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Symmetric Tensor descomposition

Set up

K Algebraically closed field of Characteristic 0
S := K[x0, ..., xn], Sd :=K[x0, ..., xn]d
R := K[x1, ..., xn], Rd :=K[x1, ..., xn]d
R∗ has a natural structure of R−module: ∀ Λ ∈ R∗:

p ∗ Λ : R −→ K
q 7−→ Λ(pq)

Typical elements of R∗ are the linear forms, s.t. for all
p =

∑
pβxβ ∈ R and for all ξ ∈ Kn:

ev(ξ) : R −→ K
p 7−→ p(ξ) =

∑
pβξ

β

δ
α

ξ : R −→ K
p 7−→ ∂α1

x1
· · · ∂αn

xn (p)(ξ)



Symmetric Tensor descomposition

Objective

Definition

A tensor xi1 ⊗ · · · ⊗ xid ∈ Cn ⊗ · · · ⊗ Cn is said to be symmetric if
for any permutation σ of {1, ..., k}:

xi1 ⊗ · · · ⊗ xik = xiσ(1)
⊗ · · · ⊗ xiσ(k)

We will be interested in the decomposition of a symmetric tensor A
into a minimal linear combination of symmetric outer products of
vectors (i.e. of the form v ⊗ · · · ⊗ v) such that:

A =
r∑

i=1

λiv ⊗ · · · ⊗ v



Symmetric Tensor descomposition

Objective

Sd(Cn) ∼= C[xo , ..., xn]d

Cn ⊗ · · · ⊗ Cn −→ Sd = C[x0, ..., xn]d
[ai1···in ]n ··· n

i1=0···id=0 7−→
∑n ··· n

i1=0···id=0 ai1···id xi1 · · · xid

Reformulation of the problem:
The decomposition of a homogeneous polynomial f of degree d in
n + 1 variables as a sum of d-th powers of linear forms, i.e.:

f (x) =
r∑

i=1

λi (ki0x0 + ...+ kinxn)d

Definition

The minimal r is called the symmetric rank of f .



Symmetric Tensor descomposition

The binary case (Sylvester´s Algorithm)

Theorem (Sylvester, 1886)

A binary form f (x1, x2)=
∑d

i=o

(d
i

)
cix

i
1xd−i

2 can be written as a
sum of dth powers of r distinct linear forms in C as:

f (x1, x2)=
∑r

j=1 λj(αjx1 + βjx2)d

if and only if :

there exist a vector q=(ql)
r
l=0 s.t. c0 c1 ... cr

. .
cd−r ... cd

 [q] =
[
0
]

the polynomial q(x1, x2)=
∑r

l=0 qlx
l
1x r−l

2 admits r distint
roots, i.e. can be written as q(x1, x2)=

∏r
j=1(βjx1 − αjx2).



Symmetric Tensor descomposition

The binary case (Sylvester´s Algorithm)

Binary form descomposition

Input:A binary polynomial p(x1, x2) of degree d with coefficients ai =
(d
i

)
ci , s.t.

0 ≤ i ≤ d
Output: A descomposition of p(x1, x2) =

∑r
j=1 λjk(x)dj with minimal r

1. Initialize r = 0
2. Increment r := r + 1
3. If the matrix H[r ] has ker(H[r ]) = 0 go to step 2
4. Else compute a basis k1, .., kl of the ker(H[r ])

5. Specialization:

Take any vector in the kernel, eg k
Compute the roots of the associated polynomial
k(x1, x2) =

∑r
l=0 klx

l
1xd−l

2

If the roots are not distint in P2, try another specialization. If
cannot be obtained , go to step 2
Else if k(x1, x2) admits r distinct roots then compute
coefficients λj 1 ≤ j ≤ r
αd

1 ... αd
r

αd−1
1 ... αd−1

r βr
... ... ...
βr

1 ... βd
r

 λ =


a0

.

.
ad


6. The descomposition is p(x1, x2) =

∑r
j=1 λj (αjx1 + βjx2)d
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The binary case (Sylvester´s Algorithm)
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Symmetric Tensor descomposition

Problem Formulations

Polynomial descomposition

Equating the coefficients of the same monomials:

f (x) =
r∑

i=1

λi (ki0x0 + ...+ kinxn)d = λ1k1(x)d + ...+ λrkr (x)d

It introduces r ! redundant solutions, since every permutation
of the linear form is a solution.
We get an over-constrained polynomial system, where the
polynomials involved are of high degree, that is, d .



Symmetric Tensor descomposition

Problem Formulations

Veronese and secant varieties and The Big Waring Problem

Big Waring Problem

Which is the minimun integer s s.t. the generic degree d
homogeneous polynomial F ∈ Sd is the sum of at most s d − th
powers of linear forms L1, ..., Ls?

F =Ld
1 + ....+ Ld

s

Answered by J.Alexander, A-Hirschowitz, 1995



Symmetric Tensor descomposition

Problem Formulations

Veronese and secant varieties and The Big Waring Problem

Definition

The image of the following map is the d-th Veronese variety, Xn,d :

νd :P(S1)−→P(Sd)
k(x) 7−→ k(x)d

The polynomials of rank one are exactly those lying on Xn,d

Variety of polinomials of rank r > 1 ?



Symmetric Tensor descomposition

Problem Formulations

Veronese and secant varieties and The Big Waring Problem

Definition

The set that parameterizes polynomial homogeneus f ∈ Sd of rank at
most s is:

σ0
s (Xn,d):=

⋃
[Ld

1 ],...,[Ld
s ]∈Xn,d

〈
[Ld

1 ], ..., [Ld
s ]
〉

but in general, σs(Xn,d) is not a variety

Definition

The s − th secant variety of Xn,d ⊂ P(Sd), σs(Xn,d), is the Zariski closure
of σ0

s (Xn,d)

The integer s that solves the Big Waring Problem is the minimum
integer s for which σs(Xn,d)=P(Sd)

Definition

The minimum integer s for which [F ] ∈ σs(Xn,d) is the symmetric border
rank of F .



Symmetric Tensor descomposition

Problem Formulations

Veronese and secant varieties and The Big Waring Problem

J.Alexander,A.Hirschowitz Theorem, 1995

σs(Xn,d) has always dimension min(sn + s − 1,
(n+d

d

)
− 1), except

in the following cases:

d = 2, 2 ≤ s ≤ n
n = 2, d = 4, s = 5
n = 3, d = 4, s = 9
n = 4, d = 4, s = 14
n = 4, d = 3, s = 7

The case of Veronese variety is the only one for which the defective
case are completely classified.



Symmetric Tensor descomposition

Problem Formulations

Descomposition using duality

Definition

Let f ,g ∈ Sd f =
∑
|α|=d fαxα0

0 ...xαn
n and g =

∑
|α|=d gαxα0

0 ...xαn
n

the apolar inner product on Sd is:

〈f , g〉=
∑
|α|=d fαgα

( d
α0,...,αn

)−1

Sd
τ−→S∗d

π−→R∗d
f 7−→ f ∗ 7−→ Λf

such that f ∗:g 7−→ 〈f , g〉

〈
f , k(x)d

〉
= f (k)

τ(k(x)d) = ev(k)



Symmetric Tensor descomposition

Problem Formulations

Descomposition using duality

Proposition

Let f ∈ Sd and k1, ..., kr ∈ Cn+1 such that ki ,0 = 1 for all i . Then
f can be written as:

f =
∑r

i=1 λi (x0ki ,0 + ...+ xnki ,n)d

if and only if Λf ∈ Rd can be written as:

Λf =
∑r

i=1 λiev(k i )

where k i = (ki ,1, ..., ki ,n).

The problem of decomposition can be restated: Let Λ ∈ R∗d
find the minimal number of non-zero vectors k1, ..., kr ∈ Kn and
non zero scalars λ1, ..., λr ∈ K such that Λ =

∑r
i=1 λiev(ki ).



Symmetric Tensor descomposition

Hankel operators and quotient algebra

Definition

For any Λ ∈ R∗ we define the Hankel operator:

HΛ:R−→R∗

p 7−→ p ∗ Λ
HΛ=(Λ(xα+β))α,βα, β ∈ Nn

Definition

Given B=b1, .., br , B
′

= b1, .., br ⊂ R we define:

HB,B′

Λ :〈B〉−→〈B́〉∗

as the restriction of HΛ to the vector space 〈B〉 and the map goes

from R∗ to 〈B ′〉∗. Let HB,B′

Λ = (Λ(bib
′
j)) . If B = B ′ we also use

HB
Λ and HB

Λ .



Symmetric Tensor descomposition

Hankel operators and quotient algebra

Properties of the Hankel operators

IΛ:=kerHΛ is an ideal
If rank(HΛ) = r <∞

AΛ = R/IΛ is an algebra of dimension r over K.
AΛ is a Gorenstein algebra (i.e. A∗Λ is a free module of rank 1),
such that A∗Λ = AΛ ∗ Λ.
Let IΛ = Q1 ∩ · · · ∩ Qd and let Ai = ann(Qi ), then
AΛ = A1 ⊕ · · · ⊕ Ad and A∗i = Ai ∗ (ei ∗ Λ) where
1 = e1 + · · ·+ ed .



Symmetric Tensor descomposition

Hankel operators and quotient algebra

Definition

For any Λ ∈ R∗ s.t. dimKAΛ <∞ and a ∈ AΛ we define the
operators of multiplication in AΛ, Ma: AΛ−→ AΛ such that b ∈ AΛ

Ma(b) = ab. And its transposed M∗a :A∗Λ−→A∗Λ such that ∀γ ∈ A∗Λ
M∗a (γ) = a ∗ γ

Theorem

Let Z (IΛ)={ξ1, ..., ξd} the variety defined by the ideal IΛ:

The eigenvalues of the operators Ma and M∗a are given by
{a(ξ1), .., a(ξd)}
The common eigenvectors of the operators (M∗xi )∀i are (up to
scalar) ev(ξi )



Symmetric Tensor descomposition

Hankel operators and quotient algebra

Inverse systems

R∗ ≈ K[[δξ]]

The map:
⊥ : {I⊂ R an ideal s.t. Z(I ) <∞} → {L R −module s.t. dimKL <∞}

is bijective

Let I = Qξ1
∩ · · · ∩ Qξd

(I⊥ ∩K[δξ])⊥ = Qξ.
I⊥ = Q⊥ξ1

⊕ · · · ⊕ Q⊥ξd and for all Λ ∈ I⊥:

Λ =
d∑

i=1

ev(ξi ) ◦ pi (∂)



Symmetric Tensor descomposition

Hankel operators and quotient algebra

Theorem

If rankHΛ = r <∞ ,then:

AΛ is of dimension r over K and the set of roots
Z (IΛ) = {ξ1, .., ξd} is finite with d ≤ r .

There exists pi ∈ K[∂1, .., ∂n] such that
Λ =

∑d
i=1 ev(ξi ) ◦ pi (α).

Moreover, the multiplicity of ξi is the dimension of the vector
space generated by ev(ξi ) ◦ pi (α).

Theorem

Let Λ ∈ R∗ Λ=
∑r

i=1 λiev(ξi ) with λi 6= 0 and ξi distint points of
Kn, iff rankHΛ=r and IΛ is a radical ideal.



Symmetric Tensor descomposition

Truncated Hankel Operators

Reformulation of the problem: Given f ∗∈ R∗d find the smallest r
such that there exist Λ∈ R∗ which extends f ∗ with rank HΛ of
rank r and IΛ a radical ideal

Definition

Let B⊂ Rd be a set of monomials of degree at most d and f ∗∈R∗d .
The Hankel matrix are:

HB
Λ(h)=(hα+β)α,βα, β ∈ B

where hα=f ∗(xα) if card(α) ≤ d; otherwise hα is a variable.

Definition

Suppose that HB
Λ(h) is invertible in K(h).We define the

multiplication operators:

MB
i (h) := (HB

Λ(h))−1HB
xi∗Λ(h)



Symmetric Tensor descomposition

Truncated Hankel Operators

Theorem

Let B⊂ R be a set of monomials of degree at most d connected to
1(m ∈ B 6= 1 implies m = xim

′
with m

′ ∈ B) and let Λ be a linear
form in 〈B.B+〉∗d . Let Λ(h) be the linear form of 〈B.B+〉∗ defined
by Λ(h)(xα)=Λ(xα) if α is at most d and hα ∈ K otherwise. Then
Λ(h) admits an extension Λe ∈ R∗ such that HΛe is of rank r with
B a basis of AΛe iff:

MB
i ◦MB

j (h)−MB
j ◦MB

i (h) = 0

det(HB
Λ)(h) 6= 0.

Moreover, such Λe is unique.



Symmetric Tensor descomposition

Truncated Hankel Operators

Theorem

Let B = {xβ1 , ..., xβr } be a set of monomials of degree at most d,
connected to 1, and let Λ ∈ 〈B+B+〉∗≤d and Λ(h) ∈ 〈B+B+〉∗

defined as follows:

Λ(h)(xγ) =

{
Λ(xγ) if |γ| ≤ d ;
hγ in other case.

Then, Λ admits an extension Λ̃ ∈ R∗ such that H
Λ̃

is of rank r,

with B a basis of A
Λ̃

if and only if there exists a solution h to the
problem:

i) All (r + 1)× (r + 1) minors of HΛ
B+

(h) vanish.
ii)det(HB

Λ)(h)6= 0.

Moreover, for every solution h0 ∈ KN an extension such Λ̃ = Λ(h0)
over 〈B+B+〉 is unique.



Symmetric Tensor descomposition

Symmetric tensor descomposition algorithm

Input: A homogeneous polynomial f (x0, .., xn) of degree d

Output: A decomposition of f as f =
∑r

i=1 λi ki (x)d with r minimal

1 Compute the coefficients of f ∗: cα = aα

(
d
α

)−1
.

2 Initialize r := 0

3 Increment r := r + 1

4 Specialization:

Take any basis B connected to 1 with |B| = r

Build the matrix HB+

f ∗(h)
with the coefficients cα.

If there exists any minor of order r + 1 in HB+

f ∗(h)
, without coefficients depending on h, different to

zero, try another specialization. If cannot be obtained go to step 3.

Else if all minors of order r + 1 in HB+

f ∗(h)
, without coefficients depending on h, vanish, compute h

s.t:

det(HB
f ∗(h)

) 6= 0

the operators MB
i (h) := (HB

f ∗(h)
)−1(H

xi∗f ∗(h)
) commute

the eigenvalues of MB
i (h) are simple

If there not exist such h try another specialization. If cannot be obtained go to step 3.

Else if there exists such h compute the eigenvalues ξi,j and the eigenvectors vj s.t MB
i vj = ξi,j vj

for i = 1, ..., n and j = 1, ..., r .

5 Solve the linear system in (λj ) s.t f (x) =
∑r

i=1 λj ki (x)d where ki (x) = (x0 + vi,1x1 + ... + vi,nxn).
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Symmetric tensor descomposition algorithm

Example

Let f (x, y, z) =

3x4 +4x3y−4x3z +6x2y2−12x2yz +18x2z2 +4xy3−12xy2z +12xyz2−4xz3 +y4−4y3z +6y2z2−4yz3 +3z4

To r = 3 and B = {1, y, z}.

HB+

f ∗ =


3 1 −1 1 3 −1
1 1 −1 1 1 −1
−1 −1 3 −1 −1 1
1 1 −1 1 1 −1
3 1 −1 1 3 −1
−1 −1 1 −1 −1 1



MB
y = (HB

f ∗ )−1Hy∗f ∗ =

 1
2

−1
2

0
−1

2
2 1

2
0 1

2
1
2

 ·
 1 1 −1

1 1 −1
−1 −1 1

 =

 0 0 0
1 1 −1
0 0 0



MB
z = (HB

f ∗ )−1Hz∗f ∗ =

 1
2

−1
2

0
−1

2
2 1

2
0 1

2
1
2

 ·
 −1 −1 3
−1 −1 1
3 1 −1

 =

 0 0 1
0 −1 0
1 0 0


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Symmetric tensor descomposition algorithm

Example

The eigenvalues of (MB
z )t are x1 = −1, x2 = −1 and x3 = 1,

The eigenvalues of (MB
y )t are x1 = 0, x2 = 0 and x3 = 1.

The eigenvalues of MB
p are x1 = 2, x2 = −2 and x3 = 0, with

p = y + z .

The eigenvectors of Mt
z which are:

ξ1 =

 1
0
1

 ξ2 =

 1
0
−1

 ξ3 =

 1
1
−1


f = λ1(x + z)4 + λ2(x + y − z)4 + λ3(x − z)4

f(x, y, z) = (x + z)4 + (x + y − z)4 + (x− z)4



Symmetric Tensor descomposition

Symmetric tensor descomposition algorithm

Example

thanks!
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