On the optimal solutions of Lasserre relaxations

María López Quijorna Advisor: Markus Schweighofer
Tagung: Konstanz-Women in Mathematics 2015

Konstanz University, June 19th 2015

$\square \mathbb{R}[X]:=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right], X:=\left(X_{1}, \ldots, X_{n}\right)$
$\square \mathbb{R}[X]_{d}:=\{p \in \mathbb{R}[X]: \operatorname{deg}(p) \leq d\}$
$■ \mathbb{R}[X]_{=d}$ vector space of real forms of degree d
■ $\mathbb{R}[X]_{d}^{*}:=\left\{L: \mathbb{R}[X]_{d} \rightarrow \mathbb{R}\right.$ linear form $\}$

- $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$

■ $|\alpha|:=\alpha_{1}+\ldots+\alpha_{n}$
■ $X^{\alpha}:=X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}$
■ Let $L \in \mathbb{R}[X]^{*}$, a quadrature rule for L is a tuple $\left(\lambda_{1}, a_{1}, \ldots, \lambda_{r}, a_{r}\right)$ with $\lambda_{i} \in \mathbb{R}_{\geq 0}$, with $\sum_{i=1}^{r} \lambda_{i}=1$ and $a_{i} \in \mathbb{R}^{n}$ such that:

$$
L(p)=\lambda_{1} p\left(a_{1}\right)+\cdots+\lambda_{r} p\left(a_{r}\right)
$$

Polynomial optimization problem
(P)
$\min f(x)$ over:

- $x \in \mathbb{R}^{n}$
where $f \in \mathbb{R}[X]_{2 d}$
(P)
$\min f(x)$ over:
- $x \in \mathbb{R}^{n}$
where $f \in \mathbb{R}[X]_{2 d}$
Laserre relaxation (semidefinite Program)
($R_{2 d}$)
$\min L(f)$ such that:
- $L \in \mathbb{R}[X]_{2 d}^{*}$
- $L\left(\sum \mathbb{R}[X]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$
- $L(1)=1$
(P)
$\min f(x)$ over:
- $x \in \mathbb{R}^{n}$
where $f \in \mathbb{R}[X]_{2 d}$

Laserre relaxation (semidefinite Program)
($R_{2 d}$)
$\min L(f)$ such that:

- $L \in \mathbb{R}[X]_{2 d}^{*}$
- $L\left(\sum \mathbb{R}[X]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$
- $L(1)=1$
- $P^{*} \geq \cdots \geq R_{2(d+1)}^{*} \geq R_{2 d}^{*}$

Polynomial optimization problem

(P)
$\min f(x)$ over:

- $x \in \mathbb{R}^{n}$
where $f \in \mathbb{R}[X]_{2 d}$

Laserre relaxation (semidefinite Program)
($R_{2 d}$)
$\min L(f)$ such that:

- $L \in \mathbb{R}[X]_{2 d}^{*}$
- $L\left(\sum \mathbb{R}[X]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$
- $L(1)=1$
- $P^{*} \geq \cdots \geq R_{2(d+1)}^{*} \geq R_{2 d}^{*}$
- If L has a quadrature rule then $L(f) \geq P^{*}$

Polynomial optimization problem

(P)
$\min f(x)$ over:

- $x \in \mathbb{R}^{n}$
where $f \in \mathbb{R}[X]_{2 d}$

Laserre relaxation (semidefinite Program)
($R_{2 d}$)
$\min L(f)$ such that:

- $L \in \mathbb{R}[X]_{2 d}^{*}$
- $L\left(\sum \mathbb{R}[X]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$
- $L(1)=1$
- $P^{*} \geq \cdots \geq R_{2(d+1)}^{*} \geq R_{2 d}^{*}$
- If L has a quadrature rule then $L(f) \geq P^{*}$
- If $\left(R_{2 d}\right)$ has an optimal solution L^{*}, and moreover L^{*} has a quadrature rule then $L^{*}(f)=P^{*}$

Observation

To find a quadrature rule for $L \in\left(R_{2 d}\right)$ is equivalent to find:

- A finite dimensional euclidean vector space V and commuting self-adjoint endomorphisms M_{1}, \ldots, M_{n} of V and $a \in V$ such that $L(p)=<p\left(M_{1}, \ldots, M_{n}\right) a, a>$, for $p \in \mathbb{R}[X]_{\leq 2 d}$.

Observation

To find a quadrature rule for $L \in\left(R_{2 d}\right)$ is equivalent to find:
■ A finite dimensional euclidean vector space V and commuting self-adjoint endomorphisms M_{1}, \ldots, M_{n} of V and $a \in V$ such that $L(p)=<p\left(M_{1}, \ldots, M_{n}\right) a, a>$, for $p \in \mathbb{R}[X]_{\leq 2 d}$.

Let $L \in\left(R_{2 d}\right)$ we set:

- $U_{L}:=\left\{p \in \mathbb{R}[X]_{d}: \forall q \in \mathbb{R}[X]_{d}: L(p q)=0\right\}$ GNS kernel
- $V_{L}:=\frac{\mathbb{R}[X]_{d}}{U_{L}}$ GNS representation space of \mathbf{L}

■ $<\bar{p}, \bar{q}>_{L}:=L(p q)\left(p, q \in \mathbb{R}[X]_{d}\right)$ GNS scalar product

- Then we have built $\left(V_{L},<,>\right)$ an Euclidean Vector Space

■ $U_{L}:=\left\{p \in \mathbb{R}[X]_{d}: \forall q \in \mathbb{R}[X]_{d}: L(p q)=0\right\}$ GNS kernel

- $V_{L}:=\frac{\mathbb{R}[X]_{d}}{U_{L}}$ GNS representation space of \mathbf{L}

■ $<\bar{p}, \bar{q}>_{L}:=L(p q)\left(p, q \in \mathbb{R}[X]_{d}\right)$ GNS scalar product
■ Then we have built $\left(V_{L},<,>\right)$ an Euclidean Vector Space

- $U_{L}:=\left\{p \in \mathbb{R}[X]_{d}: \forall q \in \mathbb{R}[X]_{d}: L(p q)=0\right\}$ GNS kernel
- $V_{L}:=\frac{\mathbb{R}[X]_{d}}{U_{L}}$ GNS representation space of \mathbf{L}

■ $<\bar{p}, \bar{q}>_{L}:=L(p q)\left(p, q \in \mathbb{R}[X]_{d}\right)$ GNS scalar product

- Then we have built $\left(V_{L},<,>\right)$ an Euclidean Vector Space

■ $\Pi_{L}: V_{L} \rightarrow\left\{\bar{p}: p \in \mathbb{R}[X]_{d-1}\right\}$ orthogonal projection
■ $M_{L, i}: \Pi_{L} V_{L} \rightarrow \Pi_{L} V_{L}: \bar{p} \rightarrow \Pi_{L}\left(\overline{X_{i} p}\right)\left(p \in \mathbb{R}[X]_{d-1}\right)$ and $i \in\{1, \ldots, n\}$.
$M_{L, i}$, called \mathbf{i}-th truncated GNS multiplication operator, is self-adjoint endomorphism of $\Pi_{L} V_{L}$

Theorem

Let $L \in\left(R_{2 d}\right)$ and assume that $M_{L, 1}, \ldots, M_{L, n}$ paarwise commute. Then $L_{\mid \mathbb{R}[X]_{2 d-1}}$ has a quadrature rule.

Theorem

Let $L \in\left(R_{2 d}\right)$ and assume that $M_{L, 1}, \ldots, M_{L, n}$ paarwise commute. Then $L_{\mid \mathbb{R}[X]_{2 d-1}}$ has a quadrature rule.

Sketch of the proof:
■ There exist ONB v_{1}, \ldots, v_{r} of $\Pi_{L}\left(V_{L}\right)$ st. $M_{L, i} v_{j}=y_{j i} v_{j}$ for $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, r\}$, and st. $\overline{1}=\sum_{i=1}^{r} a_{i} v_{j}$ and set $\lambda_{j}:=a_{j}^{2}$.

Theorem

Let $L \in\left(R_{2 d}\right)$ and assume that $M_{L, 1}, \ldots, M_{L, n}$ paarwise commute. Then $L_{\mid \mathbb{R}[X]_{2 d-1}}$ has a quadrature rule.

Sketch of the proof:
■ There exist ONB v_{1}, \ldots, v_{r} of $\Pi_{L}\left(V_{L}\right)$ st. $M_{L, i} v_{j}=y_{j i} v_{j}$ for $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, r\}$, and st. $\overline{1}=\sum_{i=1}^{r} a_{i} v_{j}$ and set $\lambda_{j}:=a_{j}^{2}$.

- $L\left(X^{\alpha}\right)=\left\langle M^{\alpha}(\overline{1}), \overline{1}\right\rangle$ for $|\alpha| \leq 2 d-1$
where $M^{\alpha}:=M_{L, 1}^{\alpha_{1}} \cdots M_{L, n}^{\alpha_{n}}$

Theorem

Let $L \in\left(R_{2 d}\right)$ and assume that $M_{L, 1}, \ldots, M_{L, n}$ paarwise commute. Then $L_{\mid \mathbb{R}[X]_{2 d-1}}$ has a quadrature rule.

Sketch of the proof:
■ There exist ONB v_{1}, \ldots, v_{r} of $\Pi_{L}\left(V_{L}\right)$ st. $M_{L, i} v_{j}=y_{j i} v_{j}$ for $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, r\}$, and st. $\overline{1}=\sum_{i=1}^{r} a_{i} v_{j}$ and set $\lambda_{j}:=a_{j}^{2}$.

- $L\left(X^{\alpha}\right)=\left\langle M^{\alpha}(\overline{1}), \overline{1}\right\rangle$ for $|\alpha| \leq 2 d-1$
where $M^{\alpha}:=M_{L, 1}^{\alpha_{1}} \cdots M_{L, n}^{\alpha_{n}}$
- $\left\langle M^{\alpha}(\overline{1}), \overline{1}\right\rangle=\sum_{j=1}^{r} \lambda_{i} y_{j}{ }^{\alpha}$ for $|\alpha| \leq 2 d-1$

Lemma
Let $L \in\left(R_{2 d}\right)$ and assume $M_{L, 1}, \ldots, M_{L, n}$ paarwise commute. Then there exist $y_{1}, \ldots, y_{n} \in \mathbb{R}^{n}$ and $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{R}_{\geq 0}$ with $\sum_{i=1}^{r} \lambda_{i}=1$ and $L_{\infty} \in \mathbb{R}[X]_{2 d}^{*}$ such that:

$$
L=L_{0}+L_{\infty} \text { on } W
$$

where:

$$
\begin{gathered}
W:=\left\{\sum_{i=1}^{m}\left(s_{i}\right)^{2}+p \mid s_{i} \in \mathbb{R}[X]_{=2 d}, p \in \mathbb{R}[X]_{2 d-1}\right\} \\
\text { and } L_{0}:=\sum_{i=1}^{r} \lambda_{i} e v_{y_{i}}
\end{gathered}
$$

Lemma

Let $L \in\left(R_{2 d}\right)$ and assume $M_{L, 1}, \ldots, M_{L, n}$ paarwise commute. Then there exist $y_{1}, \ldots, y_{n} \in \mathbb{R}^{n}$ and $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{R}_{\geq 0}$ with $\sum_{i=1}^{r} \lambda_{i}=1$ and $L_{\infty} \in \mathbb{R}[X]_{2 d}^{*}$ such that:

$$
L=L_{0}+L_{\infty} \text { on } W
$$

where:

$$
\begin{gathered}
W:=\left\{\sum_{i=1}^{m}\left(s_{i}\right)^{2}+p \mid s_{i} \in \mathbb{R}[X]_{=2 d}, p \in \mathbb{R}[X]_{2 d-1}\right\} \\
\text { and } L_{0}:=\sum_{i=1}^{r} \lambda_{i} e v_{y_{i}}
\end{gathered}
$$

Sketch of the proof: It is enough to show that: $L(p) \geq L_{0}(p)$ for all $p \in W$ with equality for $p \in \mathbb{R}[X]_{2 d-1}$

To show $L(p) \geq L_{0}(p)$ for all $p \in W$ with equality for $p \in \mathbb{R}[X]_{2 d-1}$:

■ $L(p)=L_{0}(p)$ for all $p \in \mathbb{R}[X]_{2 d-1}$. (We apply the previous theorem)

To show $L(p) \geq L_{0}(p)$ for all $p \in W$ with equality for $p \in \mathbb{R}[X]_{2 d-1}:$

■ $L(p)=L_{0}(p)$ for all $p \in \mathbb{R}[X]_{2 d-1}$. (We apply the previous theorem)

- $L(p) \geq L_{0}(p)$ for all $p=\sum s^{2}$ with $s_{i} \in \mathbb{R}[X]_{=d}$. Indeed, if $s=\sum_{|\alpha|=d} a_{\alpha} X^{\alpha}$, then
$L\left(s^{2}\right)=L(s s)=\langle\bar{s}, \bar{s}\rangle=\left\langle\overline{\sum_{|\alpha|=d} a_{\alpha} X^{\alpha}}, \overline{\sum_{|\alpha|=d} a_{\alpha} X^{\alpha}}\right\rangle=$
$\left\langle\overline{\sum_{|\alpha|=d} X_{j_{\alpha}} a_{\alpha} X^{\alpha-e_{j_{\alpha}}}}, \overline{\sum_{|\alpha|=d} X_{j_{\alpha}} a_{\alpha} X^{\alpha-e_{j_{\alpha}}}}\right\rangle \geq$
$\left\langle\Pi\left(\overline{\sum_{|\alpha|=d} X_{j_{\alpha}} a_{\alpha} X^{\alpha-e_{j_{\alpha}}}}\right), \Pi\left(\overline{\sum_{|\alpha|=d} X_{j_{\alpha}} a_{\alpha} X^{\alpha-e_{j_{\alpha}}}}\right\rangle=\right.$
$\left\langle\sum_{|\alpha|=d} \Pi\left(\overline{X_{j_{\alpha}} a_{\alpha} X^{\alpha-e_{j_{\alpha}}}}\right), \sum_{|\alpha|=d} \Pi\left(\overline{X_{j_{\alpha}} a_{\alpha} X^{\alpha-e_{j_{\alpha}}}}\right)\right\rangle=$
$\left\langle\sum_{|\alpha|=d} M_{L, j_{\alpha}}\left(\overline{a_{\alpha} X^{\alpha-e_{j_{\alpha}}}}\right), \sum_{|\alpha|=d} M_{L, j_{\alpha}}\left(\overline{a_{\alpha} X^{\alpha-e_{j_{\alpha}}}}\right)\right\rangle=\ldots=$ $\left\langle s\left(M_{L, 1}, \ldots, M_{L, n}\right), s\left(M_{L, 1}, \ldots, M_{L, n}\right)\right\rangle=\sum_{j=1}^{r} \lambda_{j} s^{2}\left(y_{j}\right)=$ $L_{0}\left(s^{2}\right)$

Corollary

Let $L \in\left(R_{2 d}\right)$ be an optimal solution and $f \in W$, and assume $M_{L, 1}, \ldots, M_{L, n}$ commute. Then there exist $y_{1}, \ldots y_{r} \in \mathbb{R}^{n}$ and $\lambda_{1}, \ldots, \lambda r \in \mathbb{R}_{\geq 0}$ with $\sum_{i=1}^{r} \lambda_{i}=1$ such that $L=\sum_{i=1}^{r} \lambda_{i} e v_{y_{i}}$. And for $i=1, \ldots, r, y_{i}$ is a minimizer of (P).

Proof:

- Since $f \in W$ we have $L_{\infty}(f) \geq 0$
- Since L is an optimal solution and $L=L_{0}+L_{\infty}$ on W

$$
L(f)=L_{0}(f)+L_{\infty}(f) \leq f^{*} \leq \sum_{i=1}^{r} \lambda_{i} f\left(y_{i}\right)=L_{0}(f)
$$

Therefore $L_{\infty}(f) \leq 0$.
Then we have $L_{\infty}(f)=0$. And then $L(f)=f^{*}=L_{0}(f)=\lambda_{1} f\left(y_{1}\right)+\ldots+\lambda_{r} f\left(y_{r}\right)$, and we conclude $y_{1}, \ldots y_{r}$ are minimizers of the original polynomial optimization problem (P).

Danke schon!

