On the optimal solutions of Lasserre relaxations

María López Quijorna Advisor: Markus Schweighofer Tagung: Konstanz-Women in Mathematics 2015

Konstanz University, June 19th 2015

Notation

•
$$\mathbb{R}[X] := \mathbb{R}[x_1, ..., x_n], X := (X_1, ..., X_n)$$

• $\mathbb{R}[X]_d := \{p \in \mathbb{R}[X] : deg(p) \le d\}$
• $\mathbb{R}[X]_{=d}$ vector space of real forms of degree d
• $\mathbb{R}[X]_d^* := \{L : \mathbb{R}[X]_d \to \mathbb{R} \text{ linear form}\}$
• $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$
• $|\alpha| := \alpha_1 + ... + \alpha_n$
• $X^{\alpha} := X_1^{\alpha_1} \cdots X_n^{\alpha_n}$
• Let $L \in \mathbb{R}[X]^*$, a quadrature rule for L is a tuple $(\lambda_1, a_1, ..., \lambda_r, a_r)$ with $\lambda_i \in \mathbb{R}_{\ge 0}$, with $\sum_{i=1}^r \lambda_i = 1$ and $a_i \in \mathbb{R}^n$ such that:

$$L(p) = \lambda_1 p(a_1) + \cdots + \lambda_r p(a_r)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

(ロ)、(型)、(E)、(E)、 E) の(の)

Polynomial optimization problem

(P)min f(x) over: $x \in \mathbb{R}^n$ where $f \in \mathbb{R}[X]_{2d}$

Polynomial optimization problem

(P) min f(x) over: • $x \in \mathbb{R}^n$ where $f \in \mathbb{R}[X]_{2d}$

Laserre relaxation (semidefinite Program)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 (R_{2d}) min L(f) such that:

- $\blacksquare \ \boldsymbol{L} \in \mathbb{R}[X]_{2d}^*$
- $L(\sum \mathbb{R}[X]_d^2) \subseteq \mathbb{R}_{\geq 0}$
- **L**(1) = 1

Polynomial optimization problem

(P) min f(x) over: $x \in \mathbb{R}^n$ where $f \in \mathbb{R}[X]_{2d}$

Laserre relaxation (semidefinite Program)

 (R_{2d}) min L(f) such that:

- $\blacksquare \ \boldsymbol{L} \in \mathbb{R}[X]_{2d}^*$
- $L(\sum \mathbb{R}[X]_d^2) \subseteq \mathbb{R}_{\geq 0}$
- **L**(1) = 1
- $P^* \ge \cdots \ge R^*_{2(d+1)} \ge R^*_{2d}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Polynomial optimization problem

(P) min f(x) over: $x \in \mathbb{R}^n$ where $f \in \mathbb{R}[X]_{2d}$

Laserre relaxation (semidefinite Program)

 (R_{2d}) min L(f) such that:

- $\blacksquare \ \boldsymbol{L} \in \mathbb{R}[X]_{2d}^*$
- $L(\sum \mathbb{R}[X]_d^2) \subseteq \mathbb{R}_{\geq 0}$
- **L**(1) = 1
- $P^* \ge \cdots \ge R^*_{2(d+1)} \ge R^*_{2d}$
- If L has a quadrature rule then L(f) ≥ P*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Polynomial optimization problem

(P) min f(x) over: • $x \in \mathbb{R}^n$ where $f \in \mathbb{R}[X]_{2d}$

Laserre relaxation (semidefinite Program)

 (R_{2d}) min L(f) such that:

- $\blacksquare \ \boldsymbol{L} \in \mathbb{R}[X]_{2d}^*$
- $L(\sum \mathbb{R}[X]_d^2) \subseteq \mathbb{R}_{\geq 0}$
- **L**(1) = 1
- $P^* \ge \cdots \ge R^*_{2(d+1)} \ge R^*_{2d}$
- If L has a quadrature rule then L(f) ≥ P*
- If (R_{2d}) has an optimal solution L^* , and moreover L^* has a quadrature rule then $L^*(f) = P^*$

Observation

To find a quadrature rule for $L \in (R_{2d})$ is equivalent to find:

A finite dimensional euclidean vector space V and commuting self-adjoint endomorphisms M₁, ..., M_n of V and a ∈ V such that L(p) =< p(M₁, ..., M_n)a, a >, for p ∈ ℝ[X]_{≤2d}.

Observation

To find a quadrature rule for $L \in (R_{2d})$ is equivalent to find:

A finite dimensional euclidean vector space V and commuting self-adjoint endomorphisms M₁, ..., M_n of V and a ∈ V such that L(p) =< p(M₁, ..., M_n)a, a >, for p ∈ ℝ[X]_{≤2d}.

Let $L \in (R_{2d})$ we set:

- $U_L := \{ p \in \mathbb{R}[X]_d : \forall q \in \mathbb{R}[X]_d : L(pq) = 0 \}$ GNS kernel
- $V_L := \frac{\mathbb{R}[X]_d}{U_l}$ GNS representation space of L
- lacksquare $< \overline{p}, \overline{q} >_L := L(pq) \ (p,q \in \mathbb{R}[X]_d)$ GNS scalar product
- Then we have built $(V_L, <, >)$ an Euclidean Vector Space

$$U_L := \{ p \in \mathbb{R}[X]_d : \forall q \in \mathbb{R}[X]_d : L(pq) = 0 \}$$
 GNS kernel

- $V_L := \frac{\mathbb{R}[X]_d}{U_l}$ GNS representation space of L
- lacksquare $< \overline{p}, \overline{q} >_L := L(pq) \ (p, q \in \mathbb{R}[X]_d)$ GNS scalar product
- Then we have built $(V_L, <, >)$ an Euclidean Vector Space

$$U_L := \{ p \in \mathbb{R}[X]_d : \forall q \in \mathbb{R}[X]_d : L(pq) = 0 \}$$
 GNS kernel

- $V_L := \frac{\mathbb{R}[X]_d}{U_l}$ GNS representation space of L
- lacksquare $< \overline{p}, \overline{q} >_L := L(pq) \ (p,q \in \mathbb{R}[X]_d)$ GNS scalar product
- Then we have built $(V_L, <, >)$ an Euclidean Vector Space
- $\Pi_L: V_L \to \{\overline{p} : p \in \mathbb{R}[X]_{d-1}\}$ orthogonal projection
- $M_{L,i}: \Pi_L V_L \to \Pi_L V_L : \overline{p} \to \Pi_L(\overline{X_i p}) \ (p \in \mathbb{R}[X]_{d-1})$ and $i \in \{1, ..., n\}.$

 $M_{L,i}$, called **i-th truncated GNS multiplication operator**, is self-adjoint endomorphism of $\Pi_L V_L$

Theorem

Let $L \in (R_{2d})$ and assume that $M_{L,1}, ..., M_{L,n}$ paarwise commute. Then $L_{|\mathbb{R}[X]_{2d-1}}$ has a quadrature rule.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Let $L \in (R_{2d})$ and assume that $M_{L,1}, ..., M_{L,n}$ paarwise commute. Then $L_{|\mathbb{R}[X]_{2d-1}}$ has a quadrature rule.

Sketch of the proof:

There exist ONB $v_1, ..., v_r$ of $\prod_L(V_L)$ st. $M_{L,i}v_j = y_{j_i}v_j$ for $i \in \{1, ..., n\}$ and $j \in \{1, ..., r\}$, and st. $\overline{1} = \sum_{i=1}^r a_i v_j$ and set $\lambda_j := a_j^2$.

Theorem

Let $L \in (R_{2d})$ and assume that $M_{L,1}, ..., M_{L,n}$ paarwise commute. Then $L_{|\mathbb{R}[X]_{2d-1}}$ has a quadrature rule.

Sketch of the proof:

• There exist ONB $v_1, ..., v_r$ of $\prod_L(V_L)$ st. $M_{L,i}v_j = y_{j_i}v_j$ for $i \in \{1, ..., n\}$ and $j \in \{1, ..., r\}$, and st. $\overline{1} = \sum_{i=1}^r a_i v_j$ and set $\lambda_j := a_j^2$. • $L(X^{\alpha}) = \langle M^{\alpha}(\overline{1}), \overline{1} \rangle$ for $|\alpha| \le 2d - 1$ where $M^{\alpha} := M_{L,1}^{\alpha_1} \cdots M_{L,n}^{\alpha_n}$

Theorem

Let $L \in (R_{2d})$ and assume that $M_{L,1}, ..., M_{L,n}$ paarwise commute. Then $L_{|\mathbb{R}[X]_{2d-1}}$ has a quadrature rule.

Sketch of the proof:

• There exist ONB $v_1, ..., v_r$ of $\prod_L(V_L)$ st. $M_{L,i}v_j = y_{j_i}v_j$ for $i \in \{1, ..., n\}$ and $j \in \{1, ..., r\}$, and st. $\overline{1} = \sum_{i=1}^r a_i v_j$ and set $\lambda_j := a_j^2$. • $L(X^{\alpha}) = \langle M^{\alpha}(\overline{1}), \overline{1} \rangle$ for $|\alpha| \le 2d - 1$ where $M^{\alpha} := M_{L,1}^{\alpha_1} \cdots M_{L,n}^{\alpha_n}$ • $\langle M^{\alpha}(\overline{1}), \overline{1} \rangle = \sum_{j=1}^r \lambda_j y_j^{\alpha}$ for $|\alpha| \le 2d - 1$

— main result

Lemma

Let $L \in (R_{2d})$ and assume $M_{L,1}, ..., M_{L,n}$ paarwise commute. Then there exist $y_1, ..., y_n \in \mathbb{R}^n$ and $\lambda_1, ..., \lambda_r \in \mathbb{R}_{\geq 0}$ with $\sum_{i=1}^r \lambda_i = 1$ and $L_{\infty} \in \mathbb{R}[X]_{2d}^*$ such that:

$$\mathit{L} = \mathit{L}_0 + \mathit{L}_\infty$$
 on W

where:

$$W := \{\sum_{i=1}^{m} (s_i)^2 + p | s_i \in \mathbb{R}[X]_{=2d}, p \in \mathbb{R}[X]_{2d-1}\}$$

and $L_0 := \sum_{i=1}^{r} \lambda_i ev_{y_i}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- main result

Lemma

Let $L \in (R_{2d})$ and assume $M_{L,1}, ..., M_{L,n}$ paarwise commute. Then there exist $y_1, ..., y_n \in \mathbb{R}^n$ and $\lambda_1, ..., \lambda_r \in \mathbb{R}_{\geq 0}$ with $\sum_{i=1}^r \lambda_i = 1$ and $L_{\infty} \in \mathbb{R}[X]_{2d}^*$ such that:

$$\mathit{L} = \mathit{L}_0 + \mathit{L}_\infty$$
 on W

where:

$$W := \{\sum_{i=1}^{m} (s_i)^2 + p | s_i \in \mathbb{R}[X]_{=2d}, p \in \mathbb{R}[X]_{2d-1}\}$$

and $L_0 := \sum_{i=1}^{r} \lambda_i ev_{y_i}$

Sketch of the proof: It is enough to show that: $L(p) \ge L_0(p)$ for all $p \in W$ with equality for $p \in \mathbb{R}[X]_{2d-1}$

└ proof main result

To show $L(p) \ge L_0(p)$ for all $p \in W$ with equality for $p \in \mathbb{R}[X]_{2d-1}$:

• $L(p) = L_0(p)$ for all $p \in \mathbb{R}[X]_{2d-1}$. (We apply the previous theorem)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

└ proof main result

To show $L(p) \ge L_0(p)$ for all $p \in W$ with equality for $p \in \mathbb{R}[X]_{2d-1}$:

• $L(p) = L_0(p)$ for all $p \in \mathbb{R}[X]_{2d-1}$. (We apply the previous theorem)

•
$$L(p) \ge L_0(p)$$
 for all $p = \sum s^2$ with $s_i \in \mathbb{R}[X]_{=d}$. Indeed, if
 $s = \sum_{|\alpha|=d} a_\alpha X^\alpha$, then
 $L(s^2) = L(ss) = \langle \overline{s}, \overline{s} \rangle = \left\langle \overline{\sum_{|\alpha|=d} a_\alpha X^\alpha}, \overline{\sum_{|\alpha|=d} a_\alpha X^\alpha} \right\rangle =$
 $\left\langle \overline{\sum_{|\alpha|=d} X_{j_\alpha} a_\alpha X^{\alpha-e_{j_\alpha}}}, \overline{\sum_{|\alpha|=d} X_{j_\alpha} a_\alpha X^{\alpha-e_{j_\alpha}}} \right\rangle \ge$
 $\left\langle \Pi(\overline{\sum_{|\alpha|=d} X_{j_\alpha} a_\alpha X^{\alpha-e_{j_\alpha}}}), \Pi(\overline{\sum_{|\alpha|=d} X_{j_\alpha} a_\alpha X^{\alpha-e_{j_\alpha}}}) \right\rangle =$
 $\left\langle \sum_{|\alpha|=d} \Pi(\overline{X_{j_\alpha} a_\alpha X^{\alpha-e_{j_\alpha}}}), \sum_{|\alpha|=d} \Pi(\overline{X_{j_\alpha} a_\alpha X^{\alpha-e_{j_\alpha}}}) \right\rangle =$
 $\left\langle \sum_{|\alpha|=d} M_{L,j_\alpha}(\overline{a_\alpha X^{\alpha-e_{j_\alpha}}}), \sum_{|\alpha|=d} M_{L,j_\alpha}(\overline{a_\alpha X^{\alpha-e_{j_\alpha}}}) \right\rangle = ... =$
 $\left\langle s(M_{L,1},...,M_{L,n}), s(M_{L,1},...,M_{L,n}) \right\rangle = \sum_{j=1}^r \lambda_j s^2(y_j) =$
 $L_0(s^2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

└─ proof main result

Corollary

Let $L \in (R_{2d})$ be an optimal solution and $f \in W$, and assume $M_{L,1}, ..., M_{L,n}$ commute. Then there exist $y_1, ..., y_r \in \mathbb{R}^n$ and $\lambda_1, ..., \lambda r \in \mathbb{R}_{\geq 0}$ with $\sum_{i=1}^r \lambda_i = 1$ such that $L = \sum_{i=1}^r \lambda_i ev_{y_i}$. And for i = 1, ..., r, y_i is a minimizer of (P).

Proof:

• Since $f \in W$ we have $L_\infty(f) \geq 0$

• Since L is an optimal solution and $L = L_0 + L_\infty$ on W

$$L(f) = L_0(f) + L_{\infty}(f) \le f^* \le \sum_{i=1}^r \lambda_i f(y_i) = L_0(f)$$

Therefore $L_{\infty}(f) \leq 0$.

Then we have $L_{\infty}(f) = 0$. And then $L(f) = f^* = L_0(f) = \lambda_1 f(y_1) + ... + \lambda_r f(y_r)$, and we conclude $y_1, ... y_r$ are minimizers of the original polynomial optimization problem (P). └ proof main result

Danke schon!

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで