Symmetric Tensor descomposition

María López
Directors: M.E.Alonso,A.Díaz-Cano
Universidad Complutense de Madrid

Madrid, 25th novemeber 2011

UNIVERSIDAD COMPLUTENSE
MADRID

- Objective
- Binary case
- Problem Formulations
- Polynomial descomposition
- Veronese and secant varieties and The Big Waring Problem
- Descomposition using duality

■ Hankel operators and quotient algebra

- Truncated Hankel operators
- Symmetric tensor descomposition algorithm

■ \mathbb{K} Algebraically closed field of Characteristic 0
■ $S:=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right], S_{d}:=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]_{d}$
■ $R:=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right], R_{d}:=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]_{d}$

- R^{*} has a natural structure of R-module: $\forall \Lambda \in R^{*}$:

$$
\begin{array}{rllc}
p * \Lambda: & R & \longrightarrow & \mathbb{K} \\
& q & \longmapsto \Lambda(p q)
\end{array}
$$

- Typical elements of R^{*} are the linear forms, s.t. for all $p=\sum p_{\beta} \bar{x}^{\beta} \in R$ and for all $\xi \in \mathbb{K}^{n}$:

$$
\begin{array}{rlll}
e v(\xi): & R & \longrightarrow & \mathbb{K} \\
p & \longmapsto & p(\xi)=\sum p_{\beta} \xi^{\beta} \\
& & & \\
\bar{\delta}_{\xi}^{\alpha}: & R & \longrightarrow & \mathbb{K} \\
& p & \longmapsto & \partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{n}}^{\alpha_{n}}(p)(\xi)
\end{array}
$$

Definition

A tensor $x_{i_{1}} \otimes \cdots \otimes x_{i_{d}} \in \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}$ is said to be symmetric if for any permutation σ of $\{1, \ldots, k\}$:

$$
x_{i_{1}} \otimes \cdots \otimes x_{i_{k}}=x_{i_{\sigma(1)}} \otimes \cdots \otimes x_{i_{\sigma(k)}}
$$

We will be interested in the decomposition of a symmetric tensor A into a minimal linear combination of symmetric outer products of vectors (i.e. of the form $v \otimes \cdots \otimes v$) such that:

$$
A=\sum_{i=1}^{r} \lambda_{i} v \otimes \cdots \otimes v
$$

$$
\begin{aligned}
& S^{d}\left(\mathbb{C}^{n}\right) \cong \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \\
& \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n} \longrightarrow \\
& {\left[\mathrm{a}_{i_{1} \cdots i_{n}}\right]_{i_{1}=0 \cdots i_{d}=0}^{n}=0 } S_{d}=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \\
& \sum_{i_{1}=0 \cdots i_{d}=0}^{n} a_{i_{1} \cdots i_{d}} x_{i_{1}} \cdots x_{i_{d}}
\end{aligned}
$$

Reformulation of the problem:
The decomposition of a homogeneous polynomial f of degree d in $n+1$ variables as a sum of d-th powers of linear forms, i.e.:

$$
f(\bar{x})=\sum_{i=1}^{r} \lambda_{i}\left(k_{i 0} x_{0}+\ldots+k_{i n} x_{n}\right)^{d}
$$

Definition

The minimal r is called the symmetric rank of f.

Theorem (Sylvester, 1886)

A binary form $f\left(x_{1}, x_{2}\right)=\sum_{i=0}^{d}\binom{d}{i} c_{i} x_{1}^{i} x_{2}^{d-i}$ can be written as a sum of dth powers of r distinct linear forms in \mathbb{C} as:

$$
f\left(x_{1}, x_{2}\right)=\sum_{j=1}^{r} \lambda_{j}\left(\alpha_{j} x_{1}+\beta_{j} x_{2}\right)^{d}
$$

if and only if :

- there exist a vector $\bar{q}=\left(q_{l}\right)_{l=0}^{r}$ s.t.

$$
\left[\begin{array}{cccc}
c_{0} & c_{1} & \ldots & c_{r} \\
\cdot & & & \cdot \\
c_{d-r} & \cdots & & c_{d}
\end{array}\right][\bar{q}]=[\overline{0}]
$$

- the polynomial $q\left(x_{1}, x_{2}\right)=\sum_{l=0}^{r} q_{I} x_{1}^{\prime} x_{2}^{r-l}$ admits r distint roots, i.e. can be written as $q\left(x_{1}, x_{2}\right)=\prod_{j=1}^{r}\left(\beta_{j} x_{1}-\alpha_{j} x_{2}\right)$.

- The binary case (Sylvester's Algorithm)

- Binary form descomposition

Input:A binary polynomial $p\left(x_{1}, x_{2}\right)$ of degree d with coefficients $a_{i}=\binom{d}{i} c_{i}$, s.t.
$0 \leq i \leq d$
Output: A descomposition of $p\left(x_{1}, x_{2}\right)=\sum_{j=1}^{r} \lambda_{j} k(x)_{j}^{d}$ with minimal r

- 1. Initialize $r=0$
- 2. Increment $r:=r+1$
- 3. If the matrix $H[r]$ has $\operatorname{ker}(H[r])=\overline{0}$ go to step 2
- 4. Else compute a basis $k_{1}, . ., k_{l}$ of the $\operatorname{ker}(H[r])$
- 5. Specialization:
- Take any vector in the kernel, eg \bar{k}

■ Compute the roots of the associated polynomial

$$
k\left(x_{1}, x_{2}\right)=\sum_{l=0}^{r} k_{l} x_{1}^{l} x_{2}^{d-l}
$$

■ If the roots are not distint in \mathbb{P}_{2}, try another specialization. If cannot be obtained, go to step 2
■ Else if $k\left(x_{1}, x_{2}\right)$ admits r distinct roots then compute coefficients $\lambda_{j} 1 \leq j \leq r$ $\left[\begin{array}{ccc}\alpha_{1}^{d} & \ldots & \alpha_{r}^{d} \\ \alpha_{1}^{d-1} & \ldots & \alpha_{r}^{d-1} \beta_{r} \\ \ldots & \ldots & \ldots \\ \beta_{1}^{r} & \ldots & \beta_{r}^{d}\end{array}\right] \bar{\lambda}=\left[\begin{array}{c}a_{0} \\ \cdot \\ \cdot \\ a_{d}\end{array}\right]$

- 6. The descomposition is $p\left(x_{1}, x_{2}\right)=\sum_{j=1}^{r} \lambda_{j}\left(\alpha_{j} x_{1}+\beta_{j} x_{2}\right)^{d}$
- Problem Formulations
- Polynomial descomposition
- Veronese and secant varieties and The Big Waring Problem
- Descomposition using duality

Equating the coefficients of the same monomials:

$$
f(\bar{x})=\sum_{i=1}^{r} \lambda_{i}\left(k_{i 0} x_{0}+\ldots+k_{i n} x_{n}\right)^{d}=\lambda_{1} k_{1}(\bar{x})^{d}+\ldots+\lambda_{r} k_{r}(\bar{x})^{d}
$$

- It introduces r ! redundant solutions, since every permutation of the linear form is a solution.
■ We get an over-constrained polynomial system, where the polynomials involved are of high degree, that is, d.

Big Waring Problem

Which is the minimun integer s s.t. the generic degree d homogeneous polynomial $F \in S_{d}$ is the sum of at most $s d-t h$ powers of linear forms L_{1}, \ldots, L_{s} ?

$$
F=L_{1}^{d}+\ldots .+L_{s}^{d}
$$

Answered by J.Alexander, A-Hirschowitz, 1995

Definition

The image of the following map is the d-th Veronese variety, $X_{n, d}$:

$$
\begin{aligned}
\nu_{d}: \mathbb{P}\left(S_{1}\right) & \longrightarrow \mathbb{P}\left(S_{d}\right) \\
k(\bar{x}) & \longmapsto k(\bar{x})^{d}
\end{aligned}
$$

- The polynomials of rank one are exactly those lying on $X_{n, d}$ ■ Variety of polinomials of rank $r>1$?

Definition

The set that parameterizes polynomial homogeneus $f \in S_{d}$ of rank at most s is:

$$
\sigma_{s}^{0}\left(X_{n, d}\right):=\bigcup_{\left[L_{1}^{d}\right], \ldots,\left[L_{s}^{d}\right] \in X_{n, d}}\left\langle\left[L_{1}^{d}\right], \ldots,\left[L_{s}^{d}\right]\right\rangle
$$

but in general, $\sigma_{s}\left(X_{n, d}\right)$ is not a variety

Definition

The s - th secant variety of $X_{n, d} \subset \mathbb{P}\left(S_{d}\right), \sigma_{s}\left(X_{n, d}\right)$, is the Zariski closure of $\sigma_{s}^{0}\left(X_{n, d}\right)$

- The integer s that solves the Big Waring Problem is the minimum integer s for which $\sigma_{s}\left(X_{n, d}\right)=\mathbb{P}\left(S_{d}\right)$

Definition

The minimum integer sfor which $[F] \in \sigma_{s}\left(X_{n, d}\right)$ is the symmetric border rank of F.

J.Alexander,A.Hirschowitz Theorem, 1995

$\sigma_{s}\left(X_{n, d}\right)$ has always dimension $\min \left(s n+s-1,\binom{n+d}{d}-1\right)$, except in the following cases:

$$
\begin{aligned}
& \square d=2,2 \leq s \leq n \\
& \square=2, d=4, s=5 \\
& n=3, d=4, s=9 \\
& n=4, d=4, s=14 \\
& n=4, d=3, s=7
\end{aligned}
$$

The case of Veronese variety is the only one for which the defective case are completely classified.

Definition

Let $f, g \in S_{d} f=\sum_{|\alpha|=d} f_{\alpha} x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}}$ and $g=\sum_{|\alpha|=d} g_{\alpha} x_{0}^{\alpha_{0}} \ldots x_{n}^{\alpha_{n}}$ the apolar inner product on S_{d} is:

$$
\langle f, g\rangle=\sum_{|\alpha|=d} f_{\alpha} g_{\alpha}\binom{d}{\alpha_{0}, \ldots, \alpha_{n}}^{-1}
$$

$$
\begin{gathered}
S_{d}{ }^{\tau} S_{d}^{*} \stackrel{\pi}{\longrightarrow} R_{d}^{*} \\
f \longmapsto f^{*} \longmapsto \Lambda_{f}
\end{gathered}
$$

$$
\text { such that } f^{*}: g \longmapsto\langle f, g\rangle
$$

- $\left\langle f, k(\bar{x})^{d}\right\rangle=f(k)$
- $\tau\left(k(\bar{x})^{d}\right)=\operatorname{ev}(k)$

Proposition

Let $f \in S_{d}$ and $k_{1}, \ldots, k_{r} \in \mathbb{C}^{n+1}$ such that $k_{i, 0}=1$ for all i. Then f can be written as:

$$
f=\sum_{i=1}^{r} \lambda_{i}\left(x_{0} k_{i, 0}+\ldots+x_{n} k_{i, n}\right)^{d}
$$

if and only if $\Lambda_{f} \in R_{d}$ can be written as:

$$
\Lambda_{f}=\sum_{i=1}^{r} \lambda_{i} \operatorname{ev}\left(\underline{k}_{i}\right)
$$

where $\underline{k}_{i}=\left(k_{i, 1}, \ldots, k_{i, n}\right)$.
The problem of decomposition can be restated: Let $\Lambda \in R_{d}^{*}$ find the minimal number of non-zero vectors $k_{1}, \ldots, k_{r} \in \mathbb{K}^{n}$ and non zero scalars $\lambda_{1}, \ldots, \lambda_{r} \in K$ such that $\Lambda=\sum_{i=1}^{r} \lambda_{i} e v\left(k_{i}\right)$.

Definition

For any $\Lambda \in R^{*}$ we define the Hankel operator:

$$
\begin{gathered}
H_{\Lambda}: R \longrightarrow R^{*} \\
p \longmapsto p * \Lambda \\
\mathbb{H}_{\Lambda}=\left(\Lambda\left(x^{\alpha+\beta}\right)\right)_{\alpha, \beta} \alpha, \beta \in \mathbb{N}^{n}
\end{gathered}
$$

Definition

Given $B=b_{1}, . ., b_{r}, B^{\prime}=b_{1}, . ., b_{r} \subset R$ we define:

$$
H_{\Lambda}^{B, B^{\prime}}:\langle B\rangle \longrightarrow\langle B\rangle^{*}
$$

as the restriction of H_{Λ} to the vector space $\langle B\rangle$ and the map goes from R^{*} to $\left\langle B^{\prime}\right\rangle^{*}$. Let $\mathbb{H}_{\Lambda}^{B, B^{\prime}}=\left(\Lambda\left(b_{i} b_{j}^{\prime}\right)\right)$. If $B=B^{\prime}$ we also use H_{Λ}^{B} and \mathbb{H}_{Λ}^{B}.

Properties of the Hankel operators

- $I_{\Lambda}:=k e r H_{\Lambda}$ is an ideal
- If $\operatorname{rank}\left(\mathbb{H}_{\Lambda}\right)=r<\infty$
- $A_{\Lambda}=R / I_{\Lambda}$ is an algebra of dimension r over \mathbb{K}.
- A_{Λ} is a Gorenstein algebra (i.e. A_{Λ}^{*} is a free module of rank 1), such that $A_{\Lambda}^{*}=A_{\Lambda} * \Lambda$.
- Let $I_{\Lambda}=Q_{1} \cap \cdots \cap Q_{d}$ and let $A_{i}=\operatorname{ann}\left(Q_{i}\right)$, then $A_{\Lambda}=A_{1} \oplus \cdots \oplus A_{d}$ and $A_{i}^{*}=A_{i} *\left(e_{i} * \Lambda\right)$ where $1=e_{1}+\cdots+e_{d}$.

Definition

For any $\Lambda \in R^{*}$ s.t. $\operatorname{dim}_{\mathbb{K}} A_{\Lambda}<\infty$ and $a \in A_{\Lambda}$ we define the operators of multiplication in $A_{\wedge}, M_{a}: A_{\Lambda} \longrightarrow A_{\Lambda}$ such that $b \in A_{\Lambda}$ $M_{a}(b)=a b$. And its transposed $M_{a}^{*}: A_{\Lambda}^{*} \longrightarrow A_{\Lambda}^{*}$ such that $\forall \gamma \in A_{\Lambda}^{*}$ $M_{a}^{*}(\gamma)=a * \gamma$

Theorem

Let $Z\left(I_{\Lambda}\right)=\left\{\xi_{1}, \ldots, \xi_{d}\right\}$ the variety defined by the ideal I_{Λ} :

- The eigenvalues of the operators M_{a} and M_{a}^{*} are given by $\left\{a\left(\xi_{1}\right), . ., a\left(\xi_{d}\right)\right\}$
- The common eigenvectors of the operators $\left(M_{x_{i}}^{*}\right) \forall i$ are (up to scalar) ev(ξ_{i})

Inverse systems

- $R^{*} \approx \mathbb{K}\left[\left[\bar{\delta}_{\xi}\right]\right]$
- The map:
$\perp: \quad\{I \subset R$ an ideal s.t. $Z(I)<\infty\} \quad \rightarrow \quad\left\{\mathrm{L} R-\right.$ module s.t. $\left.\operatorname{dim}_{\mathbb{K}} L<\infty\right\}$ is bijective
- Let $I=Q_{\xi_{1}} \cap \cdots \cap Q_{\xi_{d}}$
- $\left(I^{\perp} \cap \mathbb{K}\left[\bar{\delta}_{\xi}\right]\right)^{\perp}=Q_{\xi}$.
- $I^{\perp}=Q_{\xi_{1}}^{\perp} \oplus \cdots \oplus Q_{\xi_{d}}^{\perp}$ and for all $\Lambda \in I^{\perp}$:

$$
\Lambda=\sum_{i=1}^{d} e v\left(\xi_{i}\right) \circ p_{i}(\bar{\partial})
$$

Theorem

If rank $H_{\Lambda}=r<\infty$,then:

- A_{\wedge} is of dimension r over \mathbb{K} and the set of roots $Z\left(I_{\Lambda}\right)=\left\{\xi_{1}, . ., \xi_{d}\right\}$ is finite with $d \leq r$.
- There exists $p_{i} \in \mathbb{K}\left[\partial_{1}, . ., \partial_{n}\right]$ such that $\Lambda=\sum_{i=1}^{d} \operatorname{ev}\left(\xi_{i}\right) \circ p_{i}(\bar{\alpha})$.
Moreover, the multiplicity of ξ_{i} is the dimension of the vector space generated by ev $\left(\xi_{i}\right) \circ p_{i}(\bar{\alpha})$.

Theorem

Let $\Lambda \in R^{*} \Lambda=\sum_{i=1}^{r} \lambda_{i} \operatorname{ev}\left(\xi_{i}\right)$ with $\lambda_{i} \neq 0$ and ξ_{i} distint points of \mathbb{K}^{n}, iff rank $H_{\Lambda}=r$ and I_{Λ} is a radical ideal.

Reformulation of the problem: Given $f^{*} \in R_{d}^{*}$ find the smallest r such that there exist $\Lambda \in R^{*}$ which extends f^{*} with rank H_{Λ} of rank r and I_{Λ} a radical ideal

Definition

Let $B \subset R_{d}$ be a set of monomials of degree at most d and $f^{*} \in R_{d}^{*}$. The Hankel matrix are:

$$
\mathbf{H}_{\Lambda}^{\mathbf{B}}(\bar{h})=\left(h_{\alpha+\beta}\right)_{\alpha, \beta} \alpha, \beta \in B
$$

where $h_{\alpha}=f^{*}\left(\bar{x}^{\alpha}\right)$ if $\operatorname{card}(\alpha) \leq d$; otherwise h_{α} is a variable.

Definition

Suppose that $\mathbf{H}_{\Lambda}^{\mathrm{B}}(\bar{h})$ is invertible in $\mathbb{K}(\bar{h})$. We define the multiplication operators:

$$
\mathbf{M}_{\mathbf{i}}^{\mathrm{B}}(\bar{h}):=\left(\mathbf{H}_{\Lambda}^{\mathrm{B}}(\bar{h})\right)^{-1} \mathbf{H}_{\mathrm{x}_{\mathbf{i}} \star \boldsymbol{\Lambda}}^{\mathrm{B}}(\bar{h})
$$

Theorem

Let $B \subset R$ be a set of monomials of degree at most d connected to $1\left(m \in B \neq 1\right.$ implies $m=x_{i} m^{\prime}$ with $\left.m^{\prime} \in B\right)$ and let Λ be a linear form in $\left\langle B . B^{+}\right\rangle_{d}^{*}$. Let $\Lambda(\bar{h})$ be the linear form of $\left\langle B . B^{+}\right\rangle^{*}$ defined by $\Lambda(\bar{h})\left(\bar{x}_{\alpha}\right)=\Lambda\left(\bar{x}_{\alpha}\right)$ if α is at most d and $h_{\alpha} \in \mathbb{K}$ otherwise. Then $\Lambda(\bar{h})$ admits an extension $\Lambda_{e} \in R_{*}$ such that $H_{\Lambda_{e}}$ is of rank r with B a basis of $A_{\Lambda_{e}}$ iff:

- $\mathbf{M}_{\mathbf{i}}^{\mathbf{B}} \circ \mathbf{M}_{\mathbf{j}}^{\mathrm{B}}(\overline{\mathbf{h}})-\mathbf{M}_{\mathbf{j}}^{\mathrm{B}} \circ \mathbf{M}_{\mathbf{i}}^{\mathrm{B}}(\overline{\mathbf{h}})=\mathbf{0}$
- $\operatorname{det}\left(\mathbf{H}_{\Lambda}^{\mathbf{B}}\right)(\overline{\mathbf{h}}) \neq 0$.

Moreover, such Λ_{e} is unique.

Theorem

Let $B=\left\{\bar{x}^{\beta_{1}}, \ldots, \bar{x}^{\beta_{r}}\right\}$ be a set of monomials of degree at most d, connected to 1, and let $\Lambda \in\left\langle B^{+} B^{+}\right\rangle_{\leq d}^{*}$ and $\Lambda(\bar{h}) \in\left\langle B^{+} B^{+}\right\rangle^{*}$ defined as follows:

$$
\Lambda(\bar{h})\left(\bar{x}^{\gamma}\right)= \begin{cases}\Lambda\left(\bar{x}^{\gamma}\right) & \text { if }|\gamma| \leq d ; \\ h_{\gamma} & \text { in other case. }\end{cases}
$$

Then, Λ admits an extension $\widetilde{\Lambda} \in R^{*}$ such that $H_{\tilde{\Lambda}}$ is of rank r, with B a basis of $A_{\tilde{\Lambda}}$ if and only if there exists a solution \bar{h} to the problem:

- i) All $(r+1) \times(r+1)$ minors of $\mathbf{H}_{\Lambda}{ }^{\mathbf{B}^{+}}(\overline{\mathbf{h}})$ vanish.
- ii) $\operatorname{det}\left(\mathbf{H}_{\Lambda}^{\mathbf{B}}\right)(\overline{\mathbf{h}}) \neq 0$.

Moreover, for every solution $\bar{h}_{0} \in \mathbb{K}^{N}$ an extension such $\widetilde{\Lambda}=\Lambda\left(\overline{h_{0}}\right)$ over $\left\langle B^{+} B^{+}\right\rangle$is unique.

६Symmetric tensor descomposition algorithm

Input: A homogeneous polynomial $f\left(x_{0}, \ldots, x_{n}\right)$ of degree d
Output: A decomposition of f as $\mathrm{f}=\sum_{i=1}^{r} \lambda_{i} k_{i}(\bar{x})^{d}$ with r minimal
1 Compute the coefficients of $\underline{f^{*}}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$.
2 Initialize $r:=0$

3 Increment $r:=r+1$

4 Specialization:

- Take any basis B connected to 1 with $|B|=r$
\square Build the matrix $H_{\underline{f^{*}}(\bar{h})}^{B^{+}}$with the coefficients c_{α}.
- If there exists any minor of order $r+1$ in $H_{\underline{f^{*}}(\bar{h})}^{B^{+}}$, without coefficients depending on \bar{h}, different to zero, try another specialization. If cannot be obtained go to step 3.
- Else if all minors of order $r+1$ in $H_{\underline{f^{*}}(\bar{h})}^{B^{+}}$, without coefficients depending on \bar{h}, vanish, compute \bar{h} s.t:
$\square \operatorname{det}\left(H_{\underline{f^{*}(\bar{h})}}^{B}\right) \neq 0$
\square the operators $M_{i}^{B}(\bar{h}):=\left(H_{\underline{f^{*}}(\bar{h})}^{B}\right)^{-1}\left(H_{x_{i} * \underline{f *}(\bar{h})}\right)$ commute
- the eigenvalues of $M_{i}^{B}(\bar{h})$ are simple If there not exist such \bar{h} try another specialization. If cannot be obtained go to step 3 .
\square Else if there exists such \bar{h} compute the eigenvalues $\xi_{i, j}$ and the eigenvectors v_{j} s.t $M_{i}^{B} v_{j}=\xi_{i, j} v_{j}$ for $i=1, \ldots, n$ and $j=1, \ldots, r$.

5 Solve the linear system in $\left(\lambda_{j}\right)$ s.t $f(\bar{x})=\sum_{i=1}^{r} \lambda_{j} k_{i}(\bar{x})^{d}$ where $k_{i}(\bar{x})=\left(x_{0}+v_{i, 1} x_{1}+\ldots+v_{i, n} x_{n}\right)$.

-Symmetric tensor descomposition algorithm

Let $f(x, y, z)=$

$$
3 x^{4}+4 x^{3} y-4 x^{3} z+6 x^{2} y^{2}-12 x^{2} y z+18 x^{2} z^{2}+4 x y^{3}-12 x y^{2} z+12 x y z^{2}-4 x z^{3}+y^{4}-4 y^{3} z+6 y^{2} z^{2}-4 y z^{3}+3 z^{4}
$$

- To $r=3$ and $B=\{1, y, z\}$.

$$
\begin{gathered}
H_{\underline{f^{*}}}^{B^{+}}=\left(\begin{array}{cccccc}
3 & 1 & -1 & 1 & 3 & -1 \\
1 & 1 & -1 & 1 & 1 & -1 \\
-1 & -1 & 3 & -1 & -1 & 1 \\
1 & 1 & -1 & 1 & 1 & -1 \\
3 & 1 & -1 & 1 & 3 & -1 \\
-1 & -1 & 1 & -1 & -1 & 1
\end{array}\right) \\
M_{y}^{B}=\left(H_{\underline{f^{*}}}^{B}\right)^{-1} H_{y * \underline{f}}=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{-1}{2} & 0 \\
\frac{-1}{2} & 2 & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \\
M_{z}^{B}=\left(H_{\underline{f^{*}}}^{B}\right)^{-1} H_{z * \underline{f}}=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{-1}{2} & 0 \\
\frac{-1}{2} & 2 & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right) \cdot\left(\begin{array}{ccc}
-1 & -1 & 3 \\
-1 & -1 & 1 \\
3 & 1 & -1
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

- The eigenvalues of $\left(M_{z}^{B}\right)^{t}$ are $x_{1}=-1, x_{2}=-1$ and $x_{3}=1$,
- The eigenvalues of $\left(M_{y}^{B}\right)^{t}$ are $x_{1}=0, x_{2}=0$ and $x_{3}=1$.
- The eigenvalues of M_{p}^{B} are $x_{1}=2, x_{2}=-2$ and $x_{3}=0$, with $p=y+z$.
The eigenvectors of M_{z}^{t} which are:

$$
\begin{gathered}
\xi_{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \xi_{2}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \xi_{3}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \\
\square f=\lambda_{1}(x+z)^{4}+\lambda_{2}(x+y-z)^{4}+\lambda_{3}(x-z)^{4} \\
\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})=(\mathbf{x}+\mathbf{z})^{4}+(\mathbf{x}+\mathbf{y}-\mathbf{z})^{4}+(\mathbf{x}-\mathbf{z})^{4}
\end{gathered}
$$

-Symmetric tensor descomposition algorithm
-Example
thanks!

