Symmetric Tensor descomposition

Symmetric Tensor descomposition

Maria Lépez
Directors: M.E.Alonso,A.Diaz-Cano
Universidad Complutense de Madrid

Madrid, 25th novemeber 2011

UNIVERSIDAD COMPLUTENSE
MADRID



Symmetric sor descomposition

LSummary

Objective
Binary case
Problem Formulations

m Polynomial descomposition
m Veronese and secant varieties and The Big Waring Problem
m Descomposition using duality

Hankel operators and quotient algebra
Truncated Hankel operators
Symmetric tensor descomposition algorithm



Symmetric Tensor descomposition
L set up

K Algebraically closed field of Characteristic 0

S :=K[xo, ..., Xn], Sq :=K[x0, ..., Xn]a

R :=K[x1, ..., xn], Rqg :=K[x1, ..., Xn|q

R* has a natural structure of R—module: V A € R*:

pxN: R — K
qg — N(pqg)

Typical elements of R* are the linear forms, s.t. for all
p= Zpﬁiﬁ € R and for all £ € K":

ev(§): R — K
p— p(&) = pss”

3?: R — K
p — Ogt---9g(p)(§)



Symmetric Tensor descomposition
L Objective
)

A tensor xj @ - @ x;, € C"® ---® C" is said to be symmetric if
for any permutation o of {1, ..., k}:

Xip @ - @ Xiy = Xy @ -+ Q Xy

We will be interested in the decomposition of a symmetric tensor A
into a minimal linear combination of symmetric outer products of
vectors (i.e. of the form v ® --- ® v) such that:

A:zr:)\,-v®-~-®v
i=1



Symmetric Tensor descomposition
LObjective

Sd(C”) 2 ClXo, -+, Xn]d

C®---2C" — Sq = C[xo, ..., Xn]d
n n n n ) ) ) ]
[af1..~i,,],'1:0...id:0 ? E 1=0---iy=0 AjyeeigXiy " Xiy

Reformulation of the problem:
The decomposition of a homogeneous polynomial f of degree d in
n+ 1 variables as a sum of d-th powers of linear forms, i.e.:

f(?) = Z )\;(k,'()XO + ...+ k;an)d
i=1

Definition

The minimal r is called the symmetric rank of f.



Symmetric Tensor descomposition

L The binary case (Sylvester 's Algorithm)

Theorem (Sylvester, 1886)

A binary form f(x1,x)=5%__ (‘7) cixixd=" can be written as a

sum of dth powers of r distinct linear forms in C as:
f(x1,x2) =211 Aj(ayxa + Bjxe)?

if and only if :

m there exist a vector G=(q)j_, S.t.

m the polynomial q(x1,x2)=>_/_, q,x{xg_l admits r distint

roots, i.e. can be written as q(x1,x)=[[[_;(Bix1 — ajx).



Symmetric Tensor descomposition

L The binary case (Sylvester 's Algorithm)

L Binary form descomposition

Input:A binary polynomial p(x1,x2) of degree d with coefficients a; = (7) G, s.t.
0<i<d
Output: A descomposition of p(x1,x2) = 357, Ajk(X)}i with minimal r

m 1. Initialize r =0

m 2. Incrementr:=r+1 _

m 3. If the matrix H[r] has ker(H[r]) = 0 go to step 2
m 4. Else compute a basis ki, .., k; of the ker(H[r])

m 5. Specialization:

m Take any vector in the kernel, eg k

m Compute the roots of the associated polynomial
k(x1,%0) = 2_g kix{xs !

m If the roots are not distint in P, try another specialization. If
cannot be obtained , go to step 2

m Else if k(x1, x2) admits r distinct roots then compute
coefficients \; 1 < j <r

d d

Qaq ap do
d—1 —

Qaq Oég 1ﬁr X _
G & aq

m 6. The descomposition is p(x1,x2) = 3571 Aj(ayx1 + Bjx2)?



Symmetric Tensor descomposition

L The binary case (Sylvester 's Algorithm)

L Binary form descomposition

m Problem Formulations

m Polynomial descomposition
m Veronese and secant varieties and The Big Waring Problem
m Descomposition using duality



Symmetric Tensor descomposition

L_Problem Formulations

L Polynomial descomposition

Equating the coefficients of the same monomials:

F(X) =D Ailkioxo + - + kinxn)? = Mk1(X) + ... + Ak (%)
i=1

m It introduces r! redundant solutions, since every permutation
of the linear form is a solution.

m We get an over-constrained polynomial system, where the
polynomials involved are of high degree, that is, d.



Symmetric Tensor descomposition

L_Problem Formulations

LVeronese and secant varieties and The Big Waring Problem

Big Waring Problem

Which is the minimun integer s s.t. the generic degree d
homogeneous polynomial F € Sy is the sum of at most s d — th
powers of linear forms Ly, ..., Ls?

F=L{+..+1¢

Answered by J.Alexander, A-Hirschowitz, 1995



Symmetric Tensor descomposition
L_Problem Formulations

LVeronese and secant varieties and The Big Waring Problem

The image of the following map is the d-th Veeronese variety, X, 4 :

I/d.‘IP)(Sl)—>IF’(5d)
k(X) — k(x)9

m The polynomials of rank one are exactly those lying on X, 4
m Variety of polinomials of rank r > 17



Symmetric Tensor descomposition

L_Problem Formulations

LVeronese and secant varieties and The Big Waring Problem

The set that parameterizes polynomial homogeneus f € Sy of rank at
most s is:

Ug(Xn,d)'.:U[Lf],.4.,[Lg]eX,7,d <[Lt11]7 EEED) [Lg]>

but in general, 05(X, 4) is not a variety

Definition
The s — th secant variety of X, 4 C P(S4), 0s(Xn,a), is the Zariski closure
of Gg(Xn,d)

m The integer s that solves the Big Waring Problem is the minimum
integer s for which o4(X, 4)=P(S54)

Definition
The minimum integer s for which [F] € o(X,, 4) is the symmetric border
rank of F.



Symmetric Tensor descomposition
L_Problem Formulations

LVeronese and secant varieties and The Big Waring Problem

J.Alexander,A.Hirschowitz Theorem, 1995

0s(Xn.a) has always dimension min(sn+s — 1, ("Jgd) — 1), except

in the following cases:
md=22<s<n
mn=2d=4s=5
mn=3d=4s=9
mn=4d=4s=14
mn=4d=3,s=7

The case of Veronese variety is the only one for which the defective
case are completely classified.



Symmetric Tensor descomposition
L_Problem Formulations

L Descomposition using duality

Let f,g € Sy f = Zlalzd foxg?..xy" and g = szd 8aXy . X"
the apolar inner product on Sy is:

~1
<f’ g> :Z|o¢|:d foa (ao,.(.j.,an)

Sa—Sh5 R
f— " — Ar
such that f*:g — (f, g)



Symmetric Tensor descomposition
L_Problem Formulations

L Descomposition using duality

Proposition

Let f € Sy and ki, ...,k € C™ such that kjg =1 for all i. Then
f can be written as:

f=3"_1 Ni(xokio+ ... + Xnkin)?
if and only if Nf € Ry can be written as:
N =32ioq Aiev(k;)
where k; = (ki 1, ..., ki,n).

The problem of decomposition can be restated: Let A € R}
find the minimal number of non-zero vectors ki, ..., k, € K" and
non zero scalars A, ..., A\, € K such that A =37, Njev(k;).



Symmetric Tensor descomposition
L Hankel operators and quotient algebra

For any N € R* we define the Hankel operator:

Hp:R—sR*
p— px A
HA=(A(x**#)), s, B € N

Definition
Given B=by,..,b,, B' = b1,..,b, C R we define:

Hy ®' (B)—(B)"

as the restriction of Hp to the vector space (B) and the map goes
from R* to (B')*. Let HE’B/ = (/\(bibjl')) . If B =B’ we also use
HE and HE.



Symmetric Tensor descomposition

LHamkel operators and quotient algebra

Properties of the Hankel operators

m /p:=kerHy is an ideal
m If rank(Hp) = r < o0

m Apn = R/Ip is an algebra of dimension r over K.

m Ap is a Gorenstein algebra (i.e. A} is a free module of rank 1),
such that A} = Ap x A,

mlet h=0Q1N---NQy and let A; = ann(Q;), then
AN=A1 @ - DAy and AF = A; x (e x \) where
l=e + - +eq.
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L Hankel operators and quotient algebra

Definition

For any A € R* s.t. dimgAp < oo and a € Ax we define the
operators of multiplication in Ay, My: An— Ap such that b € Ap
M,(b) = ab. And its transposed M} :Ax— A} such that Vv € Ay
Mi(v) = axy

Theorem
Let Z(IN)={&1, ..., &q} the variety defined by the ideal Ip:
m The eigenvalues of the operators M, and M7 are given by
{a(&1), - a(&a)}

m The common eigenvectors of the operators (M} )Vi are (up to
scalar) ev(&;)




Symmetric Tensor descomposition

LHamkel operators and quotient algebra

Inverse systems

s R* ~ K[[5c]]
m The map:
1: {IC Ranideal sit. Z(I) < o} — {L R — module s.t. dimgL < co}
is bijective
m Let/ = le ﬂ"'ﬁdi
[ ] (IJ‘ ﬂK[ggl)J‘ = Qg.
m/t=Qi @ - ®QF and forall A e/t

d
A=Y ev(&)opi(d
i=1



Symmetric Tensor descomposition
L Hankel operators and quotient algebra

| Theoremn |

If rankHy = r < oo ,then:

m Ap is of dimension r over K and the set of roots
Z(In) = {&1, .-, &4q} Is finite with d <'r.
m There exists p; € K[01, .., 0pn] such that
A=Y, ev(&) o pi(@).
Moreover, the multiplicity of &; is the dimension of the vector
space generated by ev(&;) o pi(@).

Theorem
Let N € R* A=>"7_; Aiev(&;) with \; # 0 and &; distint points of
K", iff rankHx=r and Iy is a radical ideal.
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L Truncated Hankel Operators

Reformulation of the problem: Given f*€ R} find the smallest r
such that there exist A€ R* which extends * with rank Hp of
rank r and /5 a radical ideal

Definition

Let BC Ry be a set of monomials of degree at most d and f*cR}.
The Hankel matrix are:

HR (h)=(ha+p)a,0. 8 € B

where ho=f*(Xx“) if card(cr) < d; otherwise h, is a variable.

Definition
Suppose that HB(h) is invertible in K(h).We define the
multiplication operators:

M (h) == (HR(h))""HZ A(h)
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L Truncated Hankel Operators

Theorem

Let BC R be a set of monomials of degree at most d connected to
1(m € B # 1 implies m = x;m with m" € B) and let \ be a linear
form in (B.BT)7,. Let A(h) be the linear form of (B.B™)" defined
by A(h)(Xa)=N(X.) if  is at most d and h, € K otherwise. Then
A(h) admits an extension Ne € R, such that Hy, is of rank r with

B a basis of Ap, iff:
n MP o M2(h) — MP o MP(h)
m det(H8)(h)# 0.

Moreover, such Ae is unique.

0
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L Truncated Hankel Operators

Theorem

Let B = {x™,...x"} be a set of monomials of degree at most d,
connected to 1, and let A € (BYB)Z, and A(h) € (B*B™)"
defined as follows:

. ANX) if |y < d;
Yy
A(h)(x") = { h, in other case.

Then, A admits an extension A € R* such that H5 is of rank r,
with B a basis of Az if and only if there exists a solution h to the
problem:

m i) All (r +1) x (r + 1) minors of HAB" (h) vanish.

m ii)det(HR)(h)# 0.
Moreover, for every solution hy € KN an extension such A = A(ho)
over (BT BT) is unique.
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LSymmetric tensor descomposition algorithm

Input: A homogeneous polynomial f(xp, .., xp) of degree d
Output: A decomposition of fas f = >°7_; Aiki(x)9 with r minimal

—1
Compute the coefficients of f*: c, = aq (d) .

a

Initialize r :== 0

Increment r :==r + 1

Specialization:

Take any basis B connected to 1 with |B| = r

Build the matrix HE:(F) with the coefficients cq, .

-+ .. . T o
If there exists any minor of order r + 1 in Hf* o without coefficients depending on h, different to
zero, try another specialization. If cannot be obtained go to step 3.

+ . . - . -
Else if all minors of order r + 1 in Hf* & without coefficients depending on h, vanish, compute h

s.t:
B det(HZ, @) #0

B the operators M,-B(E) = (Hf* )_I(HX_*f*(;)) commute
L T

(h)
. B /T .
B the eigenvalues of M7 (h) are simple
If there not exist such h try another specialization. If cannot be obtained go to step 3.
Else if there exists such h compute the eigenvalues &i,j and the eigenvectors v; s.t M/.ij- =& v
fori=1,...,nandj=1,...,r.

Solve the linear system in ()\;) s.t f(X) = >°7_; Xjk;(i)d where k;i(X) = (xo + Vvj,1x1 + ... + Vj nXn)-
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LSymmetric tensor descomposition algorithm

L Example

Let f(x,y,z) =
3x* +4x3y - 4X3Z+6x2y2 — 12x2yz+ 18x222 +4xy3 - 12)<y22+ 12)<yz2 —4x2® +y4 - 4y3z + 6y222 - 4yz3 +32*

m Tor=3and B={1,y,z}.

3 1 -1 1 3 -1

101 -1 1 1 -1

A I B S T S B

= =1 1 1 -1 1 1 -1

3 01 -1 1 3 -1

1 -1 1 -1 -1 1
. A %1 = 0 11 -1 00 o0
My = (HE) e = | S 2 101 -1 =11 -1
& 1 i -1 -1 1 0 0 o

2 2

1 F o 1 -1 3 o o0 1
M= (HP ) M = | 2 L -1 -1 1 = o -1 o0
— o 1 % 3 01 -1 1 0 o0
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LSymmetric tensor descomposition algorithm

L Example

m The eigenvalues of (M2)t are x; = —1, xo = —1 and x3 = 1,

m The eigenvalues of (I\/I}',g)t are x1 =0, xo =0 and x3 = 1.

m The eigenvalues of ME are x; = 2, xo = —2 and x3 = 0, with
p=y-+z

The eigenvectors of ME which are:

1 1 1
=0 &= 0 |&= 1
1 -1 -1

= M(x+2)* + Xa(x+y - 2)*+ A3(x — 2)*
f(x,y,2) = (x+2)* + (x+y —2)* + (x — 2)*
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LSymmetric tensor descomposition algorithm

L Example

thanks!
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