. Let us prove first that (., . )1 is well defined. To do this take pi,qi,p2,q2 €
R[X]q+1 with 17 = pz” and @i* = @2" then:
i@ = (" @)L <= Lma) = L(p2g2) <= L(pig1) — L(pag2) = 0
< L(piqr) + L(=p2q1) — L(=p2q1) — L(p2g2) =0
> L((pr —p2)q1) — L(p2(q2 — q1)) = 0
The last equality holds since p1 —p2, g2 —q1 € Ur. The bilinearity and symmetry is trivial.

(., . )L is positive semidefinite since L(3"R[X]3,;) C Rso. It remains to prove that
(., . )L is even positive definite. Indeed, for all p € R[X]qy1 with (p",5")z = 0 then
L(p®) = 0 and then p € UL, as we have shown in O

Definition and Notation 4.5. For i € {1,...,n}, we define the i-th truncated GNS
multiplication operator of L as the following map between euclidean vector subspaces of
Vi, and denote by My, ;:

(26) My : T (V) — M(V), p& s Mo (pX;") for p € R[X]q

where TI; is the orthogonal projection map of Vi into the vector subspace { p~ | p €
R[X]q} with respect to the inner product (. , . ). We will call and denote the subvector
vector space:

(27) Tp:=11(Ve) ={p" | p € R[X]a}

of Vi, the GNS-truncation of L.

Proposition 4.6. The i-th truncated GNS multiplication operator of L is a self-adjoint
endomorphism of 7T7,.

Proof. Let us demonstrate first that the ¢-th truncated GNS multiplication operator of L
is well defined. M7 ; is well defined if and only if My ;(p~) = 0" for all p € U N R[X]q if
and only if HL(TWL) =0" forall p € U N R[X]q. Since HL(TWL) € T, we can choose
q € R[X], such that g~ = 1T, (X;p") and then:
= Sk ~ . ~—L\, ——L
L(¢*) = (@ a)r = (WL(Xip ), ML (Xip )1 (ML (Xip ), Xip
I L U
= (", Xip )1 = L(a(Xip)) = L((aX:)p) "=" 0

L Ty ol =TI},

Therefore HL(XipL) = 0" for all p € UL. Let us see now that My ; are self-adjoint
endomorphisms, for this let p, ¢ € R[X]q then:

(M ("),q%) L = (M (Xap"), %) = (XKo", T2(@%)2 = (Xip" @) = L(Xip)q)
= L(p(Xiq)) = (p", Xoq )z = Mo (@"), Xeq )z = (p", T2(Xig" )z = (P*, M.s(g"))z
O

Remark 4.7. The GNS construction for L € R[X]* with L(3.R[X]?) C Rxo is the
same as the original (3.11) modulo Ur. The GNS representation space of L and the GNS

truncation of L are the same %, where:
(28) Ur = {p € RIX] | L(p") > 0}
The truncated GNS multiplication operators of L. commute, since % is a commutative

ring. One can easily prove that Uy, is an ideal. Indeed it is clear that if p,q € Ur then
L((p+ q)?) = 0, and if p € Ur, and q € R[X] then L(p?’¢*) = L(p(pg*)) P implies
pq € UL.
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Lemma and Notation 4.8. Remember that L' := LRK]MH- Let us denote as Bp,
the transformation matrix of the following bilinear form with respect to the standard
monomial basis:

R[X]a+1 x R[X]a — R, (p,q¢) — L(pg)

Then it holds rank My, = rank B;, and for every such L linear form we can define its
respective modified moment matrix as:
= My | Mpwg
L= \WEM,, | WEML WL

where Wy, is a matrix such that M. Wy, = Cf,, where C, is the submatrix of By, remaining
from eliminating the columns corresponding to the matrix My.. Mg is well defined since
it does not depend from the election of W, and it is positive semidefinite.

Proof. Notice that My, is the transformation matrix of the linear map:
¢ = R[X]a — R[X]3,p — (¢ L(pq))

with respect to the standard monomial basis and in the same way By, is the transformation
matrix of the linear map:

Y= R[X]411 — R[X]3,p = (¢ L(pq))

with respect to the standard monomial basis. Note that to prove rank My, = rank B,
it is the same than to prove p(R[X]q) = ¥(R[X]a+1). It is obvious that p(R[X]q) C
1(R[X]a+1). For the other inclusion we take A € 1)(R[X]q+1) then there exits p € R[ X441
such that A(q) = ¥(p)(q¢) = L(pq) for all ¢ € R[X]4. We look for a g € R[X]s such that
A(q) = L(gq) for all ¢ € R[X]q, because then ¢(h)(q) = L(gq) = A(q) for all ¢ € R[X]4
implying ¢(g) = A and then we could conclude A € ¢(R[X]q). In other words, we want
to show that there exists g € R[X]q such that : L(pq) = L(gq) for every ¢ € R[X]q. With
more different words, our aim is to find g € R[X]q such that:

(@,9)r = (9,q)1 for every q € R[X]q
For this we define the following linear form:

Ap = %&]d — R, g+~ L(pq) for every q € R[X]q

A, € (%&i)*. Since % is a finite dimensional euclidean vector space is in particular

a Hilbert space and then by the Fréchet-Riesz Representation Theorem there exists g €
T with g € R[X]q, such that:
Ap(q) = (3,9) 1 for every ¢ € R[X]a.
Therefore L(pq) = Ap(q) = (3, 9) = L(qg) for every g € R[X]q. Then rank M, = rank By,
and therefore there exists Wi (may not be unique) such that My, Wy = Cr. Now, we
claim that the modified moment matrix M., does not depend on the choice of the matrix
W, with the property MW = Cr. Indeed, assume there are matrices W7, W such that
My, W1 = M7, Ws. Let us denote:
Wl = (Pl ...Prd+1)7 W2 = (Q1 "'Qrd+1)

where P1,..., P, and Q1,...,Qr,,, are the respective column vectors of the matrices

W1 and W7 and define p; := poly(Q;) and ¢; := poly(Q;) for i € {1,...,744+1}. Then we
have the following matrix equality:

My/(Py...Pry) = M (Q1 . Q)
Let ¢ € {1,...,7441} then:
My P, = MpQ; <= My (Pi—Q;) =0 <= (Pi—Q:) "My (Pi—Q;) =0 pi—qi €U,/

This implies L' (p;p;) = L'(¢:q;) and again due to [3.7| we get that:
PI'M, P, =Q M, Q; for alli,j € {1,...,7}



TRUNCATED GNS CONSTRUCTION 13

Then we have got that:

P'M, P ... PIM, P
WM, Wy =| U =
P'M, P ... P'M, P
Q,{ML'QI ce Q{ML’ Q'r
: T = WQTML, Wo
QIM,/ Q1 ... QFIM, Q.

Therefore Wif M, W1 = W& M, W5, and we can conclude that My, is well defined.
Moreover since My is a is a positive semidefinite matrix, then there exists a matrix
C € R%*%¢ such that My, = CCT due to Then we have the following factorization:

i (_cct cc™ \ ([ cC o c |o\"
o \wTeeT [wree™ )~ \wTC | o WwTC |0

then taking P := ( WCC 8 ) we get that MZ = PPT, which due to proves MZ is

positive semidefinite. O

5. (FAUSSIAN QUADRATURE RULE

In this section we will prove the existence of a quadrature rule representation for the
positive semidefinite linear form L on a set that cointains R[X]24+1 by providing that the
truncated GNS multiplication operators commute. We will also demonstrate that this
condition it is strictly more general than the very well known condition of being flat (see
definition in , condition that for its part ensure the existence of a quadrature rule
representation for L on the whole space in contrast with the quadrature rule in a space
that contains R[X]24+1 that we get in case the truncated GNS multiplication operators
commute.

R[X]q4
UrNR[X]q

Proof. Let us consider the following linear map between euclidean vector spaces:

Proposition 5.1. The vector spaces 77, and are canonically isomorphic.

(29) or T, — Vi 1 p~ — ﬁLl for every p € R[X]q

where remember we denoted L' := Lig(x3,,- It is well defined since for every o, gt e Ty,
such that p¥ = g* we can assume without loss of generality that p,q € R[X]4, and
therefore:

=" L(r-9*)=0sL((p-9*)=0p" =7" & 00(p") = 00(7")
0o is also a linear isometry, since for every p, ¢ € R[X]q we have:
(P",7") = L(pg) = L (pg) = (9", 7" ) = (oL.(0"),00(@")) 1/
Then oy, is immediately injective. On other side, oy, is surjective since for every ﬁL/ eV

with p € R[X]q, it holds that o7 (p") = T)L/. Thence o, is an isomorphism between vector
spaces. O

Notation 5.2. For a linear form ¢ € R[X]3, such that /(3" R[X]3,,) C Rso we will
detone by ¢ the following isomorphism of euclidean vector spaces already defined in :

(30) o0 Ty — Vi, p' — p, for p € R[X]a
Remark 5.3. For v1,...,v,. € R[X]q4, we have 57", ..., %~ is an orthonormal basis of 77,
if and only if 97~ , ..., 77~ is an orthonormal basis of V.

The following Theorem and Lemma, are probably very well known and we will use them
to prove Proposition (5.8). The proofs can be seen for example in [I3] and [2]

Theorem 5.4. An ideal I C R[X] is zero dimensional (i.e. |Vc(I)| < oo) if and only
if the vector space R[X]/I is finite dimensional. Moreover |Vc(I)| < dim(R[X]/I), with
equality if and only if the ideal I is radical.



14 MARIA LOPEZ QUIJORNA

Proof. Theorem 2.6 page 15 in [I3]. O

Definition 5.5. Let I C R[X] be an ideal. I is said to be radical when I = Z(V¢(1)).
Lemma 5.6. Let I C R[X] be an ideal. I is radical if and only if

(31) For all g € R[X] such that > e [ =g I
Proof. There is a proof in [I3] Lemma 2.2]. O

Proposition 5.7. Let A € R[X]* such that A(> . R[X]?) C Rso. Then U, is a radical
ideal.

Proof. In [£7] we saw that U, is an ideal, let us prove that it is real radical ideal. Let
g € R[X] such that g*> € Ux. In particular A(g?1) = 0 and this implies g € U,. O

Proposition 5.8. Let A = 3N N\ ev,, € R[X]", with N € N, A\; > 0,..., Ay > 0, and

ai,...,any € R™ then:
. R[X
dim (g) ={a1,...,an}|
Ua

Proof. We have the following equalities:

Ua = {p € R[X] \Z)\in(ai) =0} = {peR[X]|p*(a;)=0forallic{l,...,n}}

={peRX]|pla;)=0forallie{1,...,n}} =I({as,...,an})

and since {a1,...,an} C R" is an algebraic set, by the ideal-variety correspondence (see
[2]), it holds:

Ve(I({az,...,an})) ={as,...,an}

what is the same as Vo(Ua) = {a1,...,an}. Notice that by Theorem ([5.4) is enough
to prove that Uy is radical to finish the proof. In fact by Proposition [5.7| Ua is radical.
Applying Theorem [5.4] we have the result. O

Let us review some known bounds on the number of nodes of quadrature rules for L on
R[X]2d+2 and on R[X]2q+1 (see [4] and [18]).

Proposition 5.9. Then number of nodes N, of a quadrature rule for L satisfies:

rank My < N < |Ve(Uyr)|

Proof. Let L = Zf\;l Aieve, € R[X]5,,, for ai,...,an € R" pairwise different points
and A1,...,Ax > 0 weights and define A := Zfil Aieve; € R[X]*. Let us consider the
following canonical map:
R
[(X]a+1 o R[X]
UL Ua

By Proposition [5.8 we have that:
rank M = dim % < dim M =N
Ur Ua
On the other side, it holds that {a1,...,an} C Ve (UL), since for all p € Ur we have
L(p*) = 0 and then p(a;) =0 for all s € {1,..., N}. this implies N < |Ve(UL)|. O

Proposition 5.10. The number of nodes N, of a quadrature rule for L on R[X]2q41
satisfies:

N > dim(T%)
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Proof. Assume that L has a quadrature rule on R[X]2q441 such that:

L(p) = Z Aip(ai)

for every p € R[X]24+1, where we can assume without loss of generality that the points
ai,...,an € R™ are pairwise different and A1,...,Anx > 0 with NV < oo for N € N. Let us
set A := Y| Aieva, € R[X]*. Then, the following linear map between euclidean vector
spaces is an isometry:

(32) o1: T, — %,Tf — p" for every p € R[X]q
A

It is easy to see that is well defined since Uy, C Uj. It holds also that o; is a linear
isometry since, for all p,q € R[X]q4:

(P",3"), = L(pg) = Mpg) = (p",7"*), = (01(8"),01(7"))a

Since, o1 is a linear isometry is inmmediately injective, and then:
. . (RX
dim(77) < dim ((B—f)
And now we can apply the Proposition [5.8] to conclude the proof. O

Definition 5.11. A quadrature rule for L on R[X]244+1 with minimal number of nodes,
that is to say with dim(77) nodes is called a Gaussian quadrature rule.

Lemma 5.12. Assume that the truncated multiplication operators commute. Then for
all p € R[X]4+1 we have the following equality:

(33) p(Mp,..., Mp,)(T") = (")

Proof. Let p = X for a € N" with || < d+ 1. We continue the proof by induction on
ol
e For |a| = 0, we have that X = 1 then:
W(Mpa,..., Mpn)(T5) =1dy, (T7) =T = 1,(T7)
e Let assume the statement is true for |a| = d. Let us show it is also true for
|a| = d+ 1. Let p = X;q for some i € {1,...,n} and ¢ = X? with |3| = d, then
. (%) = G~ since g~ € T1, and we have:

(M1, Mp)(T5) = (Mp0g(Mp s, ..., Mp,))(15) =
Mpi(¢(Mpa,. .., Mpo)(T") = Mpi(@") = 1. (Xag") = T (5%)

since we have proved for monomials then by the linearity of the orthogonal projection
is also true for polynomials. O

Theorem 5.13. Assume the truncated multiplication operators of L commute, and con-
sider the set:

(34) Gr = {Zpiqvi | s €N, pi € R[X]ay1 and ¢; € R[X]q + U}

i=1
then there exists a quadrature rule for L on G, with dim(77) many nodes.

Proof. Since the truncated multiplication operators of L commute by the Remeinder [3.10]
there exists an orthonormal basis v := {v1,...,vn} of T consisting of common eigen-

vectors of the GNS truncated multiplation operators of L. That is to say, there exist
ai,...,any € R"™ such that:

My v; = ajvj for all 4 € {1,...,71,} and j € {1,...,N}
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where N := dim(77). Since it always holds 1" € Ty, since d € N, we can write:

(35) TL =bvy + -+ byvn

for some by,...,by € R. Let us define )\; := b7 for all i € {1,...,N}. Let g = pq such
that p € R[X]a+1 and ¢ € R[X]q+ UL, then using Lemma we have the two equalities:
L

(36) ML) =p(Mrs,. Mea) (1) and 7° = g(Mr,,. Mpa)(1)
Using this equalities , using that the orthogonal projection Il is selfadjoint, using
that {v1,...,vn} is an orthonormal basis of T, consisting of common eigenvectors of the

GNS truncated multiplication operators of L and also using the equation , with the
same idea as we got the reformulation of the problem in we have:

L(g) = Lipg) = (0".7%) 2 ™ €% (5", 11(g"))s =
(L"), 72 = S Bplasata) = Y- Aplas)a(as)

Then by linearity L(p) = Y"1, Aip(a;) for all p € G. It remains to prove that the nodes
of the quadrature rule for L that we got, ai,...,any € R" are pairwise different, but this
is true since N = dim 77, is the minimal possible number of nodes for a quadrature rule
on R[X]24+1 as we proved in

O

Remark 5.14. Since R[X]2¢41 C Gpr, in the conditions of Theorem we got in
particular a Gaussian quadrature rule for the linear form L.

Corollary 5.15. Let n = 1, i.e. L € R[X]3,45 with L(3_R[X]?) > 0. Then L has a
quadrature rule on G, .

Proof. L has one truncated GNS multiplication operator, therefore the hypothesis of The-
orem [5.13 holds and there is a quadrature rule on G, for L. O

Proposition 5.16. The following assertions are equivalent:
(i) RX]ay1 =R[X]a+ UL
(i) Tn =V,
(iii) For all € Ny with |a| = d + 1, there exists p € R[X]4 such that X* —p € Uy,
(iv) The canonical map:
(37) Vi =R[X]a/Up < R X]Ja41/UL = Vo
is an isomorphism.
(v) dim(V,/) = dim(VL)
(vi) The moment matrices (L(X**?))|a),15/<a and (L(X**?))|a),18/<d+1 have the same

rank.
(vil) M = Mg.

Proof. Note that the map it is well defined since R[X]4N U = Ur:. And one can see
inmediately that:

(1) <= (i1) <= (ii1) <= (iv) <= (v).

Let us show (v) <= (vi): (L(X*"?))|a|,|51<d+1 is the transformation matrix (or the
associated matrix) of the bilinear form:

R[X]a+1 X R[X]a+1 — R,(p, q) — L(pq)

with respect to the the standard monomial basis, and therefore it is also the transformation
matrix (or the associated matrix) of the linear map:

(38) R[XJa+1 — R[X]g411,p = (¢~ L(pq))

with respect to the corresponding dual basis of the standard monomial basis. The kernel
of this linear map (38]) is UL, in consequence:
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rank((L(X*"?))ja),j51<a+1) = dimR[X]g41 — Uz = dim Vg
reasoning in the same way:
rank((L(X*)) a)151<a) = dim Vs
Finally (vi) <= (vii):
rank((L(X**))ja),j51<a) <= rank(My/) = rank(Mz)

— My | MpWwy _ My | MpyWy
WMy | WEMp W, )~ \ WiMp | Ci

< WLMLIWL =0 — MZ = My,

O
Definition 5.17. We say the linear form L is flat if the conditions (¢), (i%), (%), (iv),

(v), (vi) and (vii) in are satisfied.

Proposition 5.18. Suppose L is flat then the truncated GNS operators of L commute

Proof. Asumme L is flat, and let 4,5 € {1,...,n} and p € R[X]q . We want to prove:
Mg, My ;(p") = My; 0 Mpi(p")

Let us write X;p = p1 + ¢1 and X;p = p2 + ¢2 with p1,p2 € R[X]q and ¢1,¢92 € Ur. Then
My ;(p") = HL(XJPL) = IIz(p2 + Q2L) =M. (pz") + O (@") = L (52%) = p=~. In the
same way we get My (") = pr”. Therefore:

My 0 Mp;(p") = My ;0 Mi(p") <=Mw:(pz") = Mp;(pi")
= L (Xap2 ") = M (Xpr)
In other words, define g~ := 1, (X;p2 — X;p1) € T1 for some g € R[X]4, then it is enough
to show g € Ur. Indeed:
L(g®) = (ML(Xip2 — X;p1), 9" )1 = (Xip2 — Xyp1, L(g")) 2 = (Xip2 — X;p1,9)1
=L((Xip2 — X;p1)g) = L((Xig)p2) — L((X;9)p1) = (Xag” ") — (X;9" P1")e

~ L__—L
Xjp =p2"

L ——L L ——L
(Xig ', Xjp Ve — (X9, Xap ) = L(X:9X;p) — L(X;9Xip) =0

—L_
Xip~=prt
O

Here we show some examples which shows that the reverse of Proposition [5.18] does not
hold.

Example 5.19. The truncated GNS multiplication operators of the following linear form:
1
L :R[X1, Xo]a = R,p = 2(p(0,0) + p(1,0) + p(~1,0) +p(0,1))

commute but L is not flat. Indeed, if we do the truncated GNS-construction we have:

1 X1 Xo X2 X1Xo X2
1 1 0 i 1 0 3
Xy (0 5 0] 0 0 0\
Mp— X2 |[E 0 ilo 0 5:(%&)
X? K; 0 0] 3 0 o} By | Ct
X1 Xol0 0 0| 0 0 0
X5 \;{ 0o Lo 0 3

is the associated moment matrix of the linear form L and a basis of the truncated GNS-
kernel of L is <X1X2,X22 — X2>. That is, the rank of My, is 4. And since in the kernel
there is no polynomials of degree less or equal to 1, we get that the unique element in
the kernel of L’ is 0, then the truncated GNS space is w >~ R[X1, Xa]1, which

implies the dimension of the GNS-truncated space is 3 and therefore L is not flat by (vi)
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in We can also verify that L is not flat by computing My. Indeed, in this case A
is invertible and Wy is uniquely defined by Wi = AX; By, then My, reads:

1 0 1|32 0 %

0 2 0[{0 0 O
— 19 1o o 1
— | 4 4 4
ML_%oogoo
00 0/0 0 O
10 3]/0 0§

Since My, # My, then L is not flat by (vii) in [5.16

Let us compute the truncated GNS multiplication operators of L. First note that:

R[X1, X 1 —1
TL%M:<1L,X1L,X2L>
Up

Therefore by Remark [5.3] the truncated GNS space of L is:
= (1"%"%")
With the Gram-Schmidt orthonormalization process we get the following orthonormal
basis with respect to the GNS product of L:
_ 1
., ———1L
vi= 1" V2X, ,—‘/§ 43

3
Vo IVOx
3 g 2

The matrices of the GNS-multiplication operators with respect to this orthonormal basis
are:

0o 0
2
Ay = M(Mp x,,v) = g 0 —%
V6
0 —-¥&
Poo 2
Az = M(Mp x,,v) = 0O 0 O
V3 3
i 0 1

It is easy to check that the truncated GNS multiplication operators of L commute, that is

My x, o M, x, — Mp, x, o M1, x, =0. Now since My, x, and My, x, commute we can do

the simultaneous diagonalization on both of them, in order to find an orthonormal basis

of the GNS truncation of L consisting of common eigenvectors of M, x, and M x,. To

do this we follow the same idea as in |15, Algorithm 4.1, Step 1] and compute for a matrix:
A =nr1A; 4+ roAs where r% + rg =1

a matrix P orthogonal such that PT AP is a diagonal matrix. In this case, we get for:

1 _V6 V6

2 4 4

Pl o ¥ -

Vi V2

2 4 4

0 0 0 100
PraP=0 -4 0 |andP"4P=[0 0 0
0o o0 ¥ 000

Looking over the proof of [5.13] we can obtain the weights A1, A2, A3 € Rs¢ through the
following operations:

1 3
T _ V6
P 0 |=| —%
o) \ -k

then A1 = (3)* and A2 = A3 = (—@)2. Therefore we get the following decomposition:

My, = in(O, DVa(0,1)" + §VQ(—@,O)VQ(—@,O)T + 3y, V6 0)\@(?,

T
8 3 3 8(37 0"
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Example 5.20. Let us do the truncated GNS construction for the optimal solution that
we got on the polynomial optimization problem described in [2:9] that is:

1 X1 Xo X3 X1Xo X3
1 ,1.0000 0.7175 1.4698 | 0.5149 1.0547 2.1604
X; [ 0.7175 0.5149 1.0547 | 0.3694 0.7568 1.5502
Xy | 1.4698 1.0547 2.1604 | 0.7568 1.5502 3.1755

(39) M:=Mn(y)= X2
X7 k0.5149 0.3694 0.7568 | 0.2651 0.5430 1.1123}

X1X2 | 1.0547 0.7568 1.5502 | 0.5430 1.1123 2.2785
X3 \2.1604 1.5502 3.1755 | 1.1123 2.2785 8.7737

Setting o := M(1,2) and 8 := M(1, 3), the truncated GNS kernel of M is:
Um = (—a+ X1,—B+ Xs,—a® + X?, —af + X1 X5)
the truncated GNS representation space is:
Vm = (1, X3)
we have that:
Um NR[X1, Xo)1 = (—a+ X1, -8+ X2)

We need to add the polynomial 1 to Um NR[X1, X2]:1 to get basis of R[X1, X2]; therefore
we have that:
R[X1, Xol1 <TM’>
Um N R[Xh XQ]I

Thence by Remark [5-3] we get that:
T = (T°)
Since v := {I"'} is also an orthonormal basis with respect to the GNS product of L we

can directly compute the matrices of truncated GNS multiplication operators of M:

M (M, x,,v) = poly '(Xi1)Mpoly '(1)=(0 1 0 0 0 0)M

M (M, x,,v) = poly ' (X21)Mpoly '(1)=(0 0 1 0 0 0)M

[=NoNeBoNol =l =Nl

Therefore:
M = Va(a, B)Va(a, B)”

Then M admits a Gaussian quadrature rule. However it does not admit a quadrature
rule. Indeed, suppose M admits a quadrature rule with N nodes, then according to [5.9}

2=rankM < N < |Vg(Um)|
But can easily see that Vc(Um) = («, 8) and
rankM =2 > |V (Um)| =1

prevents to M to have a quadrature rule.
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Example 5.21. Let us consider the following generalized Hankel matrix in two variables
of order 2 taken from [6], Example 1.13]:

1
1 1
xi (1
v X |1

X% 2
X1X, |0

X2 \3

X2 X1X, X2

0 3
0 0
0 9
0
0
0

0
0
28

This matrix does not have a quadrature rule representation with the minimal number of
nodes, as has been proved in [6) Example 1.13], however it admits a Gaussian quadrature
rule. Indeed, we can compute with the truncated GNS construction that:

o nlom kX
© o olwo X

OO YO =N

— 1 1 1
M= 61/2(0,())1/2(0,())T +3V2(0,3)V2(0, 3)" + 5V2(2,0012(2, 0)".

The following corollary is a very well known result of Curto and Fialkow (see [4, corollary
5.14] ) in terms of quadrature rules instead of nonnegative measures. In [I] there is a proof
about the correspondence between quadrature rules and nonnegative measures. This result
of Curto and Fialkow uses tools of functional analysis like the the Spectral theorem and the
Riesz representation theorem. Monique Laurent gave also a more elementary proof (see
[12] corollary 1.4] ) that uses a corollary of the Hilbert Nullstellensatz and elementary linear
algebra. The main contribution of this proof is that it does not need to find a flat extension
of the linear form since the truncated GNS multiplication operators commute and we can
apply directly the Theorem [3.10} and despite of it uses the Hilbert Nullstellensatz in the
proof of Theorem [5.4] we do not need to apply the Hilbert Nullstellensatz to show that
the nodes are in R", since the nodes are real because its coordinates are the eigenvalues
of a real symmetric matrix.

Corollary 5.22. Suppose L is flat then L has a quadrature rule with rank(M) many
nodes (the minimal number of nodes).

Proof. If L is flat by Proposition [5.18] the truncated GNS multiplication operators of L
commute and applyingﬂthen L has a quadrature rule on G, , with dim(7%) Lis flar
dim(Vz) = rank(Mr) many nodes. Since L is flat R[X]4s+1 = R[X]s + Ur and therefore
one can easily see that G = R[X]24+42. As a conclusion we get a quadrature rule for L
with rank(Mp) many nodes. O

6. MAIN THEOREM

In this section we will demonstrate that the commutativity of the truncated GNS multi-
plication operators of L is equivalent to the matrix W7 A, W, being Hankel.

Main Theorem 6.1. The following assertions are equivalent:
(1) The truncated multiplication operators My 1,..., ML, pairwise commute.
(2) There exists L € R[X]34,5 such that L = L on R[X]2441 and L is flat.

Proof. (1)=>(2). By the theorem [5.13]there exist a1,...,ax € R™ pairwise different nodes
and A\; > 0,...,Ax > 0 weights, where N := dim(7%) such that: L(p) = S~ \ip(a;)
for all p € G, where G, was defined in . Let us define, L = vazl Aievg, €
R[X]5442. We have shown in theorem that L = L on R[X]zq41, Uz C U; and
obviously L(3"R[X]3,,) C Rxo, so it remains to show that L is flat, that is to say:

dim Vﬁ = dim Tﬁ

or equivalently using [5-1} it remains to show:
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Since Uy NR[X]q = Ur NR[X]4 and using again proposition we have the following:

therefore, in the following we will prove dim(ﬂk[%]#) = N. For this, let us consider the
L

following linear map, between euclidean vector spaces:

RiXJars  RIX] i 4
4 Slld+l o
(40) U, Uy P 7P

where A := vazl Aieva;, € R[X]". Notice that the canonical map is well defined
since U; = Ux NR[X]4 and therefore it is injective. Then

dim (%) < dim (M) B3
UL Ua
It remains to show N < dim(

Eas1) Bug this is true, since:
L

(2)=(1). Since L is flat, then by we know that the truncated GNS multiplication
operators of L pairwise commute. Then by applying again there exists ai1,...,an €
R", pairwise different nodes, and A1 > 0,...,Ax > 0 weights, with N = dim(7};) such
that if we set A := >N | A\ieva, € R[X]*, we get A(p) = L(p) = L(p) for all p € R[X]24+1,
and Urp C U; C Ux. Indeed notice that Ur, C U; since for p € U, L(pg) = L(pq) = 0 for
all ¢ € R[X]4, and since L is flat this implies p € U;. Obviously My,; pairwise commute
for all 4 € {1,...,n}, since they are the original GNS operators modulo Ua defined in
In order to prove that Mp ; pairwise commute for all i« € {1,...,n}, let us first
consider the linear isometry o of the proposition Since o1 is a linear isometry
is inmmediately injective, and then dim(77) < dim(R([J—f). Therefore we have the following
inequalities:

N = dim(T}) = dim (M> = dim <M> —

UZ,QR[X]d ULQR[K]d
RIX
dim(7T7) < dim ( L]) By
Ua
then dim(7%) = dim(%). Then o3, in this case, is in particular surjective and in
conclusion is an isomorphism. With this result we be able to prove that the following
diagram is commutative, for all ¢ € {1,...,n}:
My,
(41) T, — 11
o1 0;1

rix] Mri, RLX]
Up Up
That is to say My, ; = 01_1 o Ma ;o o1. To show this let p, ¢ € R[X]q, then we have:

_ _ ~— _ oll;, = ——L _ A=L on R[X]
(Mpi(p"),7"), = <HL(XipL),qL>L HrefL =t <XipL,qL>L = L(Xipq) ="

AXipg) = (Xp",7") = (o007 (Xp").7") = (o7 (Xp)o7' @) =
(o7 o Mai(P"),7%), = (o7 0o Mpri001(P"),7"),

Finally we can conclude that the truncated GNS multiplication operators of L pairwise
commute, using the commutativity of the GNS multiplication operators of A. Indeed:
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—1 -1 —1
(42) MpioMp; =0, oMpy;00100, oMpjo01 =0, oMp;oMpjoor=

-1 -1 -1
01 oMpajoMpr;001=0; oMpjooi100; oMp;o01=DMpj;oMp;

Theorem 6.2. The following assertions are equivalent:
(1) Mg,a,..., Mg, pairwise commute.
(2) My is a Generalized Hankel matrix

Proof. (1) = (2) Assume My 1,..., ML » pairwise commute. Then by Theoremthere
exists a linear form L € R[X]3,., such that: L(R[X]2,,) C Rso, L = L on R[X]oq41
and L is flat, what implies by that L has a quadrature rule representation and
therefore M; > 0 and M; is a Generalized Hankel matrix. It is enough to show that
C; = WEALWy. The last follows from the fact that Lisflat and L = L on R[X]24+1
since:

AL | ALWe
WIAL | C;

rank(M; ) = rank ( ) L i flat rank(A) <= C; = W[ A Wr,
(2) = (1) Suppose M, is a Generalized Hankel matrix, and denote L := L, € R[X]5440-

Since M, is the moment matrix of the linear form I € R[X]54. then L is flat and by
Theorem the truncated GNS multiplication operators of L commute. Now, to prove
the truncated GNS operators commute let us define ¢ := 0! o o7, an isomorphism of
euclidean vector spaces. We will prove that the following diagram is commutative:

Mg
T, —— 1L

I,

L,i

T; —25T;
The diagram is commutative if and only if M. ; =00 M; ;o o~ *. To prove this equality
let us take p,q € R[X]4. Then:

I — —L, _ II; oIl =II L _ L=L on R[X]
<ML,i(pL):qL>L:<HL(XiP ),qL>L LT <Xip ,qL>L= (Xipq) =

N — iz — iz — i g
L(Xipg) = <X¢p ,qL>A = <X¢p @) = <Uﬁ(X¢p ),qL,>A =
L L L

(roomXanat) = (o )o@

L

Finally we can conclude the truncated GNS multiplication operators of L commute using
the commutativity of the truncated GNS multiplication operators of L in the identical
way we already did in the previous Theorem in (42)). O

Corollary 6.3. Suppose L is flat, then M is a generalized Hankel matrix.

Proof. 1f L is flat then by Theorem [5.18] the truncated GNS multiplication operators of
L commute, and therefore by Theorem we get that this is equivalent to M being a
generalized Hankel matrix. O

The following result uses the Theorem together with ideas from [18] and give us a
generalization of a classical Theorem from Mysovskikh [16], Dunkl and Xu |7, Theorem
3.8.7] and Putinar [I8] pages 189-190]. They proved the equivalence between the existence
of a minimal Gaussian quadrature rule with the commutativity of the truncated GNS
multiplication operators for a positive definite linear form on R[X]. The generalization
here comes from the fact that the result holds also if the linear form is defined on R[X]2442
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for d € Ny and it is positive semidefinite i.e. we do not assume Uy, = {0}. We also provide
a third equivalent condition in the result which is WEALWL is a generalized Hankel
matrix, a fact which seems no to have been noticed so far.

Corollary 6.4. The following assertions are equivalent:
(1) The linear form L admits a Gaussian quadrature rule.
(2) The truncated GNS multiplication operators of L commute.
(3) My is a generalized Hankel matrix.

Proof. (1) = (2). Assume that L admits a Gaussian quadrature rule, that is to say
L(p) = Zfil Aip(a;) for all p € R[X]24+1 where N := dim(7%), the points ay,...,an are

pairwise different and A\; > 0,...,Anx > 0. Let us set A := Zi\rzl Aieve; € RX]". Using
[6-§ we have the following:

(43) dim (R[K]) =N =dim7Ty
Ua
Let us consider again the linear isometry o1, already defined in ((32):
R[X
o1 : T, — Q,TDL T?A
Un

As we proved in [5.10]is well defined and is an isometry, what implies o7 is injective, and
considering that in this case it holds , o1 is moreover an isomorphism. We continue
as in the implication 2=1 of the proof of Theorem showing that the diagram is
commutative, what together with the fact that My ; always commute for all ¢ € {1,...,n}
implies that the truncated GNS multiplication operators of L commute.

(2) = (1). This part was alredy proved in the Remark[5.14]as a consequece of the Theorem
ET3

(2) <= (3) It is the Theorem [6.2] O

The following result of Moller will give us a better lower bound in the number of nodes
of a quadrature rule on R[X]2411 than the very well-known bound given in Proposition
[(I0] This bound, was already found for positive linear forms by Méller in 1975 and by
Putinar in 1997 ([I7],[18]). This result will show that the bound it is also true for positive
semidefinite linear forms and it uses the same ideas as in [I8]. We include the proof for the
convenience of the reader. This bound will help us in polynomial optimization problems
in which we know the number of global minimizers in advance, to discard optimality if
this bound is bigger than the number of global minimizers, see Example [6.7] below.

Theorem 6.5. The number of nodes N of a Gaussian quadrature rule for L satisfies:

1
> di — ;
(44) N > dim(Ty) + 3 1Srn%%)én(rank[ML7J, Mz 1))
Proof. Assume L has a quadrature rule with N nodes, that is to say, there exist \; >
0,...,An > 0 weights and a1,...,any in R" pairwise different nodes, such that L(p) =
Zf;l Aip(a;) for all p € R[X]oq41. Let us set A := vazl Xieve, € R[X]". By using the
proposition [5.8| we have that:

dim (RU—%]) =N < .

Then we can choose an orthonormal basis of %. Let us denote such a basis by fa =

{EA, . 7,b’TvA} for Bi1,...,n € R[X] pairwise different. Then we have that the transfor-
mation matrix of the multiplication operators My ; with respect to this orthonormal basis
is:

(A(XiBeBi))1<ki<n

The set A := { 7" | p € R[X]4} is a subspace of % so we can assume without loss of

generality that S1,...,03, € R[X]q where r := dim A generate a basis of A. Then since
L = A on R[X]24+1, we obtain:

(45) (M (M, Ba)) == (A(XiBrBi))i<k,j<n = ( (L(Xiﬁk%;)lgk’jsr } gz )
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(M(Ma,i,Ba)) is the transformation matrix of te i-th truncated GNS multiplication op-
erator of A with respecto to the basis Sr and where B; € R™*¥~" and C; € RN "N -r

are symmetric matrices. We will show that 57, := {EL, . ,EL} is an orthonormal basis
of TL.
Taking o the isometry defined in , we get:

o1(Tz) = {o1 (") | P" € Tr} = {o1(P") | p € R[X]a} = { P" | p € R[X]a} = A
Hence, we get:
o1(T1) = B, B

And since we have chosen f3; € R[X]q for all ¢ € {1,...,r}, then we have al(EL) = EA.

Therefore B := {EL, . ,EL} generate a basis of Ty. It remains to show that £, is
orthonormal. To see that [z, is orthonormal we use again the fact that o is an isometry
and that 01(77) = A. Indeed for 1 <4, <7

8is = MBiB) = (B;" B oa = (o7 By )0 (B e = (B Bi )
Therefore we have shown that:

M(Ma,i,Ba) = ( B:f ‘ Ci.

where we use the notation:
(M(Mv,i,8r)) := (L(XiBrBi))1<k <N
to refer us to the transformation matrix of the i-th truncated GNS multiplication operators
of L with respect to the basis Sr. Using the fact that the matrices M (Ma i, Ba) commute,
we have the following equality:
M(Mp;, BL)M(Myi, Br) — M(Myp,i, BL)M (ML ;,8L) = BiB] — B;B/
Therefore the following it holds:
rank(BiB]T - B;B]) < 2rank(BiBJT) < 2rank(B;) < 2min{r, N —r} < 2(N —r)
and then:
rank[M (Ar,j,8r), M(AL,:, BL)] < 2(N —7)
Since we have already proved » = dim T7,. And then we can conclude:
1
> di ol ,
N > dim(Tr) + 3 1§mj’%)§n(rank[ML’J, My k])

O

Remark 6.6. Note that we can use the previous Theorem [6.5] to show in a different way
(1) = (2) in the Corollary Indeed, let us suppose that L has a Gaussian quadra-
ture rule that is to say with N = dim 77, nodes. Using the inequality we get that
rank[Mz j, Mp ] = 0 for j,k € {1,...,n} therefore the truncated GNS multiplication
operators of L commute.

Example 6.7. Let us consider the following polynomial optimization problem taken from
[11]:

minimize  f(z) = ziz5 (2 +y* — 1)

subject to x1,x2 € R
By Calculus we know that the minimizers of f occur in the real points common to the par-
tial derivatives of f (the real gradient variety) and we can easily check that this derivatives
intersect in 4 real points: (:I:%, :t%) € R?. Therefore we know in advance that (P)

has at most 4 minimizers. On other side, an optimal solution of the Moment relaxation
of order 8 (Ps), that is M := Mg 1(y) read as:
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1.00 0.00 0.00 62.12  —0.00 62.12 0.00 0.00 0.00 0.00
0.00 62.12 —0.00 0.00 0.00 0.00 9666.23  —0.00 8.33 ~0.00
0.00 ~0.00 62.12 0.00 0.00 0.00 ~0.00 8.33  —0.00 9666.23
62.12 0.00 0.00 9666.23  —0.00 8.33 0.00 —0.00 0.00 0.00
—0.00 0.00 0.00 —0.00 8.33 —0.00 —0.00 0.00 0.00 —0.00
62.12 0.00 0.00 8.33  —0.00 9666.23 0.00 0.00 —0.00 0.00
0.00 9666.23 —0.00 0.00 —0.00 0.00 3150633.17 —0.00 2.27 0.00
0.00 —0.00 8.33 —0.00 0.00 0.00 —0.00 2.27 0.00 2.27
0.00 8.33 —0.00 0.00 0.00 —0.00 2.27 0.00 2.27 —0.00
0.00 —0.00 9666.23 0.00 —0.00 0.00 0.00 2.27  —0.00 3150630.69
9666.23 0.00 —0.00 3150633.17 —0.00 2.27 0.42 —0.00 —0.00 0.00
~0.00 ~0.00 0.00 —0.00 2.27 0.00 ~0.00 —0.00 0.00 0.00
8.33 0.00 0.00 2.27 0.00 2.27 ~0.00 0.00 0.00 ~0.00
~0.00 0.00 —0.00 0.00 2.27 ~0.00 0.00 0.00 —0.00 ~0.00
9666.23 ~0.00 0.00 2.27  —0.00 3150630.69 0.00 —0.00 —0.00 0.33
9666.23 —0.00 8.33 —0.00 9666.23
0.00 —0.00 0.00 0.00 —0.00
—0.00 0.00 0.00 —0.00 0.00
3150633.17 —0.00 2.27 0.00 2.27
—0.00 2.27 0.00 2.27 ~0.00
2.27 0.00 2.27 —0.00 3150630.69
0.42 ~0.00 ~0.00 0.00 0.00
—~0.00 ~0.00 0.00 0.00 —~0.00
—~0.00 0.00 0.00 —0.00 ~0.00
0.00 0.00 ~0.00 —0.00 0.33
2466755083.36 —43.48  169698627.89 —6.08  134568970.57
—43.48  169698627.89 —6.08  134568970.57 15.08
169698627.89 —6.08 134568970.57 15.08  169698562.66
—6.08 134568970.57 15.08  169698562.66 25.61
134568970.57 15.08  169698562.66 25.61  2466752654.76
and the rank of the commutator of the truncated GNS multiplication operators is:
rank[My, x, MM, x,] =
0 0.00 0.00 —0.00 —0.00 0.00 0.00 ~0.00 0.00  —0.00
~0.00 0 —0.00 0.00 0.00 0.00 ~0.00 0.00 0.00  —0.00
~0.00 0.00 0 0.00 0.00 0.00 0.00 ~0.00 0.00 0.00
0.00 —0.00 —0.00 0 —0.00 —0.00 ~0.00 ~0.00 0.00  —0.00
ok 0.00 —0.00 —0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 | _,
—0.00 —0.00 —0.00 0.00 —0.00 0 ~0.00 ~0.00 0.00  —0.00
~0.00 0.00 —0.00 0.00 —0.00 0.00 0 —313.91 —0.00 115.50
0.00 —0.00 0.00 0.00 —0.00 0.00 313.91 0 0.18 0.00
—0.00 —0.00 —0.00 —0.00 —0.00 —0.00 0.00 —0.18 0 0.05
0.00 0.00 —0.00 0.00 —0.00 0.00 —115.50 —0.00 —0.05 0

If M had a quadrature rule on R[X1, X5]7 with N nodes, since f € R[X1, X2]7
(747) the N nodes of the quadrature rule would be global minimizers of f and P*

and according to Theorem [6.5}

N > dim(T5) + %

max (rank[My, j, Mp x]) = 10 +

1<j,k<n

14:12
2

Therefore the polynomial f would have at least 12 global minimizers and this is a contra-
diction with the fact that f has at most 4 global minimizers. Notice that then M does
not have a quadrature rule on R[X]7, and in particular it does not have a quadrature rule.

7. ALGORITHM FOR EXTRACTING MINIMIZERS IN POLYNOMIAL OPTIMIZATION PROBLEMS

As an application of all the previous results in this section we find a stopping criterion
for the Moment relaxation hierarchy, in other words, we find a condition on the optimal
solution of (P;) L, such that L(f) = P; = P*. In this this case we also find potencial
global minimizers. In [9] Henrion and Lasserre the stopping criterion was L to be flat
and in this algorithm the stopping criterium is WZ My, W, being Hankel, and as we
have already seen in [6.3] this condition is more general. It important to point out that
despite this condition is more general than being flat we can not ensure optimality until
we check that the candidate to minimizers are inside to the basic closed semialgebraic set
S, condition that it is always possible to ensure if the set S is a set described with linear
polynomials (in particular if the set S is R™) or we have flat extension of some degree on
the optimal solution, that is to say rank My(y) = rank M, (y) for sufficient small s, see [13]
Theorem 6.18] or [0, Theorem 1.6] for a proof. At the end of this paper we summarize all
this results in an algorithm with examples and also we illustrate polynomial optimization
problems where this new stopping criterion allow us to conclude optimality even in case
where the optimal solution is not flat as we already advance in [2.9] and in 2.11]
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Theorem 7.1. Let f,p1,...,pm € R[X]2q and L be an optimal solution of (P4). Suppose
that WLTALWL is a generalized Hankel matrix. Then L has a quadrature rule on Gr.
Moreover, suppose the nodes of the quadrature rule lie on S and f € R[X]2q—1, then
L(f) = P* and the nodes are global minimizers.

Proof. Since WE AWy, is Hankel by Corollary and there exists exists nodes
ai,...,any € R" and weights A1 > 0,...,Any > 0, where N := dim 77, such that:

N
L(p) =Y Aip(a;) for all p € Gy,
i=1
Moreover if the nodes of this quadrature rule are contained in S by (i) P* = P} =
f(a;) forie {1,...,N}. -

The following Lemma was already proved in [I2] lemma 2.7]. We will use it to prove the

Corollary

Lemma 7.2. Let L = Zfil Aieve, € R[X]5,; for ai1,...,an pairwise different points
and Ay > 0,..., A, > 0 such that L is flat. Then there exist interpolation polynomials
qi,-..,qn € R[X]2q4 at the points aq,...,an of degree at most d — 1.

Proof. Let us consider the isometry map already defined in

RIX] o

7 P HﬁAv forPE]R[X]d—l
Ua

o1: 1, —
It is moreover an isomorphism of euclidean vector spaces since dim(RU—%]) = N by Proposi-
tion[5.8] It is very well known that there exits interpolation polynomial hy, ..., hxy € R[X]
at the points a1, ...,an, such that h;(a;) = 6;; for 4,5 € {1,...,n}. Define G~ :=
o (") for ¢; € R[X]4—1. Then for j € {1,...,N}:

N
0< Y Naia) = L) = (@ @"), = (B ") = A =X,
i=1

and therefore g;(a;) = d;,; for i,5 € {1,...,N}. O

Corollary 7.3. Let pi,...,pm € R[X]: and L be an optimal solution of (Paq) with
f € R[X]24—1. Suppose that W7 AWy is a Hankel matrix. Then L has a quadrature
rule representation on G, L(f) = P* and the nodes are minimizers of (P).

Proof. From Theorem there exists exists nodes a1,...,an € R™ and weights \; >
0,...,An >0, where N := dim T such that:

N
L(p) = Z Aip(a;) for all p € G,
i=1

To conclude the Corollary by Theorem [7.1]it is enough to show that the nodes a1, ..., an
are contained in S. In Theorem we proved that I := vazl Aieve, € R[X]5; is
flat. Then by the Lemma there are interpolation polynomials ¢i,...,q~ at the
points a1, ...,anx having at most degree d — 1. Since deg(¢gip;) < 2d — 1 then ¢Zp; €
T24(p1,-..,pm) and therefore:

0 < L(gip;) = L(gip;) = \ip;(as)
This equality proves that pj(a;) > 0 for j € {1,...,m} and ¢ € {1,...,N} so we can
conclude {ai,...,an} CS. O

Remark 7.4. The above results: Theorem [7.I]and Corollary [7.3|can be written in terms
of an optimal solution of a Moment relaxation of even degree by taking as an optimal
solution its restriction to one degree less.
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Algorithm 1: Algorithm for extracting minimizers of (P)

oW

© N o w

10
11

12
13

14

15

16
17

18
19

20

Input: A polynomial optimization problem (P) (2)).

Output: The minimum P* and minimizers ay,...,a, C S of (P).

k := max{deg f,degp1,...,degpm}

Compute an optimal solution M := ML%J (y) of the Moment relaxation (Px) and
also compute Wy matrix such that:

- Ay | AuWwm
M= ( WAy | Cu )

if W,T,,AM W is a Hankel matriz then
L goto 7
else
L k:=k-}1 and go to 2.
if (k even and f € R[X]x—1) or (k odd and f € R[X];_2) then
L go to 14
else
if Cyy =Wy AWy then
L go to 14
else
L k:=k-+1 go to 2
Compute the truncated multiplication operators of M: A wm,...,An,Mm and go to
15.
Compute an orthonormal basis {vi,...,v,} of Tm of common eigenvectors of the
truncated multiplication operators such that A;mv; = a;;v; and go to 16.
if a1,...,a, € S then

L go to 20

else

| k:=k+1 and go to 2

We can conclude that the points {a1,..., a,} C S are minimizers of (P), and
P =f(a;) forallie {1,...,r}

8. SOFTWARE AND EXAMPLES

To find an optimal solution of the Moment relaxation and for the big calculations we have
used the following softwares:

e YALMIP: developed by J. Lofberg. It is a toolbox for Modeling and Optimization
in MATLAB. Published in the Journal Proceedings of the CACSD Conference in
2004. For more information see: http://yalmip.github.io/.

e SEDUMI: developed by J. F. Sturm. It is a toolbox for optimization over sym-
metric cones. Published in the Journal Optimization Methods and Software in
1999. For more information see: http://sedumi.ie.lehigh.edu/.

e MPT: the Multi-parametric Toolbox is an open source, Matlab-based toolbox for
parametric optimization, computational geometry and model predictive control.
For more information see: http://people.ee.ethz.ch/ mpt/3/.

e MATLAB and Statistics Toolbox Release 2016a, The MathWorks, Inc., Natick,
Massachusetts, United States.
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Example 8.1. Let us apply the algorithm to the following polynomial optimization prob-
lem, taken from [10] :
minimize  f(x) = 100(z2 — x7)° + 100(x3 — 23)° + (1 — 1)° + (z2 — 1)°
subject to — 2.048 < x1 < 2.048
—2.048 < x2 <2.048
—2.048 < 23 <2.048

We initialize k = 4 and compute an optimal solution of the Moment relaxation (Py). In
this case reads as:

1 X, Xo X3 x? X1Xs X1Xs X2 XoX3 X2
1 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
X1 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
Xo 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
X3 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
X3 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
M:=M41(¥) = x;X, [1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
X1Xg3 [1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
x32 1.0000  1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
XpX3 |1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
X2 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000 5.6502
We can calculate that:
1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
W Ay — | 1-0000  1.0000 1.0000 1.0000 1.0000  1.0000
MAMWM = |4 0000 1.0000 1.0000 1.0000 1.0000  1.0000
1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

is a Hankel matrix but f ¢ R[X1, X2, X33 and Cm # Wiz AW, so we need to try
again with k = 5 and in this case the solution of the Moment relaxation (Ps) reads as:

1 X1 Xy X3 x? X1Xs X1X3 X2 X0 X3 X2
1 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
X1 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
Xo 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
X3 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
X3 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
M:=Ms5,1(y) = x;X, [1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
X1X3 |1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
X3 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
X5Xs |1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
x2 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0014
we can calculate that:
1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
WT AnrWns — | 1-0000  1.0000 1.0000 1.0000 1.0000  1.0000
MAM WM 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

is a Hankel matrix but f ¢ R[X1, X2, X3]3 and Cm # WixAmWn. In this case if we
rounding we can consider Cyp = Wla Am W, i.e. M flat, and continue with the algorithm
and we could obtain already the minimizers, but to be more precise let us increase to k = 6
and we get the following optimal solution in the Moment relaxation (Fs):

(46) M = Mo (y) Am | Am Wi
= Me,1 =
y WihiAm | Cm
where:
1 X1 Xo X3 X3 X1Xs X1X3 X3 X0 X3 X2

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Pl 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Xg 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
X3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
X3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
AM = X;X, [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
X1Xg3 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
x2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
XyX3 (1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
x2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000



and
X3
x3 5.2880
)(i)(z 0.9994
X3X3 0.9994
X1X3 2.4826
X1 X2X3 |0.9989
°M = X;XZ | 24744

X3 0.9988
X2X3 1.0004
X2 X2 1.0020

X3 1.0001

We calculate that:

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

Wi AmCm =

FRRRRRRPRPRR

is a generalized Hankel matrix and f € R[X1, X2, X3]s.

RFRRRRRRRR e
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[eNeoloNoloNoNeNoRaNy
[=NeoleNoleNoNeNol o]

XIX2 X}?X3
0.9994  0.9994
2.4826  0.9989
0.9989  2.4744
0.9988  1.0004
1.0004  1.0020
1.0020  1.0001
2.4832  1.0010
1.0010  1.6671
1.6671  1.0007
1.0007  2.4638

.0000  1.0000
.0000  1.0000
.0000  1.0000
.0000  1.0000
.0000 1.0000
.0000  1.0000
.0000 1.0000
.0000 1.0000
.0000 1.0000
.0000 1.0000

[=NeoNeNolieNeNoi e Na)
[eloleNoloNel ol o)

X1X3
2.4826
0.9988
1.0004
2.4832
1.0010
1.6671
0.9983
1.0007
1.0015
1.0001

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

o e e e e

OO0 0O0OROOOO

.0000

el el e

[=NeleNol loNeNoNe Nl
[=NoNel leNeNoleNo o)

X1X2X3
0.9989
.0004
0020
0010
6671
0007
0007
0015
0001
0016

-

e e e e

0000
0000
0000
0000

0000
0000
0000
0000
0000

.0000

el el el e

[Nl NoloNoNeNoNeNoe)
=R NeNoleNoNeNoNeNoel

X1X32
4744
0020
0001
6671
0007
4638
0015
0001
0016
0.9912

o e N e R =N

0000
0000
0000
0000

0000
0000
0000
0000
0000

el el e

HOOQOOOOOOoOOo

X3
0.9988
2.4832
1.0010
0.9983
1.0007
.0015
.2883
.0071
.4669
.0072

=N O

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

el e e

X2X3
1.0004
.0010
6671
0007
0015
0001
0071
4669
0072
4579

-

S e e

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

il el e

X2X32
1.0020
.6671
0007
0015
0001
0016
4669
0072
4579
0040

-

e S N

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

o e e e e
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X3
1.0001
1.0007
2.4638
1.0001
1.0016
0.9912
1.0072
2.4579
1.0040

14.6604

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

By Theorem we have opti-

mality with optimal value P* = P§ = 2.3527 - 10~ ~ 0. Finally we get that the matrices
of the truncated GNS operators with respect to the orthonormal basis v := (1),, are:

M (M x,,v) = (1), M (M, x,,v) = (1) and M (M, x,,v) = (1)
The operators are in diagonal form so we have already an orthonormal basis of T of

common eigenvectors of the truncated GNS operators of M v := (1),,, then a global
minimizer is (1,1,1) € R", and:

M = V3(1,1, )V4 (1,1,1).

Example 8.2. Let us consider the following polynomial optimization problem, defined
on a non convex closed semialgebraic set, taken from [8, problem 4.6] :

minimize

subject to

f(z) = —21 — 22

T2 < 227 — 825 + 822 + 2

T2 < 42 — 3223 + 88z% — 9631 + 36

0<
0<

1 S;3
T2 §;4

We initialize k = 4. An optimal solution of (P,) reads as:

(47)
1
X1
X
M = M4’1(y) = XfQ

1 X1 X X3 X1 X5 X2

1.0000  3.0000 4.0000 | 9.0000  12.0000  16.0000
3.0000 9.0000 12.0000 | 27.0000  36.0000  48.0000
4.0000 12.0000 16.0000 | 36.0000  48.0000  64.0000
0.0000 27.0000 36.0000 | 107.6075 109.0814 176.3211
X1 X, | 12.0000 36.0000 48.0000 | 109.0814 176.3211 194.9661
16.0000 48.0000 64.0000 | 176.3211 194.9661 368.5439
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and
1 X X, X3 X1 Xo X2
1 1.0000  3.0000  4.0000 | 9.0000 12.0000 16.0000
X1 3.0000  9.0000 12.0000 | 27.0000 36.0000 48.0000
(48) M= X2 4.0000 12.0000 16.0000 | 36.0000 48.0000 64.0000
X3 9.0000 27.0000 36.0000 | 81.000 108.000 144.000
X1Xo le.OOOO 36.0000 48.0000 | 108.000 144.000 192,00}
X2 \16.0000 48.0000 64.0000 | 144.000 192.000 256.000
taking for example:
9 0 O
WM = 0 0 O
0 3 4

Misa generalized Hankel matrix. The matrix of the truncated GNS multiplaction oper-

ators with respect to the orthonormal basis v = <TM
M(Mma,v)=( 3 )and M(Mm1,v)=(4)

> are:

Hence the candidate to minimizer is (3,4), however it does not lie in .S, then (3,4) cannot
be a minimizer and f(3,4) = —7 cannot be the minimum. Then we try with a relaxation
of order k = 5. An optimal solution of the Moment relaxation (Ps) is the following:

(49) M= Msi(y) = 2

1 1.00
X1 ( 2.67

X3

X2 8.00
X1 X, | 10.67

1 X, X, X X1X, X2
2.67 4.00 | 800 10.67 16.00
8.00 10.67 | 24.00 32.00 42.67

4.00 10.67 16.00 | 32.00 42.67  64.00
24.00 32.00 | 72.00 96.00 128.00
32.00 42.67 | 96.00 128.00 170.67)

16.00 42.67 64.00 | 128.00 170.67 256.00

In this case Cvi = Wig Am W, therefore M is flat and in particular the operators com-
mute by After the simultaneous diagonalization of the truncated GNS operators we
get that the candidate to minimizers are (0,4) ¢ S and (3,4) ¢ S. Hence we try with a

relaxation of order k = 6. An optimal solution of the Moment relaxation (Ps) reads as:

(50)
1 X1 Xo x? X1X2 x2 x3 X2Xo X1X2 x3
1 1.00 2.67 4.00 8.00 10.67 16.00 24.00 32.00 42.67 64.00
X1 2.67  8.00 10.67  24.00  32.00 42.67 72.00 96.00 128.00 170.67
Xo 4.00  10.67  16.00  32.00  42.67 64.00 96.00 128.00 170.67 256.00
X2 8.00  24.00  32.00 72.00  96.00  128.00 216.00 288.00 384.00 512.00
X1X2 |10.67 32.00  42.67  96.00 128.00  170.67 288.00 384.00 512.00 682.66
M := Mg,1(y) = x% 16.00  42.67  64.00  128.00 170.67  256.00 384.00 512.00 682.66 1024.00
X7 24.00 72.00 96.00 216.00 288.00 384.00 | 204299.70  870.25  19035.69  1583.15
X2X5 |32.00 96.00 128.00 288.00 384.00 512.00 870.25 19035.69  1583.15  18023.54
X1X3 |42.67 128.00 170.67 384.00 512.00 682.66 | 19035.69  1583.15  18023.54  2822.34
X3 64.00 170.67 256.00 512.00 682.66 1024.00 | 1583.15  18023.54  2822.34  58336.42
and
X XX, X1X3 X3
3
X7 648.00  863.99 1151.99 1535.99
WL AWt = X?X, | 863.99 1151.99 1535.99 2047.99
M - 2
X1X5 | 1151.99 1535.99 2047.99 2730.65
3
X5 1535.99 2047.99 2730.65 4095.99

is a Hankel matrix. However we get the same candidate to minimizers as in the previous
relaxation which does not belong to S. Finally we increase to k = 7, and we get after
rounding, the following optimal solution of (P7):
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1 X1 Xo x? X1X2 x2 x3 X?Xs X1X32 X3

1 1.00  2.33  3.18 5.43 7.40 10.10 | 12.64 17.25  23.53  32.11
X1 2.33  5.43 7.40 12.64  17.25  23.53 | 29.45  40.18  54.82 74.80
Xo 3.18  7.40  10.10  17.25  23.53  32.11 | 40.18  54.82  74.80  102.07
X2 5.43  12.64 17.25  29.45  40.18  54.82 | 68.60  93.60 127.72  174.26
X1Xo | 7.40 17.25 23.53  40.18  54.82  74.80 | 93.60 127.72 174.26  237.77
M := Mr71(y) = x2 10.10  23.53 3211  54.82  74.80  102.07 | 127.72 174.26  237.77  324.42
X% 12.64 29.45 40.18  68.60  93.60 127.72 | 159.81 218.05 297.51  405.94
XXy | 17.25 40.18  54.82  93.60 127.72 174.26 | 218.05 297.51 405.94  553.88
X1X2 |23.53 54.82 74.80 127.72 174.26 237.77 | 297.51 405.94 553.88  755.74
X3 \32.11 74.80 102.07 174.26 237.77 324.42 | 405.94 553.88 755.74 1031.16

It holds that M = M, therefore in particular M is a generalized Hankel matrix and
the truncated multiplication operators commute. The matrices of the truncated GNS
multiplication operators with respect to the orthonormal basis v := {TM} are:

M (Mwm,x,,v) = ( 2.3295 ) and M (Mwm, x,,v) = ( 3.1785 )
Since (2.3295,3.1785) € S then it is also a minimizer and we proved optimality P* =
P7 = —5.5080.

Example 8.3. Let us considerer the following polynomial optimization problem taken
from [11], example 5]:

minimize  f(z) = —(x1 —1)® — (21 — 22)° — (22 — 3)°
subject to 1 — (z1 —1)>>0

1—(x1 —m2)2 >0

1—(z2—3)*>0

For k = 2 and k = 3 in the algorithm, the modified moment matrix of the optimal solution
of the Moment relaxation is generalized Hankel and we get as a potencial minimizers,
after the truncated GNS construction, (1.56,2.18) € S in both relaxations, however f ¢
R[X1, X2]1 so we can not conclude (1.56,2.18) is a global minimum. When we increase to
k = 4, and compute an optimal solution of the Moment relaxation (Ps). We get:

1 X, X, X2 X1 X5 X2

1 1.0000 1.4241 2.1137 | 2.2723  3.0755  4.5683

X, [1.4241 2.2723 3.0755 | 3.9688  4.9993  6.8330

M = My(y) = X, |21137 3.0755 4.5683 | 4.9993 6.8330 10.1595
X? L2.2723 3.9688 4.9993 | 7.3617 8.8468 11.3625}

X1X> | 3.0755 4.9993 6.8330 | 8.8468 11.3625 15.7120
X2 4.5683 6.8330 10.1595 | 11.3625 15.7120 23.3879

and we can verify M = M. Hence in this case M is flat, then it is clear that M is a
generalized Hankel matrix implying that the truncated GNS multiplication operators of
M commute. We proceed to do the truncated GNS construction and we get the following
orthonormal basis of W:

W = <TM, —2.08816 + 2.0234X, ", —6.0047 — 0.9291X; + 3.4669X2M>

Denote v := {T™', —2.08816 + 2.0234X; ', —6.0047 — 0.9201X; + 3.4660Xz " } such a ba-
sis. Then the transformation matrices of the truncated GNS multiplication operators with
respect to this basis are:

1.4241 0.4942  0.0000
Ay = M(Mp x,,v) = | 04942 15759 0.0000
0.0000  0.0000  2.0000

21137 0.1324 0.2884
Ay = M(Mwm,x,,v) = | 01324 2.1543 0.3361
0.2884 0.3361 2.7320
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Again we follow the same idea as in [15] algorithm 4.1 Step 1] to apply simultaneous
diagonalization to the matrices A; and Az. For this we find the orthogonal matrix P that
diagonalize a matrix of the following form:

A=r1A1 + roAs where r% + r% =1

For
0.7589 0.5572 0.3371
P = —0.6512 0.6493 0.3929
0.0000 —0.5177 0.8556

we get the following diagonal matrices:

1.0000 0.0000 —0.0000 2.0000 —0.0000 0.0000
PTAP= 0.0000 2.0000 0.0000 |,PTAP = —0.0000 2.0000 —0.0000
—0.0000 0.0000 2.0000 0.0000 —0.0000 3.0000

and with the operation:

1 0.7589
PT{ o | = 05572
0 0.3371

we get the square roots of the weights of the quadrature formula. Then we have the
following decomposition:

M = M = 0.5759V4(1,2)Va! (1,2) + 0.3105V2(2, 2)V4' (2,2) + 0.1137Va(2, 3) Vil (2,3)

In this case the points (1,2),(2,2), and (2,3) lie on S, as we already know since it holds
the condition of the Theorem 1.6 in [5], and therefore they are global minimizers of (P),
and the minimum is P* = P} = —2.
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