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Abstract

Castellano: El objetivo de este trabajo es el estudio de la descomposicién de tensores simétricos
de dimensién "n" y orden "d". Equivalentemente el estudio de la descomposiciéon de polinomios
homogéneos de grado "d" en "n" variables como suma de "r" potencias d-ésimas de formas

lineales.

Este problema tiene una interpretacién geométrica en términos de incidencia de variedades se-
cantes de variedades de Veronese: Problema de Waring [12],[6]. Cléasicamente, en el caso de
formas binarias el resultado completo se debe a Sylvester. FEl principal objeto de estudio del
trabajo es el algoritmo de descomposicién de tensores simétricos, que es una generalizaciéon del
teorema de Sylvester y ha sido tomado de [1|. Pero antes de enfrentarnos al algoritmo, introduci-
mos las herramientas necesarias como son los operadores de Hankel y propiedades de las algebras
de Gorenstein.

English: The aim of this work is studing the decomposition of symmetric tensors, of dimension
"n" and order "d". Equivalently, studying the decomposition of homogeneous polynomials of
degree "d" in "n" variables as sum of "r" dth-powers of linear forms.

This problem has a geometric interpretation with the secant varieties to the Veronese variety:
"Big Waring Problem" [12] and [6]. Classically, the binary case was given by Sylvester. The main
object of study is the symmetric tensor decomposition algorithm, which is a generalization of
Sylvester theorem and it has been taken from [1]. But, before facing to the algorithm we introduce
several tools, for instance the Hankel Operators and several properties of the Gorenstein Algebras.

Mathematical Subject Classification MSC2010: 15A21, 15A69, 15A72

Key words: tensor decomposition, canonical decomposition, symmetric tensor rank, generic sym-
metric rank, Big Waring Problem, Hankel operators.
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Chapter 1

Introduction

A tensor is an element in the product of vector space C™ ® --- ® C™. We shall say that
a tensor is cubical if all its £ dimensions are identical, i.e. n; = ... = ngy = n. A cubical tensor
r€C'"® - ®C" is said to be symmetric if for any permutation o of {1,...,k}:

xlllk = xlc(l)ld(k) .

The aim of this work is studying the decomposition of a symmetric tensor into a minimal
linear combination of a tensor of the form v ® --- ® v. The minimal number of sums in this
decomposition will be the symmetric rank. This decomposition of a tensor was first introduced
and studied by Frank L. Hitchcook in 1927, and then was rediscovered in 1970’s by psychome-
tricians.

The tensors are objects which appear in many contexts and different applications. The
most common tensors are the matrices, where the problem of decomposition is related to the sin-
gular value decomposition (SVD). The extension of higher order tensors gives arise to problems
in the field of Electrical Engineering, Telecommunications, Chemometrics and Antenna Array
Processing. For instance, the observations of experiences or physical phenomena which have a
lot of parameters are stored in tensors.

The bijection between symmetric tensors and homogeneous polynomials will allow us to
reformulate the problem as the decomposition of a homogeneous polynomial f of degree d in
n + 1 variables as a sum of d-th powers of linear forms [1], i.e.:

T
F@) =" Aikiowo + ... + kinan) (1.1)

i=1
The problem of decomposition in the binary case can be obtained directly by computing ranks
of catalecticant matrices [13], as can be seen in Sylvesterts Theorem. But in higher dimension
this is not so simple, however the team of Bernard Mourrain [1], using apolar duality on polyno-
mials, get an extension of Sylvesterts algorithm, reducing the problem of the symmetric tensor
decomposition to the decomposition of a linear form as a linear combination of evaluations at
distinct points. Moreover, they give a necessary and sufficient condition for the existence of a
decomposition of symmetric rank r, based on rank conditions of Hankel operators and commu-

tation properties.
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Therefore the main ingredients in this work will be: reformulation of the problem in a dual
space, exploitation of the properties of multivariate Hankel operators and Gorenstein algebras,
studying an effective method for solving the truncated Hankel problem and deduction of the
decomposition by solving a generalized eigenvalue problem.



Chapter 2

Preliminaires

We will work in K and algebraically closed field, such that char(K) = 0. Let E be a vector space

of dimension n + 1 and we will denote T%(E) := E® --- ® E, the set of all tensors of order d

and dimension n 4+ 1. A tensor of order d and dimension n + 1 can be represented by an array
Myeeeeeennes n

@iy ,igli o =0 € T E) with a;,,_;, € K in a basis of T4(E), due to the universal property
of the tensor product. The set of all symmetric tensors of order d and dimension n + 1 forms

an algebra, S?(E), and a tensor [ail7,,,,id]i1:07“.’7?d:0 will be symmetric if a;,, 4, = Qi (1) - (d)
for any permutation o of {1,...,d}. We will use «,f3,.... to denote a vector in N"*! (multi-

index), and |a| :== Y o + ... + ap. And we will denote % := z(° - - - 24", We will work in
R := K[z, ..., zy] the ring of polynomials, and R4 will be the ring of polynomials of degree at
most d. For a set B = {b1,...,b,} C R we will denote by (B) (resp. (B)) the corresponding
vector space (resp. ideal) generated by B. We will denote by Sy := K|z, ..., z,]q the vector
space of homogeneous polynomials in n + 1 variables of degree d.

The dual space E*, of a K-vector space is the set of K-linear forms from E to K. We have to
take into account that R* has a natural structure of R-module; for all p € R and A € R*:

pxA: R — K
q — A(pg)

Typical elements of R* are the linear forms ev(¢) for £ € K", and d” := dft---dgn, defined as
follows: for all p =" ps7® € R:

K

ev(): R —
p o p(&) = psg”

d: R - K
P = Da
Particularly;
e g® o AT AT g i g > 0 2.1)
(2 . .
0 in other case.
Let V be a (n + 1)-dimensional vector space over K, we will be interested in the decomposition

of a symmetric tensor A = [aj, . j,] € S4V) into a minimal linear combination of
d)

n7
71=0,...,j¢=0
symmetric outer products of vectors (i.e. of the form v ® - -- ® v) such that:

9
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r d)
A:Z)\iv®~-®v (2.2)
i=1

Definition 2.1. If A= [aj, ;15720 Ty € SUC) | the symmetric tensor rank of A is:

n,
J1=0,...,ja=0
ranksA = min{r|A=>"_ Ny ® - ®@y; 1 y; € C"T1}

We will see that a decomposition of this form always exists for any symmetric tensor in 4.23, (|2]
page 12). Therefore the definition of symmetric rank is not vacuous.

Remark 2.2. Note that over C, the coefficients \; appearing in the decomposition 2.2 may be
set 1; it is legitimate since any complex number admits o d-th root in C. Henceforth, we will
adopt the following notation.

kcopies

—N—
Example 2.3.

Let A € S3(C?) be defined by:

a a
A= 111 121
a211  Aa221

arz arze \ _ (=1 0]0 1
azi2  a222 0 1]/1 0

It is of symmetric rank 2 over C:

Indeed:
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2.1 Applications

Let @Q be a (n+ 1) x (n+ 1) invertible matrix and let E be a vector space of dimension n + 1.
We define the following application:

Q: TE) — TYE)
A=aiy, agliZon ity = QUA) = [Aiy, LidinZo 5%

Where A;, . i, = Ejlw-»jd Qirjy - Qigjgi,...iqg- A tensor A is symmetric if Ag(;. p) = Aij. g for
any permutation o. This property is referred to as the multilinearity property of tensor.

Symmetric tensors form an important class of tensors and examples where they arise include
multivariate moments and cumulants of random vectors, since the set of cumulants of order d of
a multichannel real random variable X of dimension n + 1 form a symmetric tensor of order d
and dimension n 4+ 1. The same holds true for moments, due to the fact that symmetric tensors
satisfy the multilinearity property [7]:

For a vector-valued random variable X = (Xj, ..., X,;) we obtain three tensors of order d:
e The dth non-central moment s;, _;, (1 <i; <n je{l,..,d}) of X is:
Sit,eig = E(leXszd)

and the set of non-central moments of X can be identified with the following tensor of
order d and dimension n + 1:

Sa(X) = [B(Xi, Xiy.. Xi ) sgim

11=0,...,ig=0
e The dth central moment of X is the following tensor:
My(X) = Sa(X — E[X])
e The dth cumulant k;; 5, (1 <i; <nje{l,..,d})is:
kiy.iy = (=) g — 1)!sp,...sp,

where PyU...UP, = {i1, ..., 14} are the partitions of the index set. And the set of cumulants
of X can be identified with the following tensor of order d and dimension n + 1:

Ka(X) = [ p(=1) g — Dlspsp, 77577 2o
where the sum is over all the partitions P = P, U ... U P, of the index set.

This cumulant tensors have been used in array processing. And the symmetric outer product
decomposition is also important in areas such as: mobile communications, machine learning,
biomedical engineering, psychometrics and chemometrics [2].
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2.2 From symmetric tensor to homogeneous polynomials

It can be pointed out that there exists a bijective relation between the space of tensors of di-
mension n + 1 and order d, S¢(C"*1), and the space of homogeneous polynomials of degree d in

: : Thyeeinnnnns n . .
n + 1 variables, Sg. A symmetric tensor [tj, .. j,]5 572, of order d an dimension n + 1, can

be written with a homogeneous polynomial f(Z) € Sy :

ti,da) = FE) =2207260 70 ot da i T

The correspondence between symmetric tensors and homogeneous polynomials is bijective:

S4(C™) = Clzxy, ..., Tnla
Example 2.4.
Alternatively, the tensor of the first example 2.3:

A= ( 01 (1) (1) (1) )
is associated with the homogeneous polynomial in two variables:

p(z,y) = 3wy? — 2
which can be decomposed over C into:
pla,y) = Y3 (—V=Te +y)* = Y5 (V-Ta + )

Therefore in the following formulations of the problem we will work with homogeneous polyno-
mials instead of symmetric tensors.



Chapter 3

The binary case

The present survey is a generalization of Sylvester’s algorithm devised to decompose homogeneous
polynomials in two variables into a sum of powers of linear forms, extracted from [1]. First of all

we recall this theorem, (|3] page: 102):
Theorem 3.1. A binary form f(x1,z2) = Z;‘;O (?)cix’iwgfi can be written as a sum of dth
powers of r distinct linear forms in C as:

T

flwr,a2) =) Nj(ajzn + Bjwa)”

j=1
if and only if:

o there exist a vector ¢ = (q1);_, such that:

e the polynomial q(z1,x2)=Y_,_, qlxlla:g_l admits r distint roots, i.e. it can be written as
q(z1, x2)=]Tj—1 (Bjz1 — ajw2).

We will see a partial proof of this theorem in 4.3. The proof of this theorem is constructive
and yields the following algorithm: let p(xo,x1) be a binary form of degree d and coefficients
ai:(?) ¢i, 0 < i < d, the algorithm builds the Hankel Matrix (H[r]) of dimension d —r+1xr+1
whose entries are:

Hirlij=ciyj—2
and then compute its kernel.
Algorithm 3.2. Binary form decomposition

Input:A binary polynomial p(z1,z2) of degree d with coefficients a; = (?) c,st. 0<i<d
Output: A decomposition of p(x1,22) = > %, /\jk?(f) with minimal r

e 1. Initialize r =0

e 2. Increment r :=7r+1

13
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e 3. If the matrix H|[r| has ker(H|[r]) =0 go to step 2
e 4. Else compute a basis ki, .., k; of the ker(H|[r])

e 5. Specialization:

— Take any vector in the kernel, e.g. k

— Compute the roots of the associated polynomial k(z1,z2) = >, klxll:vg_l

— If the roots are not distinct in Py, try another specialization. If cannot be obtained ,
go to step 2.

— Else if k(z1,22) admits r distinct roots,(a; : §;) for j = 1,...,r, then compute coefhi-
cients \; 1 <j <r

d d
da% DY a’,’ ao
ali Bl O‘g_lﬂr X—
g B &

e 6. The decomposition is p(z1,22) = Y71 Aj(ajz1 + Bjza)?
Example 3.3. Let apply the Sylvester algorithm to the polynomial:
p(z1,22) = 1727 + 483339 + 1202322 + 2647123 + 25773

for » = 1, we have the following Hankel matrix:

co C1 17 12
1 C2| 12 20
co c3| |20 66
C3 C4 66 257

This matrix has full column rank. Therefore, we build the Hankel matrix for r = 2:

Cho C1 C9 17 12 20
Cl Cy C3| = 12 20 66
Cy C3 C4 20 66 257

This matrix has rank equal to 2, therefore we compute a basis of the kernel, to do this we use the
singular value decomposition and the help of "Matlab" and we get the following decomposition
of M:

M=UXV*

where rank(X) = 2, and we know by a theorem well known that Ker(M) = (vs) where vs is
the third column of V*. Then, we compute the roots of q($1,$2)2212:0 vgla;llngl which are
(a1,P1) = (2,1) and (g, f2) = (0.25,1). Lastly, we compute A\; and A2 by equating coefficients
in the same monomials and we get the decomposition:

p(x1,22) = (22 + y)* + 256(0.252 + y)*



Chapter 4

Problem Formulations

In this chapter we present three different approaches to the problem. These approaches were
given by the team of Bernard Mourrain in [1].

4.1 Polynomial Decomposition

We will explain how to get a decomposition of f € S; as a sum of d-th powers of linear forms
[1], i.e.:

f(f) = Z )\i(kioxo + ...+ kmxn)d = Alkl(f)d —+ ...+ )\,-k‘,.(f)d (4.1)
=1

where k;7£0, and r is the smallest possible integer.
Remark 4.1. In the case we work over C we may assume all \; = 1.
Definition 4.2. The minimal r is called the symmetric rank of f € Sy, denoted ranks(f).

Remark 4.3. Note that the symmetric rank of f € Sgq s the same as the symmetric rank of its
corresponding tensor in S(C"1).

A first approach to solve the problem of decomposition consists ([1] page 86) : given f € Sy
, and we assume that r, the symmetric rank, is known. We consider the r(n + 1) coefficients
k; ; of the linear forms of the equality 4.1, as unknowns. We expand the right hand side of this
equation . The two polynomials on the left and right hand sides are equal. Thus by equating
the coefficients of the same monomials we get a system with 7(n 4+ 1) unknowns and with (";d)

equations. This approach describes the problem of decomposition in a non-optimal way, since:

e [t introduces r! redundant solutions, since every permutation of the linear form is a solution.

e We get an over-constrained polynomial system, where the polynomials involved are of high
degree, that is, d.

The first approach motivates the definition of the following map, ® ,which goes from the set of

unknowns (k; ;) to the set of ("gd) equations. To be accurate: the expansion of the right hand

side of the equation 4.1, in the basis of monomials B(n;d) = {z%, |a| = d} defines a map ® from
n+d
the set X = C("*D" of coefficients k; ; onto T = c("i),

15



16 CHAPTER 4. PROBLEM FORMULATIONS

o: x=cotior  _ v=c()
E=((k1i), o (ki) —  (ca(k))acr

where I = {a = (ag, ...,a) : |ag + ... + ap,| = d} is the set of index and ¢, (k) is defined as the
coefficient of the monomial T% of the expansion.

Definition 4.4. A property is said to be true in the generic case, or for generic polynomials, if
it is true in a dense algebraic open subset of Y, in the Zariski topology.

Definition 4.5. The symmetric generic rank, denoted g(n,d), is the minimal value to be given
to v in the decomposition 4.1, in the generic case.

Proposition 4.6. The dimension of the image can not be greater than the numbers of parameters
in function ® (which is (n+ 1)r).

Proof. If (n+1 ( : ) then the image would lie in an hypersurface an would not be dense.
Therefore, ("+d) (n+1)r. O
Example 4.7.

To show how careful we have to be, consider for instance a generic ternary quartic, one would
expect that it could be decomposed in to 5 linear forms since r x (n+1) =5 x 3 > (Z) = (n:lrd),
but the correct number of linear forms is 6 (|3] page 102).

We will see that the generic rank in Sy is known for any order and dimension due to the work of

Alexander and Hirschowitz.

4.2 Geometric point of view

This section is written due to the information that you can find in [6] and [3].

4.2.1 Big Waring Problem

In 1770, E. Waring conjectured: "for all integers d > 2 there exists a positive integer g(d) such
that each n € N can be written as n = af + ... + a;l g With a; > 0andi=1,...,9(d)", [6].

The conjecture of Waring was showed to be true by Hilbert in 1909. An analogous problem can
be formulated for homogeneous polynomials of given degree d in Sy := K|z, ..., Zy|q: "Which is
the minimum r € N such that the generic form F' € S; is sum of at most r d-powers of linear
forms?"

F=L{+..+L¢

This is the Big Waring Problem which was completely solved by J. Alexander and A. Hirchowitz
in 1995.
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4.2.2 Veronese and secant varieties

Definition 4.8. The image of the following map is the d-th Veronese variety, X, q :

vg: Pr——p("d)!

(o : ot Uy ) — (ud s w1 d)

Uy ...t U
This map can also be dually characterized as:

n+d

vaP(S)) = (P —P(S,) = (P("a")~1)*
k(T) — k(7)?

Therefore we can think to the Veronese variety as the variety that parameterizes d-th powers of
linear forms. The polynomials of rank one are exactly those lying on X, 4. If we want to study
the variety that parameterizes sums of "r" d-powers of linear forms of S := K|z, ..., x,] we have
to consider the r-th secant variety of X,, 4, which we will define below, (6.

Definition 4.9. The set that parameterizes homogeneous polynomials F € Sy of rank at most

Hoa 1

T is:

09 (Xna)=Ur4)... [pajex, o ([L4], - [LE])

but in general, 02(X,, 4) is not a variety.

Definition 4.10. The r-th secant variety of X,q C P(Sq) is the Zariski clousure ag(Xn,d)
denoted by 05(Xp 4)

From this point of view the smallest 7 € N such that 0,(X,, 4)=P(S4) is the minimum integer
"r" such that the generic form of degree d in n+ 1 variables is a linear combination of "r" powers
of linear forms in the same number of variables. Then this minimun integer "r" answers the Big
Waring Problem.

Definition 4.11. Let F € S; be a homogeneous polynomial, the minimum integer for which s,
[F] € 04(Xpa) is the border rank of F', denoted rankp(F).

Theorem 4.12. (Alezander-Hirschowitz). If X= 04(Xy q), for d > 2. Then:
. . . +d
dimension(X)=min(sn+s—1,(";%) — 1)
except for:
e d=22<s<n
en=2d=4,5=5
en=3d=4,5=9
en=4d=4,s=14
en=4d=3,s=7
This theorem is extremely complicated to prove, and the interested reader should refer to the

two papers of Alexander and Hirschowitz :[11],[12]. The difficult of proving this theorem lies in
establishing the fact that the four given exceptions to the expected formula are the only ones.
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4.3 Decomposition using duality

In order to pass the problem to the dual problem, we need the following definition of the apolar
inner product:

Definition 4.13. Let f,g € Sa f=3_4/—q faxg?...xdm and 9= "|a|=d Ga(®...xd™ the apolar inner
product on Sq 1s:

(. 9= aa fada (g 0 )

Note that (-,-) cannot be a inner product in the usual sense since (f, f) is in general complex
valued (recall that for an inner product, we need (f, f) > 0 for all f). However, we will show
that it is a non-degenerate symimetric bilinear form.

Lemma 4.14. The bilinear form (-,-) : Sq x Sq — C defined above is symmetric and non-
degenerate. In other words, (f,g) = (g, f) for every f,g € Sq, and if (f,g) =0 for all g € Sy,
then f = 0.

Proof. The bilinearity and symmetry is immediate from definition. Suppose (f,g) = 0 for all ¢
€ S4. Choose g to be the monomials:

9a(T) = (al,fl.,an)f

where |a| = d and we see immediately that:
fa={(f19a) =0
Thus f = 0. OJ

(6}

Using this non-degenerate inner product, we can associate an element of Sy with an element on
S5, and for any f* € S we can associate an element on R; through the following composition:

T * ™ *

[ o— " Ap (4.2)

such that: f*:g — (f,g) and Agp:p —f*(p"), where p is the homogenization in degree d of p.
Under, 7, the polynomial f:ZM:d Ca (i)fo‘ is mapped to f*:Zm\:d cad” € Sy
Lemma 4.15. Let k(Z)? = (koxo + ... + knxn)?. Then for any f(T) € Sq we have:

(f(@), k(x)) = f(ko, s Fin)

Proof. (f(Z),k(@)?) = <Z|a|:d faxy®..xom, (koxo + ... + knajn)d> =2 jaj=d faka (ao’_‘f’an)_l where
ko = k0 kg (o 0 o), thus (F@), k@)T) = X0 ma fak( - kG = f(Ko, o Fn). O

QQy---y

Notation 4.16.

We will denote: k; = (kiy, ..., ki,,) € K""! the unknowns in the decomposition 4.1.

in

Corollary 4.17. It holds that 7(k(Z)%)=cv(k) € S}.
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Proof.

T(k(T)) : Sﬁ

O

Proposition 4.18. Let f € Sy and ki, ...,k € C"TL. Then f can be written as:

F=>0 1 Ni(zokio+ ... + {Enkim)d
if and only if
fr =2 Miev(ki)
Proof. 1If f can be written as: f = >_1_, Ni(zokio + ... + ki pn)? then:
T(f) = f* =21 Mit(zokio + ... + znkin) =D Niev(k;)

O

Corollary 4.19. The problem of decomposition can then be restated as follows: Given f* € SJ,
find the minimal number of non-zero vectors ky, ..., k. € C*"* and non-zero scalars \i,..., \, €
C — {0} such that:

fr =200 diev (ki)

Definition 4.20. We say that f* has an affine decomposition if for every k; in the decomposition
kio # 0

By a generic change of coordinates, any decomposition of f* can be transformed into an affine
decomposition.

Proposition 4.21. Let f € Sq and ky, ...,k € C" such that kig =1 for alli. Then f can be
written as:

f=3" Ni(@okio + .. + Tnkin)?
if and only if f* can be written as:
Ap=2lioi diev(k;)
where k; = (ki, ..., kin).

Proof. By the previous proposition f* can be written as:
fr =201 Aiev(ki)
with k; 0 = 1 for all 7,then with the map 7 defined in 4.2 we get:
m(f*) = D0 Mim(evk,;) = i1 Aieu(ry)
such that:
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Aev(ki) : Rd — C
p — ev(k)(P") = p"(L, kiay s kin) = p(kit, o kin)

Therefore, 7(f*) =3, Ailew(r,)
= O

Corollary 4.22. The problem of decomposition can be restated as follows: Let A € R} find the
minimal number of non-zero vectors ky,....k, € K™ and non zero scalars A1, ..., \r € K such that

A=>"7 Nev(k;)

We will see that the definition of symmetric rank is not vacuous because of the following lemma:

Lemma 4.23. Lel f € S;. Then there exist ki(T), ..., ks(T) € S1 linear forms such that:
f=l k@

with s < 00.

Proof. What the lemma said is that the vector space generated by the d-th powers of linear forms
: (k(z)k € C™1) fills the ambient space Sy := Clzo, ..., Tn]4, therefore what we actually have
to prove, is that the vector space generated by the d-th powers of linear forms k(%) (for all k €
C"*1) is not included in a hyperplane of S;. This is indeed true, because otherwise there would
exits a non-zero element of Sy, f(%) # 0, which is orthogonal, under the bilinear form (-,-), to
all k(z)¢ for k € C**!. Equivalently, by the lemma 2, there exists a non zero polynomial f(Z)
of degree d such that (f,k(Z)?) = f(k) = 0 for any k € C"*!, but this is impossible, since a
non-zero polynomial does not vanish identically on C**+1. O

Remark 4.24. We can deduce s < (”jgd), but it was shown recently by Reznick [17] that

s < (”;f;ﬁ (4.3)

which s a much tighter bound.
Proof. [Partial proof of Sylvesterts Theorem]

For r < d:
d d—1

We assume that p(z1,z2) = Z?:o (9)cizixy™ can be written as sum of r different forms:

p(a1,x9) = Y55 Aj(ajzn + Bjwe)?

and we define g(x1,22) = [[j; (Bjz1 — ajza) = 371 gzt ah ™. Then it is not hard to see that
for any monomial m(z1,x2) of degree d —r in (x1, z2), we have (m(z1,z2)q(x1,x2),p) = 0 since:

<m(x1, x2)q(z1, z2), Z Nj(ojzy + ﬁjl‘g)d> =

Jj=1

A1 <m(951a r2)q(71, T2), (171 + 51332)d> +o A <($1, x2)q(x1, x2), (py + ﬁrl’z)d> =
)\lm(ala /BI)Q(ala 61) + ...+ )\rm(am ﬁv')Q(am BT) =0
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The last equality is due to for any f € Sy (f(z1,22), (ajz1 + Bjz2)?) = f(ey, B;) as the lemma
4.15 said.
Particularly if we take:

d d—r—1 —r

mo(z1,x2) = 25", mi(z1,x2) = x5 T1yeeeyMg_rp(T1,22) = :L‘(f

we get respectively the equations:

goco +gic1 + ... + grcr =0

goc1 +gica + ...+ grcry1 =0

GOCd—p F ceveeennenn. + grcqg =10

Let us prove this for the case mo(z1,22) = wg_r, (the other cases are analogous):

<$g_rCJ($1,9€2)7p($1,9€2)> =

_ . (d d
<gox§l + gla:g 11‘1 + ...+ ng711$62i T <0> C().Tg + ...+ (d) Cdxcll> =

(90 (g) co) <i> B + ot (9 (i) cr) (i) h = goCo + - + GrCr

and this , it is the same as:

Finally, note that g(z1,22) = [[;_,(8j71 — a;r2) admits r distinct roots because the r linear
forms are distinct. 0
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Chapter 5

Inverse systems and duality

In this chapter we will see the necessary tools to understand and to prove the structure theorem
5.25, which will be used in the final decomposition algorithm. Most of these results can be found
in the reference [4]. We recall that K is a field of characteristic 0.

5.1 Duality and formal series

Definition 5.1. For all « = (aq, ..., ) € N we consider the linear form:

o K

such that for all element T° in the monomial basis (T)aenn is defined as follows:

—a '=aoql...ap! if a=0;
5(3:5):{(1 arl..an! ifa=pg;

0 in other case.

We write also 6 = 07t - 05 although we point out that this is just a notation.
Proposition 5.2. Any A € R* can be written in an unique way as:

A= e M@ 56" € K[[01, ..., 6,]]
Reciprocally, any element of K[[d; - - - d,]] can be interpreted as an element of R*.

Proof. We recall that (d”(f))aen» denote the coefficients of f € K[zy,...,x,] in the basis
(Z%)qenn. Then:

(67

f@) = Laennd ()7
As char(K) = 0, clearly we have:

And for all A € R*:
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Notice that this sum is finite for every f € R. So that, we can write:
A=Y e MA@ A" € K[[d1, ..., dy]]

and thanks to 5.1 we can write also:

A=Y A(fa%g“ € K[[51, ..., 52] (5.2)
aeN"? ’

Proposition 5.3. For anyi € {1,...,n} and any o = (o, ..., ) € N":

!

e <O
T, %0 = ;0

’
where o = (1, vey Q1,0 — 1, Qg 1, oy Qi)

Proof. For any p € R such that p = 3 5. gl xi % 07 (p) = x; * Sa(zﬁeNn cgT’) =

EQ(ZBENW Cﬂfﬁmi) = a!cal7~--yai717ai717ai+17~--7an = ai(s(al"n’aifl7ai_17ai+1’m7an)(p)' O
—a 1 7o
Remark 5.4. Asd = 56 we have:

Lg% oo Q-1 g, —1 30641 o
zixd =dyt.dyytdS T A LS

Roughly speaking, "x; " and ”di_1 " are the "same" and the operation of R-module becomes on
deriving the operator, such that x; * §¢ = 0;(d%).

Definition 5.5. For all a = (o, ..., ap), and for all £ € K™ we can define the linear form:

(67

b R — K

p o O¢(p)=08..0%(p)(€)
Remark 5.6. Note that SS =

Remark 5.7. In the same way that 5.2 for all linear for A € R* | if char(K) = 0:

A= aen M@ — 6)*) 568 € K[[6¢]]
where (% — €)° = [Ty (@ — &)°.
Theorem 5.8. For all point § € K" there exists an isomorphism between K[[6]] and K[[¢]].
Proof. We realize that:

Q

ev(€) =Y penn €94 =3 penn E950
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And we define the homomorphism:

¢: Ko — K([d]]

5 aia+ﬁ
0 v Yaenaié™d
for all p = > cpn PaT® € R, and for all 8 = (B, ..., ) € N | if we denote:
P = 0200 (p) = X penn P T
Then we have:

<P o af —o azats
3¢ (D) = Ypenn P€* = ev(&)(PP) = X penn HED (Daenn PLTY) = Y penn 26757 (p).

Hence, ¢ is a bijection by the remark 5.7 and the proposition 5.2. Ul

5.2 Inverse systems

Definition 5.9. Let L be the map defined as follows:

{I CR s.tI isan ideal }g{D C R* s.t D is R-submodule}
and for any I ideal of R, L(I) :={A € R: A\(f) =0V f € I}.
Proposition 5.10. The map L is well defined.

Proof. Clearly L(I) C R* thus, in order to see L is well defined, we have to see that the map:

«: R x L(I) = L(I)
(p,A) —p* A

is well defined in LL(I) like R-submodule: for any p € R and any A € L(I), p* A € L(I) since:
forall feIpfelandpxA(f)=A(pf)=0 O

Definition 5.11. Let B be the map defined as follows:

{DCR*s.tDis R—Submodule}g{f C R s.t I is an ideal }
and for any L C R* and R-submodule, B(L) :={f € R: A(f) =0V A€ L}
Proposition 5.12. The map B is well defined.

Proof. Let L be R*-submodule, then B(L) C R is an ideal of R since: let p1,pe € B(L), and
for all A € L Ap1 + p2) = A(p1) + A(p2) = 0, the first equality due to A is linear and the
second one due to pi,py € B(L). If g € B(L) and p € R, then for all A € L, px A € L and

p*Ag) = Apg) = 0. 0
Proposition 5.13. Let I be an ideal of R and L a R-submodule:

o i)T = B(L(I))
o ii)L(B(L)) DL
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Proof. i)Let us see that I C B(L(I)), and let f € I: f € B(L(I)) iff A\(f) =0 for all A\ € (1) iff
A(f) =0V X such that A\(g) =0 for all g € I. In particular f € I then A(f) =0 for all A € L(I).
On the other hand B(IL(I)) C I: let us see that if f ¢ B(L(I)) then f ¢ I. If f ¢ B(IL(I)) then
there exists A € (/) such that A(f) # 0, but A\(¢g) =0 for all g € I, thus f ¢ I.

ii) Let us see that L(B(L)) 2 L and let 7 € L : 7 € L(B(L)) iff 7(f) = 0 for all f € B(L) iff
7(f) = 0 for all f € such that A(f) =0 for all A € L. In particular 7 € L, then 7(f) = 0 for all
f € B(L). O

Example 5.14. Let us see that L(B(L)) = L is not true for all L R-module, i.e. L is not
surjective:

If we take:
L:={ e R :3IneN": \(z%) =0Va>n}
where o > 7 in the sense of some monomial order. Then, B(L) = {0}, thus L(B(L)) = R*.

Proposition 5.15. If we restrict I from zero-dimensional ideals to L R-submodules such that
dimg (L) < oo we get a bijection.

Proof. If we denote L’ the restriction of L to zero-dimensional ideals, and B’ the restriction of B
to R-submodules with dimgL < oo:

!

{I C R,ideal s.t. Z(I) < oo} L, {L C R* R — submodule, s.t. dimg < 0o}
{L C R* R — submodule, s.t. dimg < oo} LN {I C R,ideal s.t.Z(I) < oo}

For the previous proposition we know that I = B(L(I)) for every ideal I C R. In particular for
all I zero-dimensional ideal we have I = B (I.'(I)). Then, we only have to prove that L’ it is
surjective:

Let L C R* such that dimgL = p < 0o, then we define:

I'={f(@) eR:Af)=0VAe L}
I is zero dimensional if and only if for all ¢ € {1,....,n} K[z;] N I # {0}. If we fix i € {1,...,n},

then for all A\; € L for j = 1,...,p, {\j, 25 * )\j,x? % Aj, .., o8 % \j} C L because L is R-module
and is a set linearly dependent.Then for all j € {1,..., u} there exists n; such that:

N I e s 4l 2 J by -
x) x Nj = agj + a1z + apxi. 4 apr; x A

If we take,

J

filxs) = x?j —al — a T — aéxQ J

R, P 1
% CLNIE

Then we get fj(x;)*A\j = 0for all j = 1,..., u, and if we define g(z;) := m.c.m(fi(x;), ..., fu(zs))
then we obtain \;(g(z;)) = 0 for all j = 1,..., u. Therefore Klz;] N1 # {0}. O

These results motivate the following definition:
Definition 5.16. Let I be an ideal of R, then the orthogonal of I, is the following vector-subspace:
It :={A c R*;Vpec I,A(p) =0}

And for all vector-subspace D of R*, then the orthogonal of D is the following vector-subspace:
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Dt :={pe R VYA€ D, A(p)=0}
Proposition 5.17. Let I be an ideal of R, then I+ is isomorphic to A* = (R/I)*.

Proof. Let 7 be the projection of R on A = R/I. The map:

Tt A* — T+
A—Aorm

is an isomorphism of K-vector spaces:

Clearly, it is well defined, moreover, if I'1,I'y € A* and aq, as € K: 7w (a1 + aol’s) = (a1 +
aglo)om = () o+ (aele) om = ag (T o) + ag(Ty o ) = ayme (1) + aomy(T'2). Therefore,
T, i an isomorphism of K-vector spaces. Clearly it is injective. Also, m, is surjective, since: let
I e I' then I'(p) =0 for all p € I and T € R*, then if we restrict I' to A*, and we denote it I,
then 7, (I'") =T O

Definition 5.18. The vector-space L of R* is stable if for all A € L:
zixNe (L) fori=1,..,n
This definition allows us to obtain the following lemma:
Lemma 5.19. D = (A, ..., A,) is stable iff D is an ideal.
Proof. If we assume D stable then for all p € D+ and foralli=1,...,n,j=1,...,s

Aj(xip) =z % Aj(p) = Dp_1 NijeAr(p) =0

(A\iji € K) then a;p € D+ for i = 1,...,n then Dt is an ideal.

If we assume D as an ideal then for all p € D+ and i =1,....,n x;p € D+ thusforall j =1, ..., s
Aj(xip) = xjA;(p) = 0. Therefore, x; x Aj € D = D. The last equality it holds true because
D is a K-vector space with finite dimension. O

5.3 Inverse system of a single point

we are in the case where the ideal I C R defines a single point, 0 € K. And we denote mg to
the maximal ideal defining 0. We will compute the local structure of I at 0.

Proposition 5.20. If I is mg-primary then I+ C K[0]:

Proof. There exists N € N such that mév C I C my, and then ¢ € I with |a| = a1+...4+a;, > N.
Thanks to 5.2 for all A € I+ can be written:

A=3henn %A(Ta)ga
but A(z%) = 0 for |a| > N, therefore:
A= ZaGN”;|a\<N %A(fa)ga € K[g]

Corollary 5.21. If I is mg-primary then I+ C K[5¢]

Proof. 1t follows from the bijection between K[[0¢]] and K[[0]] O
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Remark 5.22. If I is a mg-primary ideal and dimg(R/I) = p, where p is the multiplicity of
the root, thus I is a vector space with dimension equal to L.

It is difficult to work directly with a mg-primary ideal. The following result is for ideals having
one mo-primary component.

Theorem 5.23. Let I be a zero-dimensional ideal of R and Qq its mg-primary component then:
(I NK[E])*" = Qo
Proof. We denote Dy = I'- N K[§] and we will prove Dy = Qg

As I C Qo then Qf C I+ since: for all A € Qg, A(f) = 0 for all f € Qo and in particular
for all f € I, then A € I+, On the other hand Qo C K[6] by the previous proposition, then
Qg C It NK[0] = Do.

Now, let us see the other inclusion Dy C Qé. To prove this we have to take into account two
properties:

1. Qo={f€R:dge€ R with fg € I and ¢g(0) # 0}

2. For all A € K[§] and for all g € R, (g A)(f) = g(D1, ..., On)(A)(f) = g(O)A(f) + (g —
9(0)) (81, .., Bn) (M) (f).

The first property means that Qg = I°°. And for the second property recall that proposition 5.3
states x; 0" = 9;(8°).

Let A € Dy we will argue by induction on the degree of A: If A has degree 0, then A is a
scalar, exactly A = (ev(0)) .For all f € Qo, there exists g € R with fg € I and ¢g(0) # 0 then
A(fg) = 0 = ev(0)(fg) = F(0)g(0) then 0 = £(0) = ev(0)(f) = A(f) and A € Q. Now, we
assume it is true for degree less than d. Let A € Dy of degree d and f € Qo then there exists

g € R such that g(0) # 0 and fg € I: A(fg) = 0 = g(0)A(f) + (9 = 9(0))(D1, -, On) (M) (),
but A" := g — ¢(0)(01, ..., 0n)(A) is either zero if g = ¢g(0) or it has smaller degree than A then

A(f) =0and A € Qf. Then Dy = Qg due to Qo is a zero-dimensional ideal, D = Qg+ =
Qo = (I* NK[§))*. O

Corollary 5.24. Let I be a zero-dimensional ideal of R and Q¢ its me-primary component then:

(I NK[oe])* = Qe
Proof. Tt follows from the bijection between K[[5¢]] and K[[4]] O
Theorem 5.25. (Structure theorem).Let I be an ideal such that Z(I) = {&1,...,&a} then:
1L _ L 1
I'=Qta..0Q

where Q¢, s the mg,-primary component. Moreover, for all A € It there ewists p; (01, ...,0n) for
i =1,...,d such that A can be written as:

A=Y "ev(&)opi(D) (5.3)
=1
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Proof. As I = Q¢,N...NQg¢, then thanks to the properties of the operator L, I+ = Qé ﬂ...ﬂQg;
Qé + ...+ Qg; Moreover, for i, ...,i, € {1,...,d} and i # i1,...,7p, Qi + (Qiy N ... N Q) =
then: Qi N (Qf + ... + Qf;) = R+ = {0}, therefore we have a direct sum:
1 _ Nl 1L

I =Qg & ... Qg

and by the corollary 5.24:
It =Q ®..®Qg, = (I" NKPg,]) @ ... & (I NK[d,))
then for all A € I+:
A =ev(&)op1(0) @ ... ®ev(Ey) o pa(0)

29

i=v il
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Chapter 6

Gorenstein Algebras

This chapter is a brief look at some properties of the Gorenstein Algebras. All the results of this
chapter are taken from [4].

Lemma 6.1. If I1,I5,1 are ideals of A, which is a commutative and unitary ring, then:

. 7,) (I:Il)ﬂ(lifg):(llfl—i-fz)

. ’L’L) If I1 + 1o = A, then (I : Il> + (I : IQ) = (I - ﬂIQ)
Proof. 1) Let x € (I : 1) N (I : Iz) then, 2I; C I and zly C I, then: (I 4+ I3) C I, therefore
x € (I:I; + I). Reciprocally, let x € (I : I} + I2), then zI; + x> C I, in particular 0 € I; and
0 € I, then xI; C I and zly C I, therefore z € (I : 1) N (I : I2).
ii) Let us prove that (I : L1 NIy) C (I :11)+ (I : I3): as I1 + Is = A, there exists ¢1 € I and
g2 € Iz such that 1 = q1 + qo. If x € (I : Iy N I3), then x(I1 N 1I3) C I as I11s C I} N I then
x(I1I3) C I, then xq1ls C I, xgely C I and as * = xqy + xqo then x € (I : I1) + (I : I3). The
other inclusion is immediate. O

Theorem 6.2. If A = R/I where I is a zero-dimensional ideal, with the following primary
decomposition I = Q1N ...NQq. Then A is a direct sum of sub-algebras Ay, ..., Aq ':

A=A1D..0 Ay
where A; == (0: Q;/I) ={a€ A:qa=0 for all g € Q;/I}

Proof. For all i € {1,...,d} and D C {1,....d} — {i}, Qi + NjerQ; = K[z]. Thus, due to lemma
6.1, we have:

A1 + ...+ Ad =
(6@1)4—+(6Qd):(ﬁQ1ﬂﬁQd/I):(ﬁﬁ):A
In order to prove, that the sum is direct, since: let i € {1,...,d — 1}:

(A1 +...+Ag) NAi = ((6 /D) + ...+ (67 Qq/I))N (6 FQit1) = (6
(@1N...N@i) + Qiy1)/I) = (0: R/I) =0.
Definition 6.3. Let A = R/I where I is a zero-dimensional ideal, then there exists a unique
(e1,....,eq) € A1 @ ...® Ag = A= R/I such that:

!Strictly speaking A; are ideals of the ring A whose identity element is 1 = e; + - - - + eq. But, A; can be seen
as sub-algebras whose identity element is Ae;.

31
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l=e1+...4+¢g
e; for i € {1,...,d} are the idempotents elements of the algebra A.
Remark 6.4. 622 =¢; and e;ej =0 for i # j since:
l=e1+..+eg=12=¢f + ...63 + 221§i<j§d eiej
and A;NA; =0 fori#j.
Proposition 6.5. Let A = R/I with I an ideal zero-dimensional such that A = A1 @& ... D Ay.
Then A; = Ae; for all i € {1,...,d}.
Proof. Let a € A;, and 1 = ey + ... + ¢4, then as A, N A; = 0if ¢ # j,
a=aer + ... +aeqg = ae; € Ae;
Reciprocally, if ae; € Ae;, then a € A and e; € A;, in particular A; is and ideal of A, thus
ae; € A; O
Definition 6.6. Let A be an algebra such that dimgA < oo, then A is a Gorenstein Algebra if
A* is a free module of rank 1.

Proposition 6.7. If A= R/I is a Gorenstein algebra then the local subalgebras A;, i =1,...,d
are Gorenstein algebras.

Proof. If we assume A is a Gorenstein algebra then there exists A such that: A* = Ax A and we
can define:

Ai: Al — K
ye; — A(ye;)

Then we have A; x A; = A}, since: for any ¢; € A}, we define ¢ € A* as follows:

p: A— K
x> oi(xe;)

As A is a Gorenstein algebra, then there exists a € A with ¢ = a * A. And then, we have
¢; = ae; x A;, since: for any z € A;, there exists y € A such that z = ye;, then:

(aeq x Ag)(ye:) = Ai(yeiae;) = Ai(yeia) = Ayeia) = ax Aye;) = d(yei) = di(yeies) = ¢i(yes)-
O
Definition 6.8. The linear form A such that A« A = A* s the residue of A.

Remark 6.9. If A is a Gorenstein algebra and A is a residue of A then N; = e; % A is a residue
of the sub-algebra A;.



Chapter 7

Hankel operators and quotient algebra

In this chapter, we recall the Hankel Operators, the quotient algebra and its necessary properties,
to describe and analyze the final algorithm. We refer to [1] for the results in this chapter.

Definition 7.1. For any A € R* we define the bilinear form Qp, such that:

QA ‘R—K
(@, b)— A(a,b)

The matriz of Qa, in the monomial basis of R, is Qa=(A(z*P)), pa, B € N™.
Definition 7.2. For any A € R*, we define the Hankel operator Hy from R to R* as

HA R—R*
p—pxA

The matriz of Ha, in the monomial basis and in the dual basis, d_, is Ha=(A(z%)) a0, B €
N™.

In what follows we identify Hy and Qp, since, for all a,b € R, due to the R-module structure, it
holds:

Qa(a, b)=A(ab)=(a x A)(b)=(bx A)(a)=Hx(a)(b)=Hx(b)(a).
Definition 7.3. Given B = {by,..,b.}, B = {by,...,b,} C R we define:
HPP () — (B')

This operator applies each element b; € (B) to the form b; x A € R* and then, thanks to <B/>

C R*, we can restrict by x A to <B/>. Let HE’B = (A(bib;))l <i<r1<j<r.IfB=B, we

use the notation Hf and Hf B

Proposition 7.4. Let Iy be the kernel of Hy. Then, 15 is an ideal of R

Proof. From the definition of the Hankel operators, we can deduce that a polynomial p € R
belongs to the kernel of Hy if and only if p x A=0, which in turn holds if and only if for all ¢ €

R, A(p, q)=0.
Let p1,p2 € In. Then for all ¢ € R, A((p1 + p2)q)=A(p1q) + A(p2q)=0. Thus, p1 +p2 € Ix. If p
€ Iy and p' € R, then A(pp/q)zo holds for all ¢ € R. Thus, pp' € I and I, is an ideal. O
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Let A\=R/I, be the quotient algebra of polynomials modulo the ideal I, which, as Proposition
7.4 states, is the kernel of Hp. The rank of Hy is the dimension of Aj as a K-vector space.

Proposition 7.5. If rankHy =1 < 0o ,Ax = R/I is a Gorenstein algebra.

Proof. In order to see this, let us see that the dual space A}, can be identified with the set D =
{gxAst.geR}:

By definition D+ = { p € Rs.t. Vq € R, ¢ *x A(p) = A(pq) = 0 } . Therefore, D+ = I, which
is the ideal of the kernel of Hx. Since A} %“I/{ by 5.17, Ap is the set of the linear forms in R*
which vanish on Ij, we deduce that A*:I/{-:DJ—l:D. The last equality is true because D is a
submodule of R, which has finite dimension equal to r like K-vector space, since rankHpy = r <
00.

Moreover if p x A=0 then p =0 in Aj. Hence, A} is a free rank 1 Ax-module (generated by A).
Thus Ap is a Gorenstein algebra. O

Definition 7.6. For any B C R let BT= BU 1B U --- z,B and dB=B"-B.

Proposition 7.7. Assume that rank(Hp)=r < oo and let B={by,...,b;} C R such that HY
is invertible. Then {b1,...,b.} is a basis of Ax. If 1 € (B) then the ideal I is generated by
Keer+.

Proof. First we are going to prove that (b1,...,b,) N I = {0}. Let p € (b1,...,b,) N Ix.
Then p=Y_, p;b; with p; € K and A(pb;)=0. The second equation implies that HE-p=0, where
p=[p1, ..., pr]' € K. Since H¥ is invertible, this implies that p=0 and p = 0.

Then we deduce that by x A, ..., b, x A is a set linearly independent since otherwise there exists
[f1y ey por] # 0 such that p;(by* A1)+ ...+ pr (b x Ay) = (11 + ... + (b)) * A = 0 but this is not
possible because (b1, ...,b,) N Iy = {0} and we have a contradiction. Hence, since rank(Hp)=r,
{b1 % A,...,by * A} span the image of Hy. For any, p € R, it holds that pxA=>""_, u;(b; * A)
for some fi1, ..., pur € K. We deduce that p — > uib; € In. This yields the decomposition
R=B®I,, and shows that b1, ..., b, is a basis of Ajy. O

Example 7.8.

Let 7 = §% 4 §% 4 6% € Kz, z2, x3]* where oy = (1,0,0),a2 = (0,1,0),a3 = (0,0,1),a4 =
(2,0,0),a5 = (0,2,0),a6 = (0,0,2), and ag = (0,0,0). We are going to compute the infinite
matrix of H., from the basis (T)aenn to the basis (6%)aenn. In order to do this, we realize that:

T T = 20% 22 % 7 = 269
Tox T = 28%2, 2% % 7 = 269
z3x T = 20, 23 x 7 = 280

and for any monomial m, non-constant different from {x1, zo, z3, 2%, 23, 23}, we have m 7 = 0,
therefore the matrix H, has a finite number of non-zero entries:
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8
_
3
o
8
99
8
—
8
OO
8
N

gon
§°2
5o
§ou
5o
§oo

o0

(7.1)

OCNNNOOO O
ooooooool&%

OO OO O o NO
SO OO O NO O
SO OO NO OO
OO OO OO o
OO OO OO OoON

Clearly rank(H;) = 5, and the set B = <1,$1,x2,x3,x%> makes HP invertible, then by the
previous Proposition 7.7, B is a basis of A, and by the Proposition 7.5, A, is a Gorenstein
Algebra. Moreover, 1 € B, then the ideal I is generated by <Ker(Hf+)>. By computing this
kernel, we get; f € I, if and only if f can be written as f = a(z? — 23) + b(2? — 22) + c(2172) +
d(x123)+e(zaws)+ terms of degree greater or equal to 3 where a, b, ¢, d, e are constant. Therefore
IT = ($% — .’ﬁ%, IE% — $§, xr1T2,T1X3, IQ(Eg).

The procedure followed by the example gives us a way to build Gorenstein Algebras: given a
polynomial p; € K[y, ...,0,], compute the ideal I € K[z, ..., z,] orthogonal to p; and the quo-
tient algebra K[z, ...,x,]/I is a Gorenstein Algebra.

In order to compute the zeros of an ideal Iy when we know a basis of A, we exploit the properties
of the operators of multiplication in Ajy.

Definition 7.9. Let A € R* and a € Ay, with dimg(Apx) = r < o0, and let (T%)acp, the
monomial basis of Ax. The operator of multiplication in Ay is:

Ma.' AA—> AA
b—s M,(b) = ab

The matriz of My, in the basis (T%)qep will be denoted M.
Proposition 7.10. The transposed endomorphism of M, is:

Mt: Af—s A%
A— My(A) =axA=AoM,

The matriz of M. in the basis (Ea)aeE is the transpose of Ml,. Therefore, the operators M! and
M, have the same eigenvalues.

Proof. for any T € (T)qep, then aT can be written as:

az™ = Z Moo (7.2)
ack
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the matrix M, is:

Hayar  Hasar 0 MHaron

Haras Hazas " Harao
M, =

Hajar Hasar 0 Harar

Therefore, for any element d**€ (d*)acr (the dual basis of (2*)acp) a*d ' can be written as:
axd’ = Y e 0¥ d¥(z)d" = Y acE d* (az)d" = Y acE oo, d

The last equality is due to in 7.2 the component ;-th of aZ® iS fiqq,-Then the matrix of M in

the basis (d)acg is:

Hayay  Hajas 0 MHajor
MZ _ Hazoy  Hazez " Hagar
Haroy  Haraz  *° Harar
Therefore, M is the transpose of M. O

Theorem 7.11. Let Z(Ip)={&1,...,&q} the variety defined by the ideal I :
e i) If a € K(T), then the eigenvalues of the operators Mt and M, are a(&1),...,a(€q). In
particular, the eigenvalues of M,,, i =1,...,n, are the ith-coordinates of the roots {1, ..., &q4.

e i) If a € K(T), then the evaluations ev(&1),...,ev(§y) are the eigenvectors of the operators
M respectively associated with the eigenvalues a(&1),...,a(€q) . Moreover, these evaluations
are the only eigenvectors common to all endomorphism MY, a € K(z).

Proof. i) Let i € { 1,...,d }. For any b € Aj,

(M (ev(&))) (b)=ev(&) (ab)=(a(&)ev(&)) (D)

this proves that a(&;),...,a(£y) are the eigenvalues of the operators M! and M,. Moreover, the
ev(&;) are the eigenvectors of M! and common to all endomorphism M.

Reciprocally, any eigenvalue of M, is a(&;):

Let p(Z) = [l¢ez(1,)(a(@) — a(§)) € K(Z) this polynomial vanishes over Z(Ix). By the Hilberts
Nullstellensatz, there exists m € N such that p™ € I. If I designates the identity on Ay, , then
the operator p™ (Ma) = [[¢c z(1,)(Ma — a(§)I) is null, and the minimal polynomial of M, divides
t0 Jleez(1,) (T — a(§))™. Therefore the eigenvalues of M, are a(&;), with & € Z(Ia).

ii)Let A € A, an eigenvector common to all endomorphism M!, a € K(Z). If y=(y1,..., ) €
K™ satisfies Mil =~; A, with i=1,...,n , then any monomial T satisfies:
(M, (M) (@)*=A(2:7) =7 A(T)
Then for any a=(ay, ..., ap) € N,
AEY) =" - A(L) = A(Lev(y)(T?).
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Therefore A=A(1)ev(y), since A € Ay=I3, A(p) = A(1)p(y) = 0 for any p € I. Since A(1) # 0,
v € Z(Ip) and ev(y) € Aj. O

Theorem 7.12. If rankH) = r < oo ,then:

o i)A\ is of dimension r over K and the set of roots Z(In) = {&1,..,&q} is finite with d <r.

e ii)There exists p; € K[01,..,8,] such that A = S0 ev(&;) o pi(@).
Moreover, the multiplicity of &; is the dimension of the vector space generated by ev(&;) o
pi(@).

Proof. 1)Since rank(Hy) < oo the dimension of the vector space Ay = R/I is also r. Thus, let
us see that, the number of zeros of the ideal Iy, denoted {&1,..,&4}, is at most r, with d < r:
If r is the dimension of the K-vector space Ay, then for any i € {1,...,n}, {1,z;,22,..., 27} is a set
linearly dependent of Aj. Then, there exists, co, ..., ¢, € Ksuch that, ¢;(z;) = co+cr1zi+...+¢,z]
€ Ip . For any i € {1,...,n} the ith-coordinates of the zeros of Z(I), are roots of ¢;(z;). Thus,
if & € Z(Ip) then ¢;(&;,) = 0 and like ¢; has at most r roots, |Z(Ip)| < 7.

ii) We can apply the structure theorem 5.3, in order to get the decomposition since obviously
Aely: Aelyif A(p) =0forall p € Iy but Iy = kerHp then px A = 0 for all p € I, in
particular p * A(1) = A(p) = 0. On the other hand, we saw in the proof of the proposition 7.5
that A is the residue of Ap, then by the proof of 6.7 and due to the decomposition is unique,
pi(0) o ev(&;) is the residue of the sub-algebra Qé that is, (p; o ev(&;)) * le = (Qé)*, where Q¢,
is the component mg,-primary of I5. Therefore, the dimension of the vector space generated by

pi(0) o ev(&;) is the multiplicity of &;. O

Remark 7.13. If the field K is of characteristic 0, the inverse system ev(&;)op;(@) is isomorphic
to the vector space generated by p; and its derivatives of any order with respect to the variables

0;

Definition 7.14. For f € Sy, we call generalized decomposition of f* a decomposition such that
= Z?Zl ev(&;) o pi(@) where the sum for i = 1,...,d of the dimensions of the vector space
spanned by the inverse system generated by ev(&;) o pi(@) is minimal. This minimal sum of the
dimensions is called length of f.

Remark 7.15. The length of f* is the rank of the corresponding Hankel operator Hy.

Theorem 7.16. Let A € R*. A =37 | Nev(&) with N\; # 0 and & distinct points of K™, iff
rankHx = r and In 1s a radical ideal.

Proof. T A =37 Aev(&1), with A; # 0 and &; distinct points of K. Let {ey, ..., e, } be a family
of interpolation polynomials at these points: e;(§;) = 1 if i = j and 0 otherwise. Let I¢ be the
ideal of polynomials which vanish at &1, ...,&,, which is a radical ideal. Clearly we have Iz C Ix:
let p € I¢ then p(&) =0 for any i = 1,...,r and A(p) = D7, A\ip(&) = 0 thus p € Ia. Let us see
that In C I¢: for any p € I, and i = 1,...,7, we have p x A(e;) = A(pe;) = \ip(&) = 0, which
proves that Iy = I¢, and I, is a radical ideal. And the rank(H,) = r because the quotient Ax
is generated by the interpolation polynomials ey, ..., e,.

Conversely if rankHy = 7 and I is radical, then by the previous theorem A = Y7 ev(£)op;(9),
and due to the multiplicity of £ is the dimension of the vector space spanned by the inverse system
generated by ev(§) o p;(@) the multiplicity of & is 1 and the polynomials p; are of degree 0. [J
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Proposition 7.17. For any linear form A € R* such that rank Hy < oo and any a € Ap, we
have:

Haun(p) = M o Hx(p)
Proof. Hyup(p) = ax* (px A) = M! o Hy(p) O

Using the previous Proposition and Theorem 3, we can recover the points §; € K" by eigenvector
computation as follows:

Assume that B = (b1, ...,b,) C R with |B| = rank(H,) and HY invertible, then by the previous
proposition, Hg.p(p) = Mt o Hy(p). Then by the theorem 7.11, the solutions of the generalized
eigenvalue problem:

M (HRBv) = AHSv if and only if (HZ , — AH,)v =0

for any a € R, yield the common eigenvectors HYv of MY, that are the evaluation ev(¢) at
the roots, i = 1,...,d. Therefore these common eigenvectors Hf’u are up to scalar, the vectors

[bl(fi), ,br(fl)] (Z = 1, ...,d), since:

If the dual basis to the basis (b1, ...,b,) is (B)" = (§',...,6") then for any A € A*:
A = A(b)S" + ... + A(b)07,
particularly :

ev(&) = b1(&)8" + ... + br(&)d,

then the vectors [b1(&;), ..., br(&)] for i = 1,...,d are the eigenvectors ev(&;) in the basis (B)”.
Notice that it is enough to compute the common eigenvectors of Hj,.a for ¢ = 1,...,n. Once the
common eigenvectors ev(&;) for i = 1,...,d have been computed, in order to recover the points
& € K" for i =1, ...,d, it is necessary to compute the eigenvalue of Hy . for j = 1,...,n which
is the j-th coordinate of the point &;.

Particularly if A = Z?:l Xiev(&;) (A; # 0), then the roots are simple, and the computation of
the eigenvectors of one operator M, for any a € R is sufficient, since: for any a € R, M, is
diagonalizable and all the eigenvectors Hf v are, up to scalar factor, the evaluations ev(§;) at the
roots.



Chapter 8

Truncated Hankel Operators

As we saw in the section "Decomposition using duality", our problem of symmetric tensor de-
composition can be restated as follows:

"Let Ap« € R} find the minimal number of non-zero vectors ki, ..., k, € K" and non-zero scalars
Ay, Ar € Kisuch that A =7 Njev(k;)".

Then by virtue of the Theorem 7.16, A = >\, Aiev(k;) with \; # 0 and k; distinct points of K"
if and only if rank(Hy) = r and I, is a radical ideal.

In this section, we characterize the conditions under which Ay« € R}; can be extended to A € R*
when the rank of Hp is r. To get this result, first we study how to parametrize the set of ideals
I of R such that a given set B of monomials is a connected basis of the quotient R/I.

Lemma 8.1. Let B C R a finite set of monomials connected to 1. For z € KN:=IBIXI0B| 4
define the linear maps, fori=1,...,n:

such that:

B B x;b if ¢; € B;

And we define also the following subsets:
VE = {zeK": MP(z)o MP(z) - MP(z) o M (2)}
and
HP = {I C R ideal : B is a basis of R/I}
Then HE is in bijection with VB,
Proof. We define the following application:

¢: HP — VB
I — z

39
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where Z = (24.8)acoB,pep is defined as follows: for all &« € OB we get 2z, 3 due to the unique
decomposition of % on B module I, that is:

% = ZBEB za,ﬁfﬁ
This application is well defined because R/I has structure of commutative algebra. We will show
that ¢ is injective. In order to do this we only have to prove that ({ho(Z)}acon) = I, where for
all « € 0B:
ho(T) =T = Y sc p 20 57"

It is easy to see that ({ha(T)}acon) C I. Reciprocally, we will show I C ({ha(Z)}acon). We
define for all P = 27 a7 € R the following application:

P(M): (B) — (B)

where P(M) =3, ay(MB(z))Y and (MB(2))? ;== MB(z)"o...o M (2)7". Asthe multiplication
operators commute the application is well defined. Note that P(M)(1) is the decomposition of
P in the basis B on R/I as K-vector space of finite dimension. Then we will prove by induction
on the degree of P, that:

P —P(M)(1) € {ha(T)}acon)
We can assume P is a monormial, due to the linearity of the operators.

o If P =k with k a constant, then it is clear that P—P(M)(1) = k—k =0 € ({ha(Z) }acon)

o If we assume it holds true for degree N. Let us see that for P of degree N + 1 it holds
true also. We can write P = 2;P with P of degree N. And we want to prove that
;P — P(M)(1) € ({ha(ZT)}acop). In order to prove this, we write:

xi P — P(M)(1) = z;(P" — P'(M)(1)) + ;P (M)(1) — P(M)(1)

By induction hypothesis we have P' — P (M)(1) € ({ha(T)}acon), thus we only have to

prove that:

2P (M)(1) = P(M)(1) € ({ha(®)}acon) (8.1)
where P = z;P". We will prove 8.1 by induction with respect to the distance from P’ to
the border:

— If P’ € B then either z;P’ € 8B or 2;P € B:
* If :ciPl € B then:

/

o @ (M)(1) = P(M)(1) = 2P —2;P" =0 € ({ha(T)}acon)
x If x; P € OB then:

/

ziP'(M)(1) = P(M)(1) = 2:P" = Y 5cp 2, pr 577 € ({ha(T)}acon)

— Assume 8.1 holds true for monomials P’ such that the distance from P’ to the OB
is less than or equal to 7, that is, for monomials P' = z]*...z"b, where b € B and
71+ o+ | =1
We are going to prove that it holds also true for monomials R’ such that the distances
to OB is less than or equal to n+ 1. Namely, let R’ = z;x]" ... 2)"b, then we want to
prove that, z;R (M)(1) — R(M)(1) € ({ha(Z)}acsn), Where R = z;R'. We have:

/

xR (M)(1) — R(M)(1) =
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zi(MP(Z)oMP (z)"o...oMP (2)7)(b)—(MP (2)oMP (z)oMP (z)7 o...oM} (2)7)(b) =

MP (Z)xi(MP (Z)7 0.0 M7 (2)7)(b) = M (2) (M (2) o M (2) " 0.0 M7 (Z) ) (b) =

MP (Z)[xi(MP (Z)7 o ..o M7 (2)7)(b) — (M (2) 0 M (2)" ... 0 M7 (2))(b)] =

MP (Z)[w:P (M)(1) = P(M)(1)] = 0 € ({ha(T)}acon)

The last equality is due to by induction hypothesis: z; P (M)(1)—P(M)(1) € ({ha(T) }acon);
and moreover (ho(T)}acop) C I and B is a basis of R/I.

Thus P — P(M)(1) € ({ha(Z)}acon)-

Therefore, if P € I, P € ({ha(T)}acon). And, finally, I = ({ha(Z)}acon) and ¢ is injective. In
order to prove, ¢ is surjective, we are going to build the application J such that ¢(J(%z)) = Z for
all 7 € VB, Let 7 = (20.8)acon e € VP, and we define the following application:

oz: R — (B)
P — P(M)(1)

It is well defined since the multiplication operators (M (%))1<i<, commute. Then, we can define
the following application:

J: VB o HB
zZ +— ker(oz)

It is well defined since for all Z, J(Z) = ker(oz) is an ideal due to oz is a ring homomorphism.
Moreover, as for all b € B, b(M)(1) = b, the application oz is surjective , then R/J(Z) = (B).
Thus, J(2) € HB, and for all a € B, T = Z,@eBza,ﬁf’B module J(Z), then ¢(J(Z)) =
Therefore ¢ is a bijection.

Z.

O

Definition 8.2. Let B C Ry a set of monomials of degree at most d, and let A € Ry, the Hankel
matriz HE (h) is the matriz defined as follows:

HE (R) (@) = { ;l\jﬁ) if |v] < d;

in other case.
where hy is a variable, and h is the set of new variables. We will denote by HB(h): (B) — (B)"
the linear form associated to the matrix Hf(h) mn the basis B.

Definition 8.3. Let A € R} such that HE (R) is invertible in K(h), that is the rational polynomial
functions in h and B C Ry a set of monomials. We define the multiplication operators:

ME (h) == (HE (h) ™" Hyen (h)

Remark 8.4. With the previous definition of the multiplication operators we have: for all i €
{1,...,n} and for all h € KV (for some N € N):
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Notation 8.5. For any h € N (for some N € N) we write:

hEa#»B = h()é+ﬁ
We are going to need the following property on the basis of A,.

Definition 8.6. Let B C R a set of monomials. We say B is connected to 1 is for all b € B
either b =1 or there exists a variable x; and b € B for i =1,...,n such that b = z;b .

Theorem 8.7. Let B = {z7,...,7%} be a set of monomials of degree at most d, connected to
1 and let A be a linear form in (BB%)_,. Let A(h) be the linear form of (BBT)" defined as
follows: B

_ A@Y) if Iy| < d
,.y o )
A(h) (@) = { h~ in other case.

where h, € K is a variable. Then A admits an extension A € R* such that Hy is of rank v with
B a basis of Az if and only if there exists a solution h for the following problem:

o MP(h)MP(h) — MP(h)MFP(h) =0, (1<i<j<n)
o det(HB(h) #£ 0.

Moreover, for every solution hoy € KN an extension such A = A(hg) over (BB*) is unique.

Proof. If there exists A € R* which extends A with H 5 of rank r and B a basis of A;. We define

7’ e KN (for some N € N) as follows:
for all ¥ € (BB™) and |y| > d:

hY = A(T7)

then A(EO) = A over (BB™) and Hf(go)

is invertible and then A(h") is invertible. Therefore we can define the multiplication operators:

= Hf but mnk(HK) = r and B a basis of HK then HT\

MP(R0) = (HR (h0)) ™" Haa (h°)

then:
— — HP () (HB(h0))~1 HE _,\ (h0) (HB(h0))~1
B B . * A Ti* * A
MPROYMP(RO) - (B) = (B) — (B) — (B) — (B)
b — xjb* A — z;b — x;xjb*x A — x; ;b

as Ap is a commutative algebra for all b € (B) = Az, wizjb = xj2;b and:

MP(h0)MP (h0) — M (h°) MP (h0) = 0
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Thus 7" is a solution of the problem.

Reciprocally, if there exists 7’ e RV (for some N € N) such that the multiplication opera-
tors commute. By the theorem 8.1, there exists a bijection between the variety, VZ := {h :
MP(R)MP(h) — MP(h)MP(h),1 < i < j < n} = 0 and the set H? := {I C R: R/I is a
free R-module of rank p < oo and B as basis }. Therefore, there exists a unique ideal I C R
generated by the set border relations:

K = {T% = Y scp hatsT’ Vo € OB} = {xib— Y 557" V1 <i <nand Vb€ B} =
{z:ib— MB[R")(b)V1 < i< nand¥be B} !

such that R = (B) @ I, where I = (K). We define A € R* as follows:
¥p € R Alp] = A(R)[p(M)(1)]

where p(M) is the operator obtained by substitution of the variables x; by the commuting
operators M;, then p(M) is the operator of multiplication by p module I.
If pe I, for any ¢ € R then:

0

~ —0
Alpg] = A(h7)[0 - q(M)(1)] =0
then I C KeHj.
We will prove by induction on the degree of b’ € B:

AR =A@

ho)[b (M) (b))
for all b € B.

o for b =1 A(R)[b] = AR )[L(M) ()] = A(R)°[18] = A(R")[b]

o if b # 1 as B is connected to 1 then b = xib" for some variable z; and some element
b’ € B. By construction of the operators M} (EO) and for all b € B:

AR)'0) = AR " 2:0) = AR )" MP(R")(0)].

By induction hypothesis and as b has smaller degree than b for all b € B we have:

ARB'b) = AR

ho)[b" (M)(0)]

In particular, M7 (EO)(b) € B then:

as b = xib”, thus:

AR (M) o MP(R)(b)] = AR

Therefore:
AR)[b'0) = AR [ (M) (b))

On the other hand, let b™ € BT, there exists 1 < i < n and b € B such that z;b = b™. By
definition :

b(M)(1) = b for all b € B.

!Note that in the lemma 8.1 we write 24,5 and in this case it is convenient to write 2o
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Then for all b’ € B:
A0+ = AR 2:0] = AR )[B' ME (R") (b)) = A(
Then for all b € B and bt € Bt

BB ME (R ob(M)(1)] = AR")[B'bH(M)(1)].

AR [pbT] = AjbbH].

Therefore, A(EO) = A over (BB*) and A is an extension of A.And det(HKB) = det(Hf(EO)) # 0.
Then we deduce that B is a basis of AT\ and Hy has rank r.

Suppose there exists another A° € R* which extends A(h) € (BB*)" such that rankH, = r
with B a basis of H,:. By the Proposition 7.7:

+
I, =kerH, = (keer,BJr) = (keerB )= IK

therefore A" = A because A’ coincides with A on B. O

Example 8.8. If we have the following A(h) defined over (B.BT) with B = (1,1, x9,x3,2%)
and B C R := K[z1, 22, z3] such that:

A@Y) if |y <4
b in other case.

A = {

where the matriz HZB(R) is:

8
—
=
N
8
w
8
_

HYP (h) = | 12

OO OO OO oo

0
hs00
ha1o
hao1

8

[l

8

w
O OO N ONOONO OO O
O OO DD DD DD DO OO OO NNO
O O OO OO OO OO NOOoO
O OO OO OO OO NNO OO

We are going to compute h = (hsoo, ha10, hao1), in the case there exists solution, in the same

way that the final symmetric tensor decomposition does it, in order to say that A(h) admits an
extension A € R*:

The second condition of the previous theorem is satisfied by HE(h) since det(HZ (h)) # 0 and:



45

(HE(h) ™" =

O O O O
S O o O
O OO O
o O O O
S O O O

Also we need that the multiplication operators commute, in order to do this we compute the

- B B B .
matrix H7 B4 H A

0200 0
2000 0
Hypsa(R)=1 0 0 0 0 0
0000 O
0 0 0 0 hsoo
0020 O
0000 O
Hysn(h)=| 2 0 0 0 0
0000 O
0 0 0 0 haip
0002 0
0000 O
Hypsa(R)=1] 0 0 0 0 0
2000 0
00 0 0 hyn

We compute the multiplication operators:
MP (h) = (HF (1))~ Hy,en ()
and we form all the possible matrix equations:
B(F\A/B(% B(F\NB(P) — S
M7 (h)M7(h) — M7 (h)M;?(h) = 0,1 <i < j<3)

Then we get (g) equations whose solutions are hsgg = h410 = h4o1 = 0. Then by the theorem

8.7, A(h) admits an extension A € R*. Moreover, for this solution the extension is unique, and
for h = (0,0,0), we have H/]\33+(h):lLﬂ_BB+ where 7 = §% + §? + §*3 defined in the example
7.1,then A = 7.

Theorem 8.9. Let B = {77, ...@ﬂ’“} be a set of monomials of degree at most d, connected to
1, and let A € (BYB*)_; and A(h) € (BTB™)" defined as follows:

A@Y) if < d;
h

oy in other case.

ABE) - {
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Then, A admits an extension A € R* such that Hz is of rank v, with B a basis of Az if and only
if there exists a solution h to the problem:

e i) All (r+1) x (r+ 1) minors of H/]\3+(E) vanish.
e i) det(HP)(h) #0

Moreover, for every solution ho € KN an extension such A = A(ho) over (B*B™) is unique.

Proof. 1f there exists A € R* extension. We define B’ e KM (for some M € N) as follows: for
all ¥ € (BT B™) such that |y| > d:

hg = A(Z7)
As Hj is of rank r and A3 has B as basis then all (r + 1) x (r + 1) minors of Hf+ = Hf(%o)
vanish and H?\B = Hf(go) is invertible. Thus 72" is solution for the problem i) and ii).
Reciprocally, if there exists 7’ € KN solution for the problem i) and ii).We define: 7' e KN
(N < M): for all ¥ € (BB™) and |y| > d:

1._ 30
hh = h)

We are going to prove that the multiplication operators (M} (El))i commute and then we apply
the previous theorem. In order to do this, we realize that for all b,b and for all 1 < n:

ARDIMERY) (b)) = AR ME R (0)] = AR )b ]

/

then:
AR (@b — MP R (0))] =0

Moreover, as all (r+1) x (r+1) of H f(%{?; vanish and H /]\3@0) is invertible, then:

17

A(RO)[(ib — MP (R (0))6"] = 0

for all b’ € B™:

AR ME R (B)D'] = AR [ibb”] (8.2)
for all b” € Bt.
Ifwefixbe Band 1 <i<j<n. We have:
ARHME®R') o ME®) (b)) = AR )ME(R') o ME(R) (b)) = AGR")[MP(R")(b)a;b). For all
b € B. By 8.2 we have:

ARDMER) o MP(R')(b)D] = AR’ 7’

)MBR ) (B)aib] = AR [xjba;b ]

Then we get:
AR MP R Yo MP (R B)B] = AR [zsba:d | = AR )aiba;b] = AR ) MPR )o MER') (b)V]
thus:

ARDMERy o MP(R)(0)6] = AR )MBR') o ME(R)(b)b]
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forall b € B. As HP _, = HB_, is invertible, we obtain:
A(h7) A(h7)

-1 | -1 |
ME (R o MP (h)(b) = M (h') o M (h)(b)
forallbe Band 1 <i<j<n. O
Example 8.10. Let B = (1) and A € (B")_ defined as follows:

A: (1) — K
1 — 1

Does A € (B)* admit an extension A € R* with Hy of rank r and B a basis of Az 2. And in the
affirmative case, is there unique?

First, we have:

then det(Hy )P =1 # 0. B
On the other hand, taking h = (hy, ..., hy,) € K", with:

1 T T - Ty
111 hy ha -+ hy
B+ T hl h% hlhg L hlhn
HA = T2 hg h2h1 h% hgnn
Tn | hy hihy ooc e h%

All the (2) x (2) minors of Hfﬂﬁ) vanish for all A € K™. Then by the previous theorem A admits
an extension A € (K[zy,...,z,])*. Note, that in this case the extensions are A = ev(hq,...hy).

Moreover, if we take for example h; = ... = h;, = 0 the extension is unique , and in this case is
ev(0, ..., 0) such that A(0,...0) = ev(0, ...,0) over (BT BT).

Proposition 8.11. Let B = {If, ,ff} be a set of monomials of degree at most d, connected
to 1. Then, the linear form A € <B+B+>;d admits an extension A € R* such that Hy is of rank
r with B a basis of A3 if and only if there exists h:

° i)

Bt . H G
HA(E) = < Gt ] ) (8.3)
where H = Hf@) and G = HW and J = WHW for some matric W e KIBI*I9B]
e ii) HB _ s invertible

A(R)

where A(h) € (BYBT)" is definided as follows:
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AiE) = { H @ TR

h in other case.

Proof. If there exists h, such that G = HW, and J = W!HW for some matrix W e K BIxI9B]
and det(Hf@) # 0, then:

B+ . H HW
Hym = ( WH WHW > (8.4)

H f(%) is of rank r and then & is a solution for the previous theorem, then there exists an extension

A € R* such that Hy is of rank r and B a basis of A3.
Conversely, if there exists an extension A € R* such that Hy is of rank r and B a basis of A3.

We define i’ € KM (for some M € N) as follows: for all % € (BT B™) such that a > d we have:

then ' is solution for the previous theorem, then rank:(]l—]lf(%o)) = rank:(Hf(EO)) = r. Let us

B+

decompose Hf(%o) as 8.3: we know that H¥ — is of the form:

A(h)
B oB
G
B+ . H
HY G = < G oI ) (8.5)

but, as rank:(]l—]lf(%o)) = rank(H) = r, then the image of G is in the image of H, then there exists

W e KIBIXI9Bl guch that G = HW. We realize that W € KIBIXI9B is the matrix of the following
map:

Qop: (0B) — (B)=Az//
which is the projection of the border in B, then we have , for all b, b € OB:
Albb'] = AlQ05(0)Q05(0)] = AR) Qo5 (b)Q05(0)].
Therefore:
J = WHW
O

Example 8.12. Let 7 = 67 + 63 + 03 defined as 7.1, let us see that can be decomposed as 8.3.
We have the following matriz:
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1 r1 T2 I3 ‘T% 1Ty X173 x% o3 l’% l‘z{’ x%xg l‘%l’g
1 10 0 0 0 2 0 0 2 0 2 0 0 0
zz |0 2 0 0 O 0 0 0 0 0 O 0 0
z2 [0 0O 2 0 O 0 0 0 0 0 0 0 0
zz [0 0O 0 2 O 0 0 0 0 0 0 0 0
2 /2 0 0 0 0 0 0 0 0 0 0 0 0
B riz2 |0 0 0 0 O 0 0 0 0 0 0 0 0
T ziz3 |0 0 0 0 O 0 0 0 0 0 O 0 0
r3 |2 0 0 0 0 0 0 0 0 0 0 0 0
230 0 0 0 O 0 0 0 0 0 O 0 0
z3 |2 0 0 0 0 0 0 0 0 0 0 0 0
3 |0 0 0 0 0 0 0 0 0 0 O 0 0
22250 0 0 0 O 0 0 0 0 0 0 0 0
22x3(0 0 0 0 O 0 0 0 0 0 O 0 0

with B = <1,x1,x2,x3,x%> basis of A; = R[x1, 32, 73]/ 1 and I, = (23—23, 2323, 2129, 1123, T273)
In order to compute W € KIBIXI195  we know that W is the matrix of the projection:

Qop: (0B) — (B) module L,

T1Tx2 X1X3 .T% T2I3 x% :L':{’ l’%xg :L‘%.%'g
1 0 0 0 0 0 0 0 0
wo | % 0 0 0 0 0 O 0 0
2| O 0 0 0 0 O 0 0
3| O 0 0 0 0 O 0 0
23| 0 0O 1 0 1 0 0 0

and indeed:

G =HW and J = W HW
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Chapter 9

Symmetric tensor decomposition
algorithm

This algorithm for decomposing a symmetric tensor as sum of rank one symmetric tensors gen-
eralizes the algorithm of Sylvester, and was devised by Bernard Mourrain and his team. First
of all, we will introduce two easy examples for decomposing of homogeneous polynomials, and
then we will describe this algorithm.

Notation 9.1. For all f € Sg we denote f := f(1,21,...,2y).

Example 9.2. Consider a tensor of dimension 3 and order 3 ,which corresponds to the following
homogeneous polynomial:

flxo,x1,29) = 1:8 + 31‘(2)1‘1 + 3x%$2 + 3022 + 6x9T172 + w023 + T3 + 30220 + 32123 + 23

We may assume without loss of generality, that at least one variable, say xg , all its coefficients
in the decomposition are non-zero, then we deshomogenize f with respect to this variable:

fi=f(1,21,12)
And under 7 defined in 4.2 f is mapped to:

i* — 8(070) + 8(170) + 3(071) + 8(270) + 8(171) + 3(072) + 8(370) + 3(271) + E(LQ) + 8(073)

defined in Klx1,z2]<3. First, we prove with B = (1) as a basis, and we obtain:

‘ 1 r1 T2
s |11 1 1
HE = 1 (9.1)
zo |1 1 1
In this case HiB* =(1), Hfl*f = (1) and Hfg*f = (1). Then:
ME = (HEYUHE, . = (1)
ME = (HEY'HE . = (1)

The multiplication operators commute and by the theorem 8.7, f* admits an extension A € R*,
with rank(Hy) = r. Moreover, this extension is of the form A = Y"7_; Njev(&;) with \; # 0 and
& distinct points of K2 if and only if rank(H,) = r and I, is a radical ideal. I, is a radical ideal
since I = kernel(HP) = kernel(H}i) = (x1 — 1,9 — 1). In this case r = 1, and in order to

ol
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recover the point & we recall that the eigenvalues of the operators M,, are the ¢ —th coordinates
of the root £, and the common eigenvector are the ev(€). The eigenvalue of M, is 1, then & =1
and the eigenvalue of M, is 1, then & =1 .Then A = \ev(1,1).

Recall that the coefficient of x( are considered to be one. Thus the polynomial admits a decom-
position:

fxo, 1, 20) = M1 (20 + 21 + 22)°
We can compute \; easily equating coefficients in the same monomials. Doing that we deduce:
fzo, 21, 22) = (xo + 21 + 22)°
that is the corresponding tensor is of rank 1.

Example 9.3. Consider a tensor of dimension 3 and order 3, which corresponds to the following
homogeneous polynomial:

f(zo, x1,22) = 32¢21 + 32379 + 32027 + 67071272 + 3T023 + T3 + 3232 + 37123 + 73

We deshomogenize f with respect to the variable xg, and we denote:

f = f(17x17x2)

Under 7 defined in 4.2 f is mapped to:

(1,0) (0,3)

fr=a"? a4 g®0 4 gt 1 g0 L g0 4 g>h 1 g0 4 g
/€ (Klzy, x2)<3)*. If we take B = (1,y) then:

1 21 29 z129 .ZC%
1 0 1 1 1 1
HEBT = zp |1 1 1 1 1
I*(h) z» |1 1 1 1 1
Tr1T2 1 1 1 h22 h31
2 |1 1 1 hy ho
In this case,
0 1
B _
B = < 11 )
and ]HI}B* 0D is invertible. Moreover, we have:
I l‘%
Hy, wpx = 171 1
- x| 1 1
‘ T2 T1X92
Hy wpx = 11 1
- |1 1

. Therefore:
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_ 00
MZ = (Hf*) lel*f = ( - )

_ 0 0
Mg, = (Hf) ' Hy, - = ( L1 >

Obviously, the multiplication operators commute and by the theorem 8.7, f* admits an extension
A € R* with Hy of rank r. This extension can be written as A = 3"7_, ev(&;) by the theorem
7.16 if and only if Hp is of rank r and [ is a radical ideal. Then we only have to see that
Iy = kernel(H?f) is a radical ideal. Then v € kernel(H?j) if and only if:

01111 U1 0
1 11 11 Vg 0
HEv=]11111 vs | =10
o 1 11 11 N 0
1 1 111 Vs 0
The solutions are:
v1=0vy=—a—-b—cvgz=avs=buvs=c

for a,b,c € K. Then p € kernel(H?:) if and only if, p = a(z — x1) + b(w122 — 21) + (x5 — x2)+
terms of degree greater than 3. Thus we obtain kernel(H?j) = kernel(HY ") = Iy = (xp —
T1, 29w — o1, 25 — 1) which is an radical ideal.

Therefore A = >";_; Aiev(§), where r = 2 we can recover the points &1, & by two different ways:

e 1) The eigenvalues of MIB1 are a1 = 0 and az = 1, and the eigenvector of (M), associated

with oy = 0 is:
1
a(o)

and the eigenvector associated with as =1 is only:

- (2)

e 2) We know due to the theorem 7.12 that £ and & are the roots of Ix:

Recall that the coefficient of x( are considered to be one. Thus the polynomial admits a decom-
position:

f(a?(), x1, :CQ) = )\1(%0 +x1 + 1‘2)3 + )\2(550)3
We can compute Ay and Ay easily . Doing that:
f(:ro,:tl,wz) = (ro+ o1+ :Bz)g — (xo)g

which is a tensor of rank 2.
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9.1 Symmetric tensor decomposition algorithm

The algorithm for decomposition a symmetric tensor as a sum or rank one symmetric tensors
generalizes the algorithm of Sylvester, devised for dimension two tensors.

In this algorithm we may assume without loss of generality, that for at least one variable, say
xo, all its coefficients in the decomposition are non-zeros, i.e. k;o # 0 for 1 < <.

Symmetric tensor decomposition algorithm
Input: A homogeneous polynomial f(zo, .., x,) of degree d
Output: A decomposition of f as f = >7_, \ik;(Z)? with r minimal

—1
1. Compute the coefficients of f*: ¢y = aq (Z) .

2. Initialize r :=0

w

. Increment r :=r +1

e

. Specialization:

e Take any basis B connected to 1 with |B| =r

e Build the matrix H}T@) with the coefficients c,.
. +

e [f there exists any minor of order r + 1 in H }B* 7y’ without coefficients depending on

h, different to zero, try another specialization. If cannot be obtained go to step 3.

e Else if all minors of order r+1 in H ﬁf(ﬁ)’ without coefficients depending on h, vanish,

compute h s.t:
_ B
det(Hﬁ(E)) #0

— the operators MP(h) := (HE(E))*l(H (7)) commute

— the eigenvalues of MP(h) are simple

If there not exist such h try another specialization. If cannot be obtained go to step
3.

e Else if there exists such h compute the eigenvalues &;; and the eigenvectors v; s.t
MZBU]- =& vjfori=1,...,nand j=1,..,r.

5. Solve the linear system in ()\;) s.t f(Z) = > i_; A\jk;(Z)? where k;(Z) = (z0 + vi121 + ... +
Vinn)-

Remark 9.4. This algorithm stops as we saw in Lemma 4.23, let f € Sy there exists ki(T), ..., ks(T)
with s < oo such that: f = Y5 k(%)L Once, the algorithm has computed the parameters h
B _ (gB \-1yB

such that det(Hﬁ(ﬁ)) # 0 and the operators M; = (Hﬁ(ﬁ)) Hri*f;‘(ﬁ) commute, we need to
ensure that Ix is a radical ideal, and this holds true when the eigenvalues are simple.

Remark 9.5. It can be pointed out that ith-coordinate of several distinct points could be the
same, i.e. &; = &y with § # &, and then the eigenvalues of M; are not simple. For this
reason, sometimes it is convenient to check that the eigenvalues are simple in the matriz M,
instead of M;, with a random polynomial p, for ezample p =" | a;x;. In this case, it would be
improbable that if the points are distinct not to obtain simple eigenvalues.
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Example 9.6. Let us apply the algorithm in order to obtain the decomposition of the homoge-
neous polynomial of dimension 3 and order 4:

f(z,y,2) = 3z + 4oy — 4232 + 622y — 1222y + 182222 + day® — 1222 + 122y2° — 423 +
yt — 4z + 6y22? — dyzd + 324

We deshomogenize with © = 1 and compute the coefficients ¢, = aq (i)il. And we get the
following element of Rj:

f* — 38(070) + 8(170) _ 8(071) + 8(270) _ E(lvl) _|_ 38(072) + 8(370) _ 8(271) + 8(172) _ 8(073) + E(470) _

Taking a connected basis with » = 1 and r = 2 elements, we find minors of order 2 and 3
respectively, in H ﬁf different from zero hence, f has not rank equal to 1 or 2.

We follow to r = 3 and we take the connected basis B = {1,y, 2z}, then Bt = {1,y, 2, yz, 32, 2%},
we obtain the following matrix:

31 -1 1 3 -1
11 -1 1 1 -1
s | -1 -1 3 -1 -1 1
He =11 1 211 1 21
3 01 -1 1 3 -1
-1 -1 1 -1 -1 1

(9.2)

All the minors of order 4 vanish, then we can continue with the algorithm,and we realize that:

31 -1
det(Hﬁ):det 1 1 -1 ]4#0 (9.3)
-1 -1 3

We need that the multiplication operators commute that is Mfo = MZBMyB, and we have:

3 5 0 11 -1 00 O
MB =HEBY'H, o= FL 2 1 1 1 -1 ]=(11 -1
Y f v 2 2
o 0 3 3 -1 -1 1 00 0
i F 0 -1 -1 3 0 0 1
B B\—-1 -1 1
o 0 3 3 31 -1 1 0 0

And it holds true that the multiplication operators commute, that is MyBMZB = MZBME. It
should be noted, that in this step the algorithm has to compute h such that the multiplication
operators commute but in this case all our entries are known. The following step is to ensure
the eigenvalues of (MP)! and (MéB )t are simple, but in this case the eigenvalues of (MP)! are
21 =—1, 29 = —1 and z3 = 1, and the eigenvalues of (Mf)t are x1 =0, zg =0 and z3 = 1, we
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are in the case of the 9.5 because if we take for example p = y + 2z then the eigenvalues of MpB
are 1 = 2, 9 = —2 and x3 = 0 and these are simple. Then we can continue with the algorithm
and compute the eigenvectors of M! which are:

1 1 1
=10 |&=| 0 |&= 1
1 -1 -1

The coordinates of the eigenvectors correspond to the elements {1,y,z}. Thus we can recover
the coefficients of y and z in the decomposition from coordinates of the eigenvectors. Recall that
the coefficients of x are considered to be one. Thus, the polynomial admits a decomposition:

f=XME+2) 4+ Xz +y—2) + X3z — 2)*
It remains to compute X's. We can do this easily by solving an over-determined linear system,
which we know has always a solution, since the decomposition exists. Doing this last step, we
deduce:

fla,y,2)=(@+2) '+ (@+y—2)' + (z—2)* (9.4)

9.2 Future work

There are some questions that remain open: the complexity of the algorithm, the comput-
ing of the decomposition when some entries of the tensor are not known (case of missing data)
and to extend the algorithm to non-symmetric tensors.

The theorem of Alexander and Hirschowitz states [12], that the generic rank is always
the expected one, with a finite list of exceptions. However, it has not received any answer yet,
either for non symmetric tensors, or for decompositions in the real field. Nevertheless, we know
there is always an open subset where the general rank is the same as the complex one. In other
words, for given order and dimension the smallest typical rank in the real field coincides with the
generic rank in the complex field, (see [14],[15],[16],[10]). We can see in [14], in order to exhibit
more than two typical ranks, that it seems necessary to consider tensors of order higher than 3.
An elementary example would be:

22° — 6zy® = (z +V-1y)* + (2 = V-1)* = (22°) - (x +9)° = (z — )’ (9.5)

In this case the complex rank is 2 and the real rank is 3.
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