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On the optimal solutions of Lasserre relaxations
L Notation

R[X] :=R[x1, ..., xn], X := (X1, ..., Xn)

R[X]a := {p € R[X] : deg(p) < d}

R[X]=q4 vector space of real forms of degree d
R[X]% = {L: R[X]g — R linear form}
a=(ag,....,ap) € N"

la| =01 + ... + ap

X = X1 X

m Let L € R[X]*, a quadrature rule for L is a tuple

()\1, Aty ooy Ar, ar) with \; € RZO, with Z;’:l Ai=1and
a; € R” such that:

L(p) = Aip(a1) + - + Arp(ar)
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LF’olynomial optimization problem (unconstrained case)

Polynomial optimization problem
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min f(x) over:
m x €R"
where f € R[X]aq

Laserre relaxation (semidefinite Program)

(Raa)
min L(f) such that:

= LERX],
= L(ZRIXIY) € Rxo
L) =1

. -
= PP 2> 2 Ry

m If L has a quadrature rule then L(f) > P*

m If (Ryg) has an optimal solution L*, and moreover L* has a quadrature rule then L*(f) = P*

) = Ry
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To find a quadrature rule for L € (Ryq) is equivalent to find:

m A finite dimensional euclidean vector space V and commuting
self-adjoint endomorphisms My, ..., M, of V and 2 € V such
that L(p) =< p(l\/ll, nog Mn) ,a >, for p € R[X]§2d-
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Let L € (Raq) we set:
m Up={peR[X]qs:VqgeR[X]s: L(pg) =0} GNS kernel
m V= R[X]d GNS representation space of L

m<p,q >L.—L(pq) (p, g € R[X]4) GNS scalar product

m Then we have built (V, <,>) an Euclidean Vector Space
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m Up={p e R[X]s:VqeR[X]qg: L(pg) =0} GNS kernel
| VL::%XLM GNS representation space of L

m <p,G>1:=L(pq) (p,q € R[X]y) GNS scalar product
m Then we have built (V|, <,>) an Euclidean Vector Space

m[1;:V, — {p: p€R[X]y_1} orthogonal projection
| /\/ILJZ”LVL =M Ve :p— I'IL(Tp) (p S R[X]d_l) and
ie{l,..,n}.
My ; , called i-th truncated GNS multiplication operator, is
self-adjoint endomorphism of M, V;
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L Truncated GNS construction

Theorem

Let L € (Rog) and assume that My 1,

.My, paarwise commute.
Then Lig(xy,,_, has a quadrature rule.

Sketch of the proof:

m There exist ONB vy, ..., v, of M (V) st. ML ;v; = yjv; for
i€{l,..,nfandje{l,..,r}, andst. 1 =3"_, a;v; and set
Aj = 312

m L(XY) = (M*(1),1) for |a|] <2d —1

a . a1 Qn
where M¢ = I\/IL71 e ML i

(M*(1),1) = Y77 iy for |a| <2d —1
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L

main result

Lemma

Let L € (Roq) and assume My 1, ..., M , paarwise commute. Then
there exist y1,...,yn € R" and A1, ..., A\r € R>o with Y ;_ X\ =1
and Lo, € R[X]5, such that:

L=1Lg+ L on W
where:
W= {371(s)* + plsi € R[X]=2d, p € R[X]2d-1}

and Lo :=)"[_; \ieyy,
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Sketch of the proof: It is enough to show that: L(p) > Lo(p) for all
p € W with equality for p € R[X]24-1
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L
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m L(p) = Lo(p) for all p € R[X]2q—1. (We apply the previous
theorem)
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To show L(p) > Lo(p) for all p € W with equality for
p € R[X]og—1:

m L(p) = Lo(p) for all p € R[X]2q—1. (We apply the previous
theorem)

m L(p) > Lo(p) for all p=>"s? with 5; € R[X]—y. Indeed, if
S = Z\od:d aaXO‘, then

L(s?) = L(ss) = (5,3) = <Z|a‘:d 2 X% Y o= aaXa> _
> jaf=d Xja3a X%, 30101 —g Xjaaaxa—eja> >

N 0 jmd Xia 3 X% ), N3 41z Xa aaxa—%> —
Z\a|:d H(W)v Z|a\:d I_|(W)> =
Z\al d MLJa(aaxT%)a Z|a|:d ML,ja(aaXTefa)> =..=

S(ML 15y Min), S(Mp 1, s M)y = 3271 Ajs?(y;) =
o(s%)

M~
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L

proof main result

Corollary

Let L € (Rog) be an optimal solution and f € W, and assume
My 1,..., M, commute. Then there exist y1,...y, € R" and

AL, ., AF € RZO with Zle Ai = 1 such that L = Zle )\,-evy,.. And
fori=1,....r, y; is a minimizer of (P).

Proof:
m Since f € W we have Lo(f) >0
m Since L is an optimal solution and L = Ly + Lo, on W
L(f) = Lo(f) + Loo(f) < £+ < 3201 Xif (vi) = Lo(f)
Therefore Loo(f) < 0.

Then we have Lo(f) =0 . And then

L(f)=rf*= Lo(f) = Mif(y1) + ... + A\ f(yr), and we conclude
V1, ...Y, are minimizers of the original polynomial optimization
problem (P).
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