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On the optimal solutions of Lasserre relaxations

Notation

R[X ] := R[x1, ..., xn], X := (X1, ...,Xn)

R[X ]d := {p ∈ R[X ] : deg(p) ≤ d}
R[X ]=d vector space of real forms of degree d

R[X ]∗d := {L : R[X ]d → R linear form}
α = (α1, ..., αn) ∈ Nn

|α| := α1 + ...+ αn

Xα := Xα1
1 · · ·Xαn

n

Let L ∈ R[X ]∗, a quadrature rule for L is a tuple
(λ1, a1, ..., λr , ar ) with λi ∈ R≥0, with

∑r
i=1 λi = 1 and

ai ∈ Rn such that:

L(p) = λ1p(a1) + · · ·+ λrp(ar )
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Polynomial optimization problem (unconstrained case)

Polynomial optimization problem

(P)
min f (x) over:

x ∈ Rn

where f ∈ R[X ]2d

Laserre relaxation (semidefinite Program)

(R2d )
min L(f ) such that:

L ∈ R[X ]∗2d

L(
∑

R[X ]2d ) ⊆ R≥0

L(1) = 1

P∗ ≥ · · · ≥ R∗
2(d+1) ≥ R∗

2d

If L has a quadrature rule then L(f ) ≥ P∗

If (R2d ) has an optimal solution L∗, and moreover L∗ has a quadrature rule then L∗(f ) = P∗
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Truncated GNS construction

Observation

To find a quadrature rule for L ∈ (R2d) is equivalent to find:

A finite dimensional euclidean vector space V and commuting
self-adjoint endomorphisms M1, ...,Mn of V and a ∈ V such
that L(p) =< p(M1, ...,Mn)a, a >, for p ∈ R[X ]≤2d .

Let L ∈ (R2d) we set:

UL:={p ∈ R[X ]d : ∀q ∈ R[X ]d : L(pq) = 0} GNS kernel

VL:=R[X ]d
UL

GNS representation space of L

< p, q >L:=L(pq) (p, q ∈ R[X ]d) GNS scalar product

Then we have built (VL, <,>) an Euclidean Vector Space
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Truncated GNS construction

UL:={p ∈ R[X ]d : ∀q ∈ R[X ]d : L(pq) = 0} GNS kernel

VL:=R[X ]d
UL

GNS representation space of L

< p, q >L:=L(pq) (p, q ∈ R[X ]d) GNS scalar product

Then we have built (VL, <,>) an Euclidean Vector Space

ΠL:VL → {p : p ∈ R[X ]d−1} orthogonal projection
ML,i :ΠLVL → ΠLVL : p → ΠL(Xip) (p ∈ R[X ]d−1) and
i ∈ {1, ..., n}.

ML,i , called i-th truncated GNS multiplication operator, is
self-adjoint endomorphism of ΠLVL
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Truncated GNS construction

Theorem

Let L ∈ (R2d) and assume that ML,1, ...,ML,n paarwise commute.
Then L|R[X ]2d−1

has a quadrature rule.

Sketch of the proof:

There exist ONB v1, ..., vr of ΠL(VL) st. ML,ivj = yji vj for
i ∈ {1, ..., n} and j ∈ {1, ..., r}, and st. 1̄ =

∑r
i=1 aivj and set

λj := a2
j .

L(Xα) =
〈
Mα(1̄), 1̄

〉
for |α| ≤ 2d − 1

where Mα := Mα1
L,1 · · ·M

αn
L,n〈

Mα(1̄), 1̄
〉

=
∑r

j=1 λiyj
α for |α| ≤ 2d − 1
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main result

Lemma

Let L ∈ (R2d) and assume ML,1, ...,ML,n paarwise commute. Then
there exist y1, ..., yn ∈ Rn and λ1, ..., λr ∈ R≥0 with

∑r
i=1 λi = 1

and L∞ ∈ R[X ]∗2d such that:

L = L0 + L∞ on W

where:

W := {
∑m

i=1(si )
2 + p|si ∈ R[X ]=2d , p ∈ R[X ]2d−1}

and L0 :=
∑r

i=1 λievyi

Sketch of the proof: It is enough to show that: L(p) ≥ L0(p) for all
p ∈W with equality for p ∈ R[X ]2d−1
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proof main result

To show L(p) ≥ L0(p) for all p ∈W with equality for
p ∈ R[X ]2d−1:

L(p) = L0(p) for all p ∈ R[X ]2d−1. (We apply the previous
theorem)

L(p) ≥ L0(p) for all p =
∑

s2 with si ∈ R[X ]=d . Indeed, if
s =

∑
|α|=d aαX

α, then

L(s2) = L(ss) = 〈s̄, s̄〉 =
〈∑

|α|=d aαX
α,
∑
|α|=d aαX

α
〉

=〈∑
|α|=d XjαaαX

α−ejα ,
∑
|α|=d XjαaαX

α−ejα
〉
≥〈

Π(
∑
|α|=d XjαaαX

α−ejα ),Π(
∑
|α|=d XjαaαX

α−ejα
〉

=〈∑
|α|=d Π(XjαaαX

α−ejα ),
∑
|α|=d Π(XjαaαX

α−ejα )
〉

=〈∑
|α|=d ML,jα(aαXα−ejα ),

∑
|α|=d ML,jα(aαXα−ejα )

〉
= ... =

〈s(ML,1, ...,ML,n), s(ML,1, ...,ML,n)〉 =
∑r

j=1 λjs
2(yj) =

L0(s2)
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proof main result

Corollary

Let L ∈ (R2d) be an optimal solution and f ∈W, and assume
ML,1, ...,ML,n commute. Then there exist y1, ...yr ∈ Rn and
λ1, ..., λr ∈ R≥0 with

∑r
i=1 λi = 1 such that L =

∑r
i=1 λievyi . And

for i = 1, ..., r , yi is a minimizer of (P).

Proof:

Since f ∈W we have L∞(f ) ≥ 0

Since L is an optimal solution and L = L0 + L∞ on W

L(f ) = L0(f ) + L∞(f ) ≤ f ∗ ≤
∑r

i=1 λi f (yi ) = L0(f )

Therefore L∞(f ) ≤ 0.

Then we have L∞(f ) = 0 . And then
L(f ) = f ∗ = L0(f ) = λ1f (y1) + ...+ λr f (yr ), and we conclude
y1, ...yr are minimizers of the original polynomial optimization
problem (P).
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proof main result

Danke schon!
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