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Abstract

Castellano: El objetivo de este trabajo es el estudio de la descomposición de tensores simétricos
de dimensión "n" y orden "d". Equivalentemente el estudio de la descomposición de polinomios
homogéneos de grado "d" en "n" variables como suma de "r" potencias d-ésimas de formas
lineales.

Este problema tiene una interpretación geométrica en términos de incidencia de variedades se-
cantes de variedades de Veronese: Problema de Waring [12],[6]. Clásicamente, en el caso de
formas binarias el resultado completo se debe a Sylvester. El principal objeto de estudio del
trabajo es el algoritmo de descomposición de tensores simétricos, que es una generalización del
teorema de Sylvester y ha sido tomado de [1]. Pero antes de enfrentarnos al algoritmo, introduci-
mos las herramientas necesarias como son los operadores de Hankel y propiedades de las álgebras
de Gorenstein.

English: The aim of this work is studing the decomposition of symmetric tensors, of dimension
"n" and order "d". Equivalently, studying the decomposition of homogeneous polynomials of
degree "d" in "n" variables as sum of "r" dth-powers of linear forms.

This problem has a geometric interpretation with the secant varieties to the Veronese variety:
"Big Waring Problem" [12] and [6]. Classically, the binary case was given by Sylvester. The main
object of study is the symmetric tensor decomposition algorithm, which is a generalization of
Sylvester theorem and it has been taken from [1]. But, before facing to the algorithm we introduce
several tools, for instance the Hankel Operators and several properties of the Gorenstein Algebras.

Mathematical Subject Classi�cation MSC2010: 15A21, 15A69, 15A72

Key words: tensor decomposition, canonical decomposition, symmetric tensor rank, generic sym-
metric rank, Big Waring Problem, Hankel operators.
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Chapter 1

Introduction

A tensor is an element in the product of vector space Cn1 ⊗ · · · ⊗ Cnk . We shall say that
a tensor is cubical if all its k dimensions are identical, i.e. n1 = ... = nk = n. A cubical tensor
x ∈ Cn ⊗ · · · ⊗ Cn is said to be symmetric if for any permutation σ of {1, ..., k}:

xi1...ik = xiσ(1)...iσ(k)
.

The aim of this work is studying the decomposition of a symmetric tensor into a minimal
linear combination of a tensor of the form v ⊗ · · · ⊗ v. The minimal number of sums in this
decomposition will be the symmetric rank. This decomposition of a tensor was �rst introduced
and studied by Frank L. Hitchcook in 1927, and then was rediscovered in 1970's by psychome-
tricians.

The tensors are objects which appear in many contexts and di�erent applications. The
most common tensors are the matrices, where the problem of decomposition is related to the sin-
gular value decomposition (SVD). The extension of higher order tensors gives arise to problems
in the �eld of Electrical Engineering, Telecommunications, Chemometrics and Antenna Array
Processing. For instance, the observations of experiences or physical phenomena which have a
lot of parameters are stored in tensors.

The bijection between symmetric tensors and homogeneous polynomials will allow us to
reformulate the problem as the decomposition of a homogeneous polynomial f of degree d in
n+ 1 variables as a sum of d-th powers of linear forms [1], i.e.:

f(x) =
r∑
i=1

λi(ki0x0 + ...+ kinxn)d (1.1)

The problem of decomposition in the binary case can be obtained directly by computing ranks
of catalecticant matrices [13], as can be seen in Sylvester´s Theorem. But in higher dimension
this is not so simple, however the team of Bernard Mourrain [1], using apolar duality on polyno-
mials, get an extension of Sylvester´s algorithm, reducing the problem of the symmetric tensor
decomposition to the decomposition of a linear form as a linear combination of evaluations at
distinct points. Moreover, they give a necessary and su�cient condition for the existence of a
decomposition of symmetric rank r, based on rank conditions of Hankel operators and commu-
tation properties.
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Therefore the main ingredients in this work will be: reformulation of the problem in a dual
space, exploitation of the properties of multivariate Hankel operators and Gorenstein algebras,
studying an e�ective method for solving the truncated Hankel problem and deduction of the
decomposition by solving a generalized eigenvalue problem.



Chapter 2

Preliminaires

We will work in K and algebraically closed �eld, such that char(K) = 0. Let E be a vector space
of dimension n + 1 and we will denote T d(E) := E ⊗ · · · ⊗ E, the set of all tensors of order d
and dimension n + 1. A tensor of order d and dimension n + 1 can be represented by an array
[ai1,...,id ]

n,..........,n
i1=0,...,id=0 ∈ T d(E) with ai1,...,id ∈ K in a basis of T d(E), due to the universal property

of the tensor product. The set of all symmetric tensors of order d and dimension n + 1 forms
an algebra, Sd(E), and a tensor [ai1,...,id ]

n,........,n
i1=0,...,id=0 will be symmetric if ai1,...,id = aiσ(1),...,iσ(d)

for any permutation σ of {1, ..., d}. We will use α, β, .... to denote a vector in Nn+1 (multi-
index), and |α| :=

∑n
i=0 α0 + ... + αn. And we will denote xα := xα0

0 · · ·xαnn . We will work in
R := K[x1, ..., xn] the ring of polynomials, and Rd will be the ring of polynomials of degree at
most d. For a set B = {b1, ..., br} ⊂ R we will denote by 〈B〉 (resp. (B)) the corresponding
vector space (resp. ideal) generated by B. We will denote by Sd := K[x0, ..., xn]d the vector
space of homogeneous polynomials in n+ 1 variables of degree d.

The dual space E∗, of a K-vector space is the set of K-linear forms from E to K. We have to
take into account that R∗ has a natural structure of R-module; for all p ∈ R and Λ ∈ R∗:

p ∗ Λ : R → K
q 7−→ Λ(pq)

Typical elements of R∗ are the linear forms ev(ξ) for ξ ∈ Kn, and d
α

:= dα1
1 · · · dαnn , de�ned as

follows: for all p =
∑
pβx

β ∈ R:

ev(ξ) : R → K
p 7−→ p(ξ) =

∑
pβξ

β

d
α

: R → K
p 7−→ pα

Particularly;

xi ∗ d
α

=

{
dα1

1 ...d
αi−1

i−1 d
αi−1
i d

αi+1

i+1 ...d
αn
n if αi > 0;

0 in other case.
(2.1)

Let V be a (n+ 1)-dimensional vector space over K, we will be interested in the decomposition
of a symmetric tensor A = [aj1...jd ]

n,...........,n
j1=0,...,jd=0 ∈ Sd(V ) into a minimal linear combination of

symmetric outer products of vectors (i.e. of the form

d)︷ ︸︸ ︷
v ⊗ · · · ⊗ v) such that:
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A =

r∑
i=1

λi

d)︷ ︸︸ ︷
v ⊗ · · · ⊗ v (2.2)

De�nition 2.1. If A = [aj1...jd ]
n,.........,n
j1=0,...,jd=0 ∈ Sd(Cn+1) , the symmetric tensor rank of A is:

rankSA := min{r|A =
∑r

i=1 λiyi ⊗ · · · ⊗ yi : yi ∈ Cn+1}

We will see that a decomposition of this form always exists for any symmetric tensor in 4.23, ([2]
page 12). Therefore the de�nition of symmetric rank is not vacuous.

Remark 2.2. Note that over C, the coe�cients λi appearing in the decomposition 2.2 may be
set 1; it is legitimate since any complex number admits a d-th root in C. Henceforth, we will
adopt the following notation.

y⊗k :=

kcopies︷ ︸︸ ︷
y ⊗ · · · ⊗ y

Example 2.3.

Let A ∈ S3(C2) be de�ned by:

A =

(
a111 a121 a112 a122

a211 a221 a212 a222

)
=

(
−1 0 0 1
0 1 1 0

)
It is of symmetric rank 2 over C:

A =

√
−1

2

(
−
√
−1

1

)⊗3

−
√
−1

2

( √
−1
1

)⊗3

Indeed:

A =

√
−1

2

(
−
√
−1

1

)⊗3

−
√
−1

2

( √
−1
1

)⊗3

=

=

√
−1

2

[(
−
√
−1

1

)(
−
√
−1 1

)( −√−1
1

)]
−
√
−1

2

[(
−
√
−1

2

)(
−
√
−1 2

)( √−1
2

)]
=

√
−1

2

( √
−1 −1 −1 −

√
−1

−1 −
√
−1 −

√
−1 1

)
−
√
−1

2

(
−
√
−1 −1 −1

√
−1

−1
√
−1

√
−1 1

)
=

(
−1 0 0 1
0 1 1 0

)
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2.1 Applications

Let Q be a (n + 1) × (n + 1) invertible matrix and let E be a vector space of dimension n + 1.
We de�ne the following application:

Q : T d(E) → T d(E)
A = [ai1,...,id ]

n,.............,n
i1=0,...,id=0 7−→ Q(A) = [Ai1,...,id ]

n,............,n
i1=0,...,id=0

Where Ai1,...,id =
∑

j1,...,jd
Qi1j1 ...Qidjdai1,...,id . A tensor A is symmetric if Aσ(ij...k) = Aij...k for

any permutation σ. This property is referred to as the multilinearity property of tensor.

Symmetric tensors form an important class of tensors and examples where they arise include
multivariate moments and cumulants of random vectors, since the set of cumulants of order d of
a multichannel real random variable X of dimension n + 1 form a symmetric tensor of order d
and dimension n+ 1. The same holds true for moments, due to the fact that symmetric tensors
satisfy the multilinearity property [7]:

For a vector-valued random variable X = (X0, ..., Xn) we obtain three tensors of order d:

• The dth non-central moment si1,...,id (1 ≤ ij ≤ n j ∈ {1, ..., d}) of X is:

si1,...,id := E(Xi1Xi2 ...Xid)

and the set of non-central moments of X can be identi�ed with the following tensor of
order d and dimension n+ 1:

Sd(X) = [E(Xi1Xi2 ...Xid)]
n,..........,n
i1=0,...,id=0

• The dth central moment of X is the following tensor:

Md(X) = Sd(X − E[X])

• The dth cumulant ki1...id (1 ≤ ij ≤ n j ∈ {1, ..., d}) is:

ki1...id := (−1)q−1(q − 1)!sP1 ...sPq

where P1∪ ...∪Pq = {i1, ..., id} are the partitions of the index set. And the set of cumulants
of X can be identi�ed with the following tensor of order d and dimension n+ 1:

Kd(X) = [
∑

P (−1)q−1(q − 1)!sP1 ...sPq ]
n,........,n
i1=0,...,id=0

where the sum is over all the partitions P = P1 ∪ ... ∪ Pq of the index set.

This cumulant tensors have been used in array processing. And the symmetric outer product
decomposition is also important in areas such as: mobile communications, machine learning,
biomedical engineering, psychometrics and chemometrics [2].
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2.2 From symmetric tensor to homogeneous polynomials

It can be pointed out that there exists a bijective relation between the space of tensors of di-
mension n+ 1 and order d, Sd(Cn+1), and the space of homogeneous polynomials of degree d in
n + 1 variables, Sd. A symmetric tensor [tj1,...,jd ]

n,............,n
j1=0,...,jd=0 of order d an dimension n + 1, can

be written with a homogeneous polynomial f(x) ∈ Sd :

[tj1,...,jd ] −→ f(x) =
∑n,.........,n

j1=0,...,jd=0 tj1,...,jdxj1 ..xjd

The correspondence between symmetric tensors and homogeneous polynomials is bijective:

Sd(Cn) ∼= C[xo, ..., xn]d

Example 2.4.

Alternatively, the tensor of the �rst example 2.3:

A =

(
−1 0 0 1
0 1 1 0

)
is associated with the homogeneous polynomial in two variables:

p(x, y) = 3xy2 − x3

which can be decomposed over C into:

p(x, y) =
√
−1
2 (−

√
−1x+ y)3 −

√
−1
2 (
√
−1x+ y)3

Therefore in the following formulations of the problem we will work with homogeneous polyno-
mials instead of symmetric tensors.



Chapter 3

The binary case

The present survey is a generalization of Sylvester's algorithm devised to decompose homogeneous
polynomials in two variables into a sum of powers of linear forms, extracted from [1]. First of all
we recall this theorem, ([3] page: 102):

Theorem 3.1. A binary form f(x1, x2) =
∑d

i=o

(
d
i

)
cix

i
1x
d−i
2 can be written as a sum of dth

powers of r distinct linear forms in C as:

f(x1, x2) =

r∑
j=1

λj(αjx1 + βjx2)d

if and only if:

• there exist a vector q = (ql)
r
l=0 such that: c0 c1 . . . cr

... . . . . . .
...

cd−r . . . . . . cd

 [q] =
[
0
]

• the polynomial q(x1, x2)=
∑r

l=0 qlx
l
1x
r−l
2 admits r distint roots, i.e. it can be written as

q(x1, x2)=
∏r
j=1(βjx1 − αjx2).

We will see a partial proof of this theorem in 4.3. The proof of this theorem is constructive
and yields the following algorithm: let p(x0, x1) be a binary form of degree d and coe�cients
ai=

(
d
i

)
ci, 0 ≤ i ≤ d, the algorithm builds the Hankel Matrix (H[r]) of dimension d− r+1× r+1

whose entries are:

H[r]ij=ci+j−2

and then compute its kernel.

Algorithm 3.2. Binary form decomposition

Input:A binary polynomial p(x1, x2) of degree d with coe�cients ai =
(
d
i

)
ci, s.t. 0 ≤ i ≤ d

Output: A decomposition of p(x1, x2) =
∑r

j=1 λjk
d
j (x) with minimal r

• 1. Initialize r = 0

• 2. Increment r := r + 1

13



14 CHAPTER 3. THE BINARY CASE

• 3. If the matrix H[r] has ker(H[r]) = 0 go to step 2

• 4. Else compute a basis k1, .., kl of the ker(H[r])

• 5. Specialization:

� Take any vector in the kernel, e.g. k

� Compute the roots of the associated polynomial k(x1, x2) =
∑r

l=0 klx
l
1x
d−l
2

� If the roots are not distinct in P2, try another specialization. If cannot be obtained ,
go to step 2.

� Else if k(x1, x2) admits r distinct roots,(αj : βj) for j = 1, ..., r, then compute coe�-
cients λj 1 ≤ j ≤ r

αd1 · · · αdr
αd−1

1 β1 · · · αd−1
r βr

... · · ·
...

βr1 · · · βdr

 λ =


a0

.

.
ad


• 6. The decomposition is p(x1, x2) =

∑r
j=1 λj(αjx1 + βjx2)d

Example 3.3. Let apply the Sylvester algorithm to the polynomial:

p(x1, x2) = 17x4
1 + 48x3

1x2 + 120x2
2x

2
1 + 264x1x

3
2 + 257x4

2

for r = 1, we have the following Hankel matrix:
c0 c1

c1 c2

c2 c3

c3 c4

 =


17 12
12 20
20 66
66 257


This matrix has full column rank. Therefore, we build the Hankel matrix for r = 2:c0 c1 c2

c1 c2 c3

c2 c3 c4

 =

17 12 20
12 20 66
20 66 257


This matrix has rank equal to 2, therefore we compute a basis of the kernel, to do this we use the
singular value decomposition and the help of "Matlab" and we get the following decomposition
of M :

M = UΣV ∗

where rank(Σ) = 2, and we know by a theorem well known that Ker(M) = 〈v3〉 where v3 is
the third column of V ∗. Then, we compute the roots of q(x1, x2)=

∑2
l=0 v3lx

l
1x

2−l
2 which are

(α1, β1) = (2, 1) and (α2, β2) = (0.25, 1). Lastly, we compute λ1 and λ2 by equating coe�cients
in the same monomials and we get the decomposition:

p(x1, x2) = (2x+ y)4 + 256(0.25x+ y)4



Chapter 4

Problem Formulations

In this chapter we present three di�erent approaches to the problem. These approaches were
given by the team of Bernard Mourrain in [1].

4.1 Polynomial Decomposition

We will explain how to get a decomposition of f ∈ Sd as a sum of d-th powers of linear forms
[1], i.e.:

f(x) =

r∑
i=1

λi(ki0x0 + ...+ kinxn)d = λ1k1(x)d + ...+ λrkr(x)d (4.1)

where ki 6=0, and r is the smallest possible integer.

Remark 4.1. In the case we work over C we may assume all λi = 1.

De�nition 4.2. The minimal r is called the symmetric rank of f ∈ Sd, denoted rankS(f).

Remark 4.3. Note that the symmetric rank of f ∈ Sd is the same as the symmetric rank of its
corresponding tensor in Sd(Cn+1).

A �rst approach to solve the problem of decomposition consists ([1] page 86) : given f ∈ Sd
, and we assume that r, the symmetric rank, is known. We consider the r(n + 1) coe�cients
ki,j of the linear forms of the equality 4.1, as unknowns. We expand the right hand side of this
equation . The two polynomials on the left and right hand sides are equal. Thus by equating
the coe�cients of the same monomials we get a system with r(n+ 1) unknowns and with

(
n+d
d

)
equations. This approach describes the problem of decomposition in a non-optimal way, since:

• It introduces r! redundant solutions, since every permutation of the linear form is a solution.

• We get an over-constrained polynomial system, where the polynomials involved are of high
degree, that is, d.

The �rst approach motivates the de�nition of the following map, Φ ,which goes from the set of
unknowns (ki,j) to the set of

(
n+d
d

)
equations. To be accurate: the expansion of the right hand

side of the equation 4.1, in the basis of monomials B(n; d) = {xα, |α| = d} de�nes a map Φ from

the set X = C(n+1)r of coe�cients ki,j onto Υ = C(n+d
d ):

15
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Φ : X = C(n+1)r −→ Υ = C(n+d
d )

k = ((k1,i), ..., (kr,i)) 7−→ (cα(k))α∈I

where I = {α = (α0, ..., αn) : |α0 + ...+ αn| = d} is the set of index and cα(k) is de�ned as the
coe�cient of the monomial xα of the expansion.

De�nition 4.4. A property is said to be true in the generic case, or for generic polynomials, if
it is true in a dense algebraic open subset of Υ, in the Zariski topology.

De�nition 4.5. The symmetric generic rank, denoted g(n, d), is the minimal value to be given
to r in the decomposition 4.1, in the generic case.

Proposition 4.6. The dimension of the image can not be greater than the numbers of parameters
in function Φ (which is (n+ 1)r).

Proof. If (n + 1)r <
(
n+d
d

)
then the image would lie in an hypersurface an would not be dense.

Therefore,
(
n+d
d

)
≤ (n+ 1)r.

Example 4.7.

To show how careful we have to be, consider for instance a generic ternary quartic, one would
expect that it could be decomposed in to 5 linear forms since r× (n+ 1) = 5× 3 ≥

(
6
4

)
=
(
n+d
d

)
,

but the correct number of linear forms is 6 ([3] page 102).

We will see that the generic rank in Sd is known for any order and dimension due to the work of
Alexander and Hirschowitz.

4.2 Geometric point of view

This section is written due to the information that you can �nd in [6] and [3].

4.2.1 Big Waring Problem

In 1770, E. Waring conjectured: "for all integers d ≥ 2 there exists a positive integer g(d) such
that each n ∈ N can be written as n = ad1 + ...+ adg(d) with ai ≥ 0 and i = 1, ..., g(d)", [6].
The conjecture of Waring was showed to be true by Hilbert in 1909. An analogous problem can
be formulated for homogeneous polynomials of given degree d in Sd := K[xo, ..., xn]d: "Which is
the minimum r ∈ N such that the generic form F ∈ Sd is sum of at most r d-powers of linear
forms?"

F = Ld1 + ...+ Ldr

This is the Big Waring Problem which was completely solved by J. Alexander and A. Hirchowitz
in 1995.
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4.2.2 Veronese and secant varieties

De�nition 4.8. The image of the following map is the d-th Veronese variety, Xn,d :

νd: Pn−→P(n+d
d )−1

(uo : ... : un) 7−→(udo : ud−1
o u1 : ... : udn)

This map can also be dually characterized as:

νd:P(S1) = (Pn)∗−→P(Sd) = (P(n+d
d )−1)∗

k(x) 7−→ k(x)d

Therefore we can think to the Veronese variety as the variety that parameterizes d-th powers of
linear forms. The polynomials of rank one are exactly those lying on Xn,d. If we want to study
the variety that parameterizes sums of "r" d-powers of linear forms of S := K[xo, ..., xn] we have
to consider the r-th secant variety of Xn,d, which we will de�ne below, [6].

De�nition 4.9. The set that parameterizes homogeneous polynomials F ∈ Sd of rank at most
"r" is:

σ0
s(Xn,d):=

⋃
[Ld1],...,[Lds ]∈Xn,d

〈
[Ld1], ..., [Lds ]

〉
but in general, σ0

s(Xn,d) is not a variety.

De�nition 4.10. The r-th secant variety of Xn,d ⊂ P(Sd) is the Zariski clousure σ0
s(Xn,d)

denoted by σs(Xn,d)

From this point of view the smallest r ∈ N such that σr(Xn,d)=P(Sd) is the minimum integer
"r" such that the generic form of degree d in n+1 variables is a linear combination of "r" powers
of linear forms in the same number of variables. Then this minimun integer "r" answers the Big
Waring Problem.

De�nition 4.11. Let F ∈ Sd be a homogeneous polynomial, the minimum integer for which s,
[F ] ∈ σs(Xn,d) is the border rank of F , denoted rankB(F ).

Theorem 4.12. (Alexander-Hirschowitz). If X= σs(Xn,d), for d ≥ 2. Then:

dimension(X)= min(sn+ s− 1,
(
n+d
d

)
− 1)

except for:

• d = 2, 2 ≤ s ≤ n
• n = 2, d = 4, s = 5

• n = 3, d = 4, s = 9

• n = 4, d = 4, s = 14

• n = 4, d = 3, s = 7

This theorem is extremely complicated to prove, and the interested reader should refer to the
two papers of Alexander and Hirschowitz :[11],[12]. The di�cult of proving this theorem lies in
establishing the fact that the four given exceptions to the expected formula are the only ones.
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4.3 Decomposition using duality

In order to pass the problem to the dual problem, we need the following de�nition of the apolar
inner product:

De�nition 4.13. Let f ,g ∈ Sd f=
∑
|α|=d fαx

α0
0 ...xαnn and g=

∑
|α|=d gαx

α0
0 ...xαnn the apolar inner

product on Sd is:

〈f, g〉=
∑
|α|=d fαgα

(
d

α0,...,αn

)−1

Note that 〈·, ·〉 cannot be a inner product in the usual sense since 〈f, f〉 is in general complex
valued (recall that for an inner product, we need 〈f, f〉 ≥ 0 for all f). However, we will show
that it is a non-degenerate symmetric bilinear form.

Lemma 4.14. The bilinear form 〈·, ·〉 : Sd × Sd −→ C de�ned above is symmetric and non-
degenerate. In other words, 〈f, g〉 = 〈g, f〉 for every f, g ∈ Sd, and if 〈f, g〉 = 0 for all g ∈ Sd,
then f = 0.

Proof. The bilinearity and symmetry is immediate from de�nition. Suppose 〈f, g〉 = 0 for all g
∈ Sd. Choose g to be the monomials:

gα(x) =
(

d
α1,...,αn

)
xα

where |α| = d and we see immediately that:

fα = 〈f, gα〉 = 0

Thus f ≡ 0.

Using this non-degenerate inner product, we can associate an element of Sd with an element on
S∗d , and for any f∗ ∈ S∗d we can associate an element on R∗d through the following composition:

Sd
τ−→ S∗d

π−→ R∗d
f 7−→ f∗ 7−→ Λf∗

(4.2)

such that: f∗:g 7−→ 〈f, g〉 and Λf∗ :p 7−→f∗(ph), where ph is the homogenization in degree d of p.

Under, τ , the polynomial f=
∑
|α|=d cα

(
d
α

)
xα is mapped to f∗=

∑
|α|=d cαd

α ∈ S∗d .

Lemma 4.15. Let k(x)d = (k0x0 + ...+ knxn)d. Then for any f(x) ∈ Sd we have:

〈f(x), k(x)〉 = f(k0, ..., kn)

Proof.
〈
f(x), k(x)d

〉
=
〈∑

|α|=d fαx
α0
0 ...xαnn , (k0x0 + ...+ knxn)d

〉
=
∑
|α|=d fαkα

(
d

α0,...,αn

)−1
where

kα = kα0
0 · · · kαnn

(
d

α0,...,αn

)
, thus

〈
f(x), k(x)d

〉
=
∑
|α|=d fαk

α0
0 · · · kαnn = f(k0, ..., kn).

Notation 4.16.

We will denote: ki = (ki0 , ..., kin) ∈ Kn+1 the unknowns in the decomposition 4.1.

Corollary 4.17. It holds that τ(k(x)d)=ev(k) ∈ S∗d .
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Proof.

τ(k(x)) : Sd −→ K
f(x) 7−→

〈
f(x), k(x)d

〉
= f(k)

Proposition 4.18. Let f ∈ Sd and k1, ..., kr ∈ Cn+1. Then f can be written as:

f =
∑r

i=1 λi(x0ki,0 + ...+ xnki,n)d

if and only if

f∗ =
∑r

i=1 λiev(ki)

Proof. If f can be written as: f =
∑r

i=1 λi(x0ki,0 + ...+ xnki,n)d then:

τ(f) = f∗ =
∑r

i=1 λiτ(x0ki,0 + ...+ xnki,n) =
∑r

i λiev(ki)

Corollary 4.19. The problem of decomposition can then be restated as follows: Given f∗ ∈ S∗d ,
�nd the minimal number of non-zero vectors k1, ..., kr ∈ Cn+1 and non-zero scalars λ1, ..., λr ∈
C− {0} such that:

f∗ =
∑r

i=1 λiev(ki)

De�nition 4.20. We say that f∗ has an a�ne decomposition if for every ki in the decomposition
ki,0 6= 0

By a generic change of coordinates, any decomposition of f∗ can be transformed into an a�ne
decomposition.

Proposition 4.21. Let f ∈ Sd and k1, ..., kr ∈ Cn+1 such that ki,0 = 1 for all i. Then f can be
written as:

f =
∑r

i=1 λi(x0ki,0 + ...+ xnki,n)d

if and only if f∗ can be written as:

Λf =
∑r

i=1 λiev(ki)

where ki = (ki,1, ..., ki,n).

Proof. By the previous proposition f∗ can be written as:

f∗ =
∑r

i=1 λiev(ki)

with ki,0 = 1 for all i,then with the map π de�ned in 4.2 we get:

π(f∗) =
∑r

i=1 λiπ(evki) =
∑r

i=1 λiΛev(ki)

such that:
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Λev(ki) : Rd −→ C
p 7−→ ev(ki)(p

h) = ph(1, ki,1, ..., ki,n) = p(ki.1, ..., ki,n)

Therefore, π(f∗) =
∑r

i=1 λiΛev(ki)

Corollary 4.22. The problem of decomposition can be restated as follows: Let Λ ∈ R∗d �nd the
minimal number of non-zero vectors k1,...,kr ∈ Kn and non zero scalars λ1, ..., λr ∈ K such that
Λ =

∑r
i=1 λiev(ki)

We will see that the de�nition of symmetric rank is not vacuous because of the following lemma:

Lemma 4.23. Let f ∈ Sd. Then there exist k1(x), ..., ks(x) ∈ S1 linear forms such that:

f =
∑s

i=1 ki(x)d:

with s <∞.

Proof. What the lemma said is that the vector space generated by the d-th powers of linear forms
:
〈
k(x)d|k ∈ Cn+1

〉
�lls the ambient space Sd := C[x0, ..., xn]d, therefore what we actually have

to prove, is that the vector space generated by the d-th powers of linear forms k(x) (for all k ∈
Cn+1) is not included in a hyperplane of Sd. This is indeed true, because otherwise there would
exits a non-zero element of Sd, f(x) 6= 0, which is orthogonal, under the bilinear form 〈·, ·〉, to
all k(x)d for k ∈ Cn+1. Equivalently, by the lemma 2, there exists a non zero polynomial f(x)
of degree d such that

〈
f, k(x)d

〉
= f(k) = 0 for any k ∈ Cn+1, but this is impossible, since a

non-zero polynomial does not vanish identically on Cn+1.

Remark 4.24. We can deduce s ≤
(
n+d
d

)
, but it was shown recently by Reznick [17] that

s ≤
(
n+ d− 2

d− 1

)
(4.3)

which is a much tighter bound.

Proof. [Partial proof of Sylvester´s Theorem]

For r ≤ d:
We assume that p(x1, x2) =

∑d
i=0

(
d
i

)
cix

i
1x
d−i
2 can be written as sum of r di�erent forms:

p(x1, x2) =
∑r

j=1 λj(αjx1 + βjx2)d

and we de�ne q(x1, x2) =
∏r
j=1(βjx1 − αjx2) =

∑r
l=0 glx

l
1x
r−l
2 . Then it is not hard to see that

for any monomial m(x1, x2) of degree d− r in (x1, x2), we have 〈m(x1, x2)q(x1, x2), p〉 = 0 since:

〈
m(x1, x2)q(x1, x2),

r∑
j=1

λj(αjx1 + βjx2)d

〉
=

λ1

〈
m(x1, x2)q(x1, x2), (α1x1 + β1x2)d

〉
+ · · ·+ λr

〈
(x1, x2)q(x1, x2), (αrx1 + βrx2)d

〉
=

λ1m(α1, β1)q(α1, β1) + ...+ λrm(αr, βr)q(αr, βr) = 0
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The last equality is due to for any f ∈ Sd
〈
f(x1, x2), (αjx1 + βjx2)d

〉
= f(αj , βj) as the lemma

4.15 said.
Particularly if we take:

m0(x1, x2) = xd−r2 , m1(x1, x2) = xd−r−1
2 x1,...,md−r(x1, x2) = xd−r1

we get respectively the equations:

• g0c0 + g1c1 + ...+ grcr = 0

• g0c1 + g1c2 + ...+ grcr+1 = 0

•
...

• g0cd−r + ............+ grcd = 0

Let us prove this for the case m0(x1, x2) = xd−r2 , (the other cases are analogous):

〈
xd−r2 q(x1, x2), p(x1, x2)

〉
=〈

g0x
d
2 + g1x

d−1
2 x1 + ...+ grx

r
1x
d−r
2 ,

(
d

0

)
c0x

d
2 + ...+

(
d

d

)
cdx

d
1

〉
=

(g0

(
d

0

)
c0)

(
d

o

)−1

+ ...+ (gr

(
d

r

)
cr)

(
d

r

)−1

= g0c0 + ...+ grcr

and this , it is the same as:  c0 c1 ... cr
... · · · · · ·

...
cd−r ... ... cd

 [q] =
[
0
]

Finally, note that q(x1, x2) =
∏r
j=1(βjx1 − αjx2) admits r distinct roots because the r linear

forms are distinct.
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Chapter 5

Inverse systems and duality

In this chapter we will see the necessary tools to understand and to prove the structure theorem
5.25, which will be used in the �nal decomposition algorithm. Most of these results can be found
in the reference [4]. We recall that K is a �eld of characteristic 0.

5.1 Duality and formal series

De�nition 5.1. For all α = (α1, ..., αn) ∈ Nn we consider the linear form:

δ
α

:→ K

such that for all element xβ in the monomial basis (xα)α∈Nn is de�ned as follows:

δ
α
(xβ) =

{
α! = α1!...αn! if α = β;
0 in other case.

We write also δ
α

= δα1
1 · · · δαnn although we point out that this is just a notation.

Proposition 5.2. Any Λ ∈ R∗ can be written in an unique way as:

Λ =
∑

α∈Nn Λ(xα) 1
α!δ

α ∈ K[[δ1, ..., δn]]

Reciprocally, any element of K[[δ1 · · · δn]] can be interpreted as an element of R∗.

Proof. We recall that (d
α
(f))α∈Nn denote the coe�cients of f ∈ K[x1, ..., xn] in the basis

(xα)α∈Nn . Then:

f(x) =
∑

α∈Nn d
α
(f)xα .

As char(K) = 0, clearly we have:

d
α

=
1∏n

i=1 αi!
δ
α

=
1

(α)!
δ
α

(5.1)

And for all Λ ∈ R∗:

Λ(f) =
∑

α∈Nn Λ(xα)d
α
(f)

23
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Notice that this sum is �nite for every f ∈ R. So that, we can write:

Λ =
∑

α∈Nn Λ(xα)d
α ∈ K[[d1, ..., dn]]

and thanks to 5.1 we can write also:

Λ =
∑
α∈Nn

Λ(xα)
1

α!
δ
α ∈ K[[δ1, ..., δn]] (5.2)

Proposition 5.3. For any i ∈ {1, ..., n} and any α = (α1, ..., αn) ∈ Nn:

xi ∗ δ
α

= αiδ
α
′

where α
′

= (α1, ..., αi−1, αi − 1, αi+1, ..., αn)

Proof. For any p ∈ R such that p =
∑

β∈Nn cβx
β : xi ∗ δ

α
(p) = xi ∗ δ

α
(
∑

β∈Nn cβx
β) =

δ
α
(
∑

β∈Nn cβx
βxi) = α!cα1,...,αi−1,αi−1,αi+1,...,αn = αiδ

(α1,...,αi−1,αi−1,αi+1,...,αn)(p).

Remark 5.4. As d
α

= 1
α!δ

α
we have:

xi ∗ d
α

= dα1
1 ...d

αi−1

i−1 d
αi−1
i d

αi+1

i+1 ...d
αn
n

Roughly speaking, "xi " and "d−1
i " are the "same",and the operation of R-module becomes on

deriving the operator, such that xi ∗ δα = ∂i(δ
α).

De�nition 5.5. For all α = (α1, ..., αn), and for all ξ ∈ Kn we can de�ne the linear form:

δ
α
ξ : R → K

p 7−→ δ
α
ξ (p) = ∂α1

x1
...∂αnxn (p)(ξ)

Remark 5.6. Note that δ
α
0 = δ

α

Remark 5.7. In the same way that 5.2 for all linear for Λ ∈ R∗ , if char(K) = 0:

Λ =
∑

α∈N Λ((x− ξ)α) 1
α!δ

α
ξ ∈ K[[δξ]]

where (x− ξ)α =
∏n
i=1(xi − ξi)αi .

Theorem 5.8. For all point ξ ∈ Kn there exists an isomorphism between K[[δ]] and K[[δξ]].

Proof. We realize that:

ev(ξ) =
∑

α∈Nn ξ
αd

α
=
∑

α∈Nn ξ
α 1
α!δ

α
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And we de�ne the homomorphism:

φ : K[[δξ]] → K[[δ]]

δ
β
ξ 7−→

∑
α∈N

1
α!ξ

αδ
α+β

for all p =
∑

α∈Nn pαx
α ∈ R, and for all β = (β1, ..., βn) ∈ Nn , if we denote:

p(β) = ∂β1
x1 ...∂

βn
xn (p) =

∑
α∈Nn p

(β)
α xα

Then we have:

δ
β
ξ (p) =

∑
α∈Nn p

(β)
α ξα = ev(ξ)(p(β)) =

∑
α∈Nn

1
α!ξ

αδ
α
(
∑

α∈Nn p
(β)
α xα) =

∑
α∈Nn

1
α!ξ

αδ
α+β

(p).

Hence, φ is a bijection by the remark 5.7 and the proposition 5.2.

5.2 Inverse systems

De�nition 5.9. Let L be the map de�ned as follows:

{I ⊂ R s.t I is an ideal } L→{D ⊂ R∗ s.t D is R-submodule}

and for any I ideal of R, L(I) := {λ ∈ R: λ(f) = 0 ∀ f ∈ I}.

Proposition 5.10. The map L is well de�ned.

Proof. Clearly L(I) ⊂ R∗ thus, in order to see L is well de�ned, we have to see that the map:

∗ : R× L(I)→ L(I)
(p,Λ) 7−→ p ∗ Λ

is well de�ned in L(I) like R-submodule: for any p ∈ R and any Λ ∈ L(I), p ∗ Λ ∈ L(I) since:
for all f ∈ I pf ∈ I and p ∗ Λ(f) = Λ(pf) = 0

De�nition 5.11. Let B be the map de�ned as follows:

{D ⊂ R∗ s.t D is R-submodule} B→{I ⊂ R s.t I is an ideal }

and for any L ⊂ R∗ and R-submodule, B(L) := {f ∈ R : λ(f) = 0 ∀ λ ∈ L}

Proposition 5.12. The map B is well de�ned.

Proof. Let L be R∗-submodule, then B(L) ⊂ R is an ideal of R since: let p1, p2 ∈ B(L), and
for all λ ∈ L λ(p1 + p2) = λ(p1) + λ(p2) = 0, the �rst equality due to λ is linear and the
second one due to p1, p2 ∈ B(L). If g ∈ B(L) and p ∈ R, then for all λ ∈ L, p ∗ λ ∈ L and
p ∗ λ(g) = λ(pg) = 0.

Proposition 5.13. Let I be an ideal of R and L a R-submodule:

• i)I = B(L(I))

• ii)L(B(L)) ⊃ L
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Proof. i)Let us see that I ⊂ B(L(I)), and let f ∈ I: f ∈ B(L(I)) i� λ(f) = 0 for all λ ∈ L(I) i�
λ(f) = 0 ∀ λ such that λ(g) = 0 for all g ∈ I. In particular f ∈ I then λ(f) = 0 for all λ ∈ L(I).
On the other hand B(L(I)) ⊂ I: let us see that if f /∈ B(L(I)) then f /∈ I. If f /∈ B(L(I)) then
there exists λ ∈ L(I) such that λ(f) 6= 0, but λ(g) = 0 for all g ∈ I, thus f /∈ I.
ii) Let us see that L(B(L)) ) L and let τ ∈ L : τ ∈ L(B(L)) i� τ(f) = 0 for all f ∈ B(L) i�
τ(f) = 0 for all f ∈ such that Λ(f) = 0 for all Λ ∈ L. In particular τ ∈ L, then τ(f) = 0 for all
f ∈ B(L).

Example 5.14. Let us see that L(B(L)) = L is not true for all L R-module, i.e. L is not
surjective:

If we take:

L := {λ ∈ R∗ : ∃η ∈ Nn : λ(xα) = 0 ∀α ≥ η}

where α ≥ η in the sense of some monomial order. Then, B(L) = {0}, thus L(B(L)) = R∗.

Proposition 5.15. If we restrict L from zero-dimensional ideals to L R-submodules such that
dimK(L) <∞ we get a bijection.

Proof. If we denote L′ the restriction of L to zero-dimensional ideals, and B′ the restriction of B
to R-submodules with dimKL <∞:

{I ⊂ R, ideal s.t. Z(I) <∞} L′→ {L ⊂ R∗ R− submodule, s.t. dimK <∞}

{L ⊂ R∗ R− submodule, s.t. dimK <∞}
B′→ {I ⊂ R, ideal s.t.Z(I) <∞}

For the previous proposition we know that I = B(L(I)) for every ideal I ⊂ R. In particular for
all I zero-dimensional ideal we have I = B′(L′(I)). Then, we only have to prove that L′ it is
surjective:
Let L ⊂ R∗ such that dimKL = µ <∞, then we de�ne:

I := {f(x) ∈ R : λ(f) = 0 ∀λ ∈ L}

I is zero dimensional if and only if for all i ∈ {1, ..., n} K[xi] ∩ I 6= {0}. If we �x i ∈ {1, ..., n},
then for all λj ∈ L for j = 1, ..., µ, {λj , xi ∗ λj , x2

i ∗ λj , ..., x
µ
i ∗ λj} ⊂ L because L is R-module

and is a set linearly dependent.Then for all j ∈ {1, ..., µ} there exists ηj such that:

x
ηj
i ∗ λj = aj0λj + aj1xiλj + aj2x

2
i ...+ ajµx

µ
i ∗ λj

If we take,

fj(xi) = x
ηj
i − a

j
o − aj1xi − a

j
2x

2
i − ...− a

j
µx

µ
i

Then we get fj(xi) ∗λj = 0 for all j = 1, ..., µ, and if we de�ne g(xi) := m.c.m(f1(xi), ..., fµ(xi))
then we obtain λj(g(xi)) = 0 for all j = 1, ..., µ. Therefore K[xi] ∩ I 6= {0}.

These results motivate the following de�nition:

De�nition 5.16. Let I be an ideal of R, then the orthogonal of I, is the following vector-subspace:

I⊥ := {Λ ∈ R∗;∀p ∈ I,Λ(p) = 0}

And for all vector-subspace D of R∗, then the orthogonal of D is the following vector-subspace:



5.3. INVERSE SYSTEM OF A SINGLE POINT 27

D⊥ := {p ∈ R,∀Λ ∈ D,Λ(p) = 0}

Proposition 5.17. Let I be an ideal of R, then I⊥ is isomorphic to A∗ = (R/I)∗.

Proof. Let π be the projection of R on A = R/I. The map:

π∗ : A∗ → I⊥

Λ 7−→ Λ ◦ π

is an isomorphism of K-vector spaces:
Clearly, it is well de�ned, moreover, if Γ1,Γ2 ∈ A∗ and α1, α2 ∈ K: π∗(α1Γ1 + α2Γ2) = (α1Γ1 +
α2Γ2) ◦ π = (α1Γ1) ◦ π+ (α2Γ2) ◦ π = α1(Γ1 ◦ π) +α2(Γ2 ◦ π) = α1π∗(Γ1) +α2π∗(Γ2).Therefore,
π∗ is an isomorphism of K-vector spaces. Clearly it is injective. Also, π∗ is surjective, since: let
Γ ∈ I⊥ then Γ(p) = 0 for all p ∈ I and Γ ∈ R∗, then if we restrict Γ to A∗, and we denote it Γ

′
,

then π∗(Γ
′
) = Γ.

De�nition 5.18. The vector-space L of R∗ is stable if for all Λ ∈ L:

xi ∗ Λ ∈ 〈L〉 for i = 1, ..., n

This de�nition allows us to obtain the following lemma:

Lemma 5.19. D = 〈Λ1, ...,Λs〉 is stable i� D⊥ is an ideal.

Proof. If we assume D stable then for all p ∈ D⊥ and for all i = 1, ..., n,j = 1, ..., s

Λj(xip) = xi ∗ Λj(p) =
∑s

k=1 λijkΛk(p) = 0

(λijk ∈ K) then xip ∈ D⊥ for i = 1, ..., n then D⊥ is an ideal.
If we assume D⊥ as an ideal then for all p ∈ D⊥ and i = 1, ..., n xip ∈ D⊥ thus for all j = 1, ..., s
Λj(xip) = xjΛj(p) = 0. Therefore, xi ∗ Λj ∈ D⊥⊥ = D. The last equality it holds true because
D is a K-vector space with �nite dimension.

5.3 Inverse system of a single point

we are in the case where the ideal I ⊂ R de�nes a single point, 0 ∈ Kn. And we denote m0 to
the maximal ideal de�ning 0. We will compute the local structure of I at 0.

Proposition 5.20. If I is m0-primary then I⊥ ⊂ K[δ]:

Proof. There existsN ∈ N such thatmN
0 ⊂ I ⊂ m0, and then x

α ∈ I with |α| = α1+...+αn ≥ N .
Thanks to 5.2 for all Λ ∈ I⊥ can be written:

Λ =
∑

α∈Nn
1
α!Λ(xα)δ

α

but Λ(xα) = 0 for |α| ≥ N , therefore:

Λ =
∑

α∈Nn;|α|<N
1
α!Λ(xα)δ

α ∈ K[δ]

Corollary 5.21. If I is mξ-primary then I⊥ ⊂ K[δξ]

Proof. It follows from the bijection between K[[δξ]] and K[[δ]]



28 CHAPTER 5. INVERSE SYSTEMS AND DUALITY

Remark 5.22. If I is a mξ-primary ideal and dimK(R/I) = µ, where µ is the multiplicity of
the root, thus I⊥ is a vector space with dimension equal to µ.

It is di�cult to work directly with a m0-primary ideal. The following result is for ideals having
one m0-primary component.

Theorem 5.23. Let I be a zero-dimensional ideal of R and Q0 its m0-primary component then:

(I⊥ ∩K[δ])⊥ = Q0

Proof. We denote D0 = I⊥ ∩K[δ] and we will prove D0 = Q⊥0 .

As I ⊂ Q0 then Q⊥0 ⊂ I⊥ since: for all Λ ∈ Q⊥0 , Λ(f) = 0 for all f ∈ Q0 and in particular
for all f ∈ I, then Λ ∈ I⊥. On the other hand Q0 ⊂ K[δ] by the previous proposition, then
Q⊥0 ⊂ I⊥ ∩K[δ] = D0.

Now, let us see the other inclusion D0 ⊂ Q⊥0 . To prove this we have to take into account two
properties:

1. Q0 = {f ∈ R : ∃ g ∈ R with fg ∈ I and g(0) 6= 0}

2. For all Λ ∈ K[δ] and for all g ∈ R, (g ∗ Λ)(f) = g(∂1, ..., ∂n)(Λ)(f) = g(0)Λ(f) + (g −
g(0))(∂1, ..., ∂n)(Λ)(f).

The �rst property means that Q0 = Iec. And for the second property recall that proposition 5.3
states xi ∗ δ

α
= ∂i(δ

α
).

Let Λ ∈ D0 we will argue by induction on the degree of Λ: If Λ has degree 0, then Λ is a
scalar, exactly Λ = 〈ev(0)〉 .For all f ∈ Q0, there exists g ∈ R with fg ∈ I and g(0) 6= 0 then
Λ(fg) = 0 = ev(0)(fg) = f(0)g(0) then 0 = f(0) = ev(0)(f) = Λ(f) and Λ ∈ Q⊥0 . Now, we
assume it is true for degree less than d. Let Λ ∈ D0 of degree d and f ∈ Q0 then there exists
g ∈ R such that g(0) 6= 0 and fg ∈ I: Λ(fg) = 0 = g(0)Λ(f) + (g − g(0))(∂1, ..., ∂n)(Λ)(f),
but Λ

′
:= g − g(0)(∂1, ..., ∂n)(Λ) is either zero if g = g(0) or it has smaller degree than Λ then

Λ(f) = 0 and λ ∈ Q⊥0 . Then D0 = Q⊥0 due to Q0 is a zero-dimensional ideal, D⊥0 = Q⊥⊥0 =
Q0 = (I⊥ ∩K[δ])⊥.

Corollary 5.24. Let I be a zero-dimensional ideal of R and Qξ its mξ-primary component then:

(I⊥ ∩K[δξ])
⊥ = Qξ

Proof. It follows from the bijection between K[[δξ]] and K[[δ]]

Theorem 5.25. (Structure theorem).Let I be an ideal such that Z(I) = {ξ1, ..., ξd} then:

I⊥ = Q⊥ξ1 ⊕ ...⊕Q
⊥
ξd

where Qξi is the mξi-primary component. Moreover, for all Λ ∈ I⊥ there exists pi(∂1, ..., ∂n) for
i = 1, ..., d such that Λ can be written as:

Λ =
s∑
i=1

ev(ξi) ◦ pi(∂) (5.3)
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Proof. As I = Qξ1∩...∩Qξd then thanks to the properties of the operator ⊥, I⊥ = Q⊥ξ1∩...∩Q
⊥
ξd

=

Q⊥ξ1 + ... + Q⊥ξd .Moreover, for i1, ..., ip ∈ {1, ..., d} and i 6= i1, ..., ip, Qi + (Qi1 ∩ ... ∩ Qip) = R

then: Q⊥i ∩ (Q⊥i1 + ...+Q⊥ip) = R⊥ = {0}, therefore we have a direct sum:

I⊥ = Q⊥ξ1 ⊕ ...⊕Q
⊥
ξd

and by the corollary 5.24:

I⊥ = Q⊥ξ1 ⊕ ...⊕Q
⊥
ξd

= (I⊥ ∩K[δξ1 ])⊕ ...⊕ (I⊥ ∩K[δξd ])

then for all Λ ∈ I⊥:

Λ = ev(ξ1) ◦ p1(∂)⊕ ...⊕ ev(ξd) ◦ pd(∂)
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Chapter 6

Gorenstein Algebras

This chapter is a brief look at some properties of the Gorenstein Algebras. All the results of this
chapter are taken from [4].

Lemma 6.1. If I1,I2,I are ideals of A, which is a commutative and unitary ring, then:

• i) (I : I1) ∩ (I : I2) = (I : I1 + I2)

• ii) If I1 + I2 = A, then (I : I1) + (I : I2) = (I : I1 ∩ I2)

Proof. i) Let x ∈ (I : I1) ∩ (I : I2) then, xI1 ⊆ I and xI2 ⊆ I, then: x(I1 + I2) ⊆ I, therefore
x ∈ (I : I1 + I2). Reciprocally, let x ∈ (I : I1 + I2), then xI1 + xI2 ⊆ I, in particular 0 ∈ I1 and
0 ∈ I2, then xI1 ⊆ I and xI2 ⊆ I, therefore x ∈ (I : I1) ∩ (I : I2).
ii) Let us prove that (I : I1 ∩ I2) ⊂ (I : I1) + (I : I2): as I1 + I2 = A, there exists q1 ∈ I1 and
q2 ∈ I2 such that 1 = q1 + q2. If x ∈ (I : I1 ∩ I2), then x(I1 ∩ I2) ⊆ I as I1I2 ⊂ I1 ∩ I2 then
x(I1I2) ⊆ I, then xq1I2 ⊂ I, xq2I1 ⊂ I and as x = xq1 + xq2 then x ∈ (I : I1) + (I : I2). The
other inclusion is immediate.

Theorem 6.2. If A = R/I where I is a zero-dimensional ideal, with the following primary
decomposition I = Q1 ∩ ... ∩Qd. Then A is a direct sum of sub-algebras A1, ..., Ad

1:

A = A1 ⊕ ...⊕Ad

where Ai := (0 : Qi/I) = {a ∈ A : qa ≡ 0 for all q ∈ Qi/I}

Proof. For all i ∈ {1, ..., d} and D ⊂ {1, ..., d} − {i}, Qi + ∩j∈LQj = K[x]. Thus, due to lemma
6.1, we have:

A1 + ...+Ad =

(0 : Q1) + ...+ (0 : Qd) = (0 : Q1 ∩ ... ∩Qd/I) = (0 : 0) = A

In order to prove, that the sum is direct, since: let i ∈ {1, ..., d− 1}:

(A1 + ...+Ad) ∩Ai+1 = ((0 : Q1/I) + ...+ (0 : Qd/I)) ∩ (0 : Qi+1) = (0 :
((Q1 ∩ ... ∩Qi) +Qi+1)/I) = (0 : R/I) = 0.

De�nition 6.3. Let A = R/I where I is a zero-dimensional ideal, then there exists a unique
(e1, ..., ed) ∈ A1 ⊕ ...⊕Ad = A = R/I such that:

1Strictly speaking Ai are ideals of the ring A whose identity element is 1 = e1 + · · ·+ ed. But, Ai can be seen

as sub-algebras whose identity element is Aei.
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1 = e1 + ...+ ed

ei for i ∈ {1, ..., d} are the idempotents elements of the algebra A.

Remark 6.4. e2
i = ei and eiej ≡ 0 for i 6= j since:

1 = e1 + ...+ ed = 12 = e2
1 + ...e2

d + 2
∑

1≤i<j≤d eiej

and Ai ∩Aj = 0 for i 6= j.

Proposition 6.5. Let A = R/I with I an ideal zero-dimensional such that A = A1 ⊕ ... ⊕ Ad.
Then Ai = Aei for all i ∈ {1, ..., d}.

Proof. Let a ∈ Ai, and 1 ≡ e1 + ...+ ed, then as Ai ∩Aj = 0 if i 6= j,

a ≡ ae1 + ...+ aed ≡ aei ∈ Aei
Reciprocally, if aei ∈ Aei, then a ∈ A and ei ∈ Ai, in particular Ai is and ideal of A, thus
aei ∈ Ai

De�nition 6.6. Let A be an algebra such that dimKA < ∞, then A is a Gorenstein Algebra if
A∗ is a free module of rank 1.

Proposition 6.7. If A = R/I is a Gorenstein algebra then the local subalgebras Ai, i = 1, ..., d
are Gorenstein algebras.

Proof. If we assume A is a Gorenstein algebra then there exists Λ such that: A∗ = Λ ∗A and we
can de�ne:

Λi : Ai → K
yei 7−→ Λ(yei)

Then we have Λi ∗Ai = A∗i , since: for any φi ∈ A∗i , we de�ne φ ∈ A∗ as follows:

φ : A→ K
x 7−→ φi(xei)

As A is a Gorenstein algebra, then there exists a ∈ A with φ = a ∗ Λ. And then, we have
φi = aei ∗ Λi, since: for any z ∈ Ai, there exists y ∈ A such that z = yei, then:

(aei ∗ Λi)(yei) = Λi(yeiaei) = Λi(yeia) = Λ(yeia) = a ∗ Λ(yei) = φ(yei) = φi(yeiei) = φi(yei).

De�nition 6.8. The linear form Λ such that Λ ∗A = A∗ is the residue of A.

Remark 6.9. If A is a Gorenstein algebra and Λ is a residue of A then Λi = ei ∗Λ is a residue
of the sub-algebra Ai.



Chapter 7

Hankel operators and quotient algebra

In this chapter, we recall the Hankel Operators, the quotient algebra and its necessary properties,
to describe and analyze the �nal algorithm. We refer to [1] for the results in this chapter.

De�nition 7.1. For any Λ ∈ R∗ we de�ne the bilinear form QΛ, such that:

QΛ:R−→K
(a, b)7−→ Λ(a, b)

The matrix of QΛ, in the monomial basis of R, is QΛ=(Λ(xα+β))α,βα, β ∈ Nn.

De�nition 7.2. For any Λ ∈ R∗, we de�ne the Hankel operator HΛ from R to R∗ as

HΛ:R−→R∗
p 7−→ p ∗ Λ

The matrix of HΛ, in the monomial basis and in the dual basis, d
α
, is HΛ=(Λ(xα+β))α,βα, β ∈

Nn.

In what follows we identify HΛ and QΛ, since, for all a,b ∈ R, due to the R-module structure, it
holds:

QΛ(a, b)=Λ(ab)=(a ∗ Λ)(b)=(b ∗ Λ)(a)=HΛ(a)(b)=HΛ(b)(a).

De�nition 7.3. Given B = {b1, .., br}, B
′

= {b1, .., br} ⊂ R we de�ne:

HB,B′

Λ : 〈B〉 −→
〈
B
′
〉∗

This operator applies each element bi ∈ 〈B〉 to the form bi ∗ Λ ∈ R∗ and then, thanks to
〈
B
′
〉∗

⊂ R∗, we can restrict bi ∗ Λ to
〈
B
′
〉
. Let HB,B

′

Λ = (Λ(bib
′
j))1 ≤ i ≤ r, 1 ≤ j ≤ r

′
. If B

′
=B, we

use the notation HB
Λ and HB

′
,B

Λ .

Proposition 7.4. Let IΛ be the kernel of HΛ. Then, IΛ is an ideal of R

Proof. From the de�nition of the Hankel operators, we can deduce that a polynomial p ∈ R
belongs to the kernel of HΛ if and only if p ∗ Λ=0, which in turn holds if and only if for all q ∈
R, Λ(p, q)=0.

Let p1,p2 ∈ IΛ. Then for all q ∈ R, Λ((p1 + p2)q)=Λ(p1q) + Λ(p2q)=0. Thus, p1 + p2 ∈ IΛ. If p
∈ IΛ and p

′ ∈ R, then Λ(pp
′
q)=0 holds for all q ∈ R. Thus, pp′ ∈ IΛ and IΛ is an ideal.
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Let AΛ=R/IΛ be the quotient algebra of polynomials modulo the ideal IΛ, which, as Proposition
7.4 states, is the kernel of HΛ. The rank of HΛ is the dimension of AΛ as a K-vector space.

Proposition 7.5. If rankHΛ = r <∞ ,AΛ = R/IΛ is a Gorenstein algebra.

Proof. In order to see this, let us see that the dual space A∗Λ, can be identi�ed with the set D =
{ q ∗ Λ s.t. q ∈ R }:

By de�nition D⊥ = { p ∈ R s.t. ∀ q ∈ R, q ∗ Λ(p) = Λ(pq) = 0 } . Therefore, D⊥ = IΛ, which
is the ideal of the kernel of HΛ. Since A

∗
Λ
∼=I⊥Λ by 5.17, AΛ is the set of the linear forms in R∗

which vanish on IΛ, we deduce that A
∗=I⊥Λ =D⊥⊥=D. The last equality is true because D is a

submodule of R, which has �nite dimension equal to r like K-vector space, since rankHΛ = r <
∞.

Moreover if p ∗Λ=0 then p ≡ 0 in AΛ. Hence, A
∗
Λ is a free rank 1 AΛ-module (generated by Λ).

Thus AΛ is a Gorenstein algebra.

De�nition 7.6. For any B ⊂ R let B+= B ∪ x1B ∪ · · · xnB and ∂B=B+-B.

Proposition 7.7. Assume that rank(HΛ)=r < ∞ and let B={b1, ..., br} ⊂ R such that HB
Λ

is invertible. Then {b1, . . . , br} is a basis of AΛ. If 1 ∈ 〈B〉 then the ideal IΛ is generated by
KerHB+

Λ .

Proof. First we are going to prove that 〈b1, ..., br〉 ∩ IΛ = {0}. Let p ∈ 〈 b1, ..., br〉 ∩ IΛ.
Then p=

∑
i pibi with pi ∈ K and Λ(pbj)=0. The second equation implies that HB

Λ ·p=0, where
p=[p1, ..., pr]

t ∈ Kr. Since HB
Λ is invertible, this implies that p=0 and p = 0.

Then we deduce that b1 ∗ Λ, ..., br ∗ Λ is a set linearly independent since otherwise there exists
[µ1, ..., µr] 6= 0 such that µi(b1 ∗Λ1)+ ...+µr(br ∗Λr) = (µ1b1 + ...+µr(br))∗Λ = 0 but this is not
possible because 〈b1, ..., br〉 ∩ IΛ = {0} and we have a contradiction. Hence, since rank(HΛ)=r,
{b1 ∗ Λ,...,br ∗ Λ} span the image of HΛ. For any, p ∈ R, it holds that p∗Λ=

∑r
i=1 µi(bi ∗ Λ)

for some µ1, ..., µr ∈ K. We deduce that p −
∑r

i=1 µibi ∈ IΛ. This yields the decomposition
R=B⊕IΛ, and shows that b1, ..., br is a basis of AΛ.

Example 7.8.

Let τ = δα4 + δα5 + δα6 ∈ K[x1, x2, x3]∗ where α1 = (1, 0, 0),α2 = (0, 1, 0),α3 = (0, 0, 1),α4 =
(2, 0, 0),α5 = (0, 2, 0),α6 = (0, 0, 2), and α0 = (0, 0, 0). We are going to compute the in�nite
matrix of Hτ , from the basis (xα)α∈Nn to the basis (δα)α∈Nn . In order to do this, we realize that:

x1 ∗ τ = 2δα1 , x2
1 ∗ τ = 2δ0

x2 ∗ τ = 2δα2 , x2
2 ∗ τ = 2δ0

x3 ∗ τ = 2δα3 , x3
3 ∗ τ = 2δ0

and for any monomial m, non-constant di�erent from {x1, x2, x3, x
2
1, x

2
2, x

2
3}, we have m ∗ τ ≡ 0,

therefore the matrix Hτ has a �nite number of non-zero entries:
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1 x1 x2 x3 x2
1 x2

2 x2
3

∞−→
1 0 0 0 0 2 2 2 0
δα1 0 2 0 0 0 0 0 0
δα2 0 0 2 0 0 0 0 0
δα3 0 0 0 2 0 0 0 0
δα4 2 0 0 0 0 0 0 0
δα5 2 0 0 0 0 0 0 0
δα6 2 0 0 0 0 0 0 0
∞ 0 0 0 0 0 0 0 0

(7.1)

Clearly rank(Hτ ) = 5, and the set B =
〈
1, x1, x2, x3, x

2
1

〉
makes HB

τ invertible, then by the
previous Proposition 7.7, B is a basis of Aτ , and by the Proposition 7.5, Aτ is a Gorenstein

Algebra. Moreover, 1 ∈ B, then the ideal Iτ is generated by
〈
Ker(HB+

τ )
〉
. By computing this

kernel, we get; f ∈ Iτ if and only if f can be written as f = a(x2
1 − x2

2) + b(x2
1 − x2

3) + c(x1x2) +
d(x1x3)+e(x2x3)+ terms of degree greater or equal to 3 where a, b, c, d, e are constant. Therefore
Iτ = (x2

1 − x2
2, x

2
1 − x2

3, x1x2, x1x3, x2x3).

The procedure followed by the example gives us a way to build Gorenstein Algebras: given a
polynomial pi ∈ K[∂1, ..., ∂n], compute the ideal I ∈ K[x1, ..., xn] orthogonal to pi and the quo-
tient algebra K[x1, ..., xn]/I is a Gorenstein Algebra.

In order to compute the zeros of an ideal IΛ when we know a basis of AΛ, we exploit the properties
of the operators of multiplication in AΛ.

De�nition 7.9. Let Λ ∈ R∗ and a ∈ AΛ, with dimK(AΛ) = r < ∞, and let (xα)α∈E, the
monomial basis of AΛ. The operator of multiplication in AΛ is:

Ma: AΛ−→ AΛ

b7−→Ma(b) = ab

The matrix of Ma, in the basis (xα)α∈E will be denoted Ma.

Proposition 7.10. The transposed endomorphism of Ma is:

M t
a: A

∗
Λ−→ A∗Λ

Λ 7−→Ma(Λ) = a ∗ Λ = Λ ◦Ma

The matrix of M t
a in the basis (d

α
)α∈E is the transpose of Ma. Therefore, the operators M

t
a and

Ma have the same eigenvalues.

Proof. for any xαi ∈ (xα)α∈E , then ax
αi can be written as:

axαi =
∑
α∈E

µαiαx
α (7.2)
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the matrix Ma is:

Ma =


µα1α1 µα2α1 · · · µαrα1

µα1α2 µα2α2 · · · µαrα2

...
...

...
µα1αr µα2αr · · · µαrαr


Therefore, for any element d

αi∈ (d
α
)α∈E (the dual basis of (xα)α∈E) a ∗ d

αi can be written as:

a ∗ dαi =
∑

α∈E a ∗ d
αi(xα)d

α
=
∑

α∈E d
αi(axα)d

α
=
∑

α∈E µααid
α

The last equality is due to in 7.2 the component αi-th of axα is µααi .Then the matrix of Mt
a in

the basis (d
α
)α∈E is:

Mt
a =


µα1α1 µα1α2 · · · µα1αr

µα2α1 µα2α2 · · · µα2αr
...

...
...

µαrα1 µαrα2 · · · µαrαr


Therefore, Mt

a is the transpose of Ma.

Theorem 7.11. Let Z(IΛ)={ξ1, ..., ξd} the variety de�ned by the ideal IΛ:

• i) If a ∈ K(x), then the eigenvalues of the operators M t
a and Ma are a(ξ1),...,a(ξd). In

particular, the eigenvalues of Mxi , i = 1, ..., n, are the ith-coordinates of the roots ξ1, ..., ξd.

• ii) If a ∈ K(x), then the evaluations ev(ξ1),...,ev(ξd) are the eigenvectors of the operators
M t
a respectively associated with the eigenvalues a(ξ1),...,a(ξd) . Moreover, these evaluations

are the only eigenvectors common to all endomorphism M t
a, a ∈ K(x).

Proof. i) Let i ∈ { 1, ..., d }. For any b ∈ AΛ,

(M t
a(ev(ξi)))(b)=ev(ξi)(ab)=(a(ξi)ev(ξi))(b)

this proves that a(ξ1),...,a(ξd) are the eigenvalues of the operators M t
a and Ma. Moreover, the

ev(ξi) are the eigenvectors of M
t
a and common to all endomorphism M t

a.

Reciprocally, any eigenvalue of Ma is a(ξi):
Let p(x) =

∏
ξ∈Z(IΛ)(a(x)− a(ξ)) ∈ K(x) this polynomial vanishes over Z(IΛ). By the Hilberts

Nullstellensatz, there exists m ∈ N such that pm ∈ IΛ. If I designates the identity on AΛ , then
the operator pm(Ma) =

∏
ξ∈Z(IΛ)(Ma−a(ξ)I) is null, and the minimal polynomial of Ma divides

to
∏
ξ∈Z(IΛ)(T − a(ξ))m. Therefore the eigenvalues of Ma are a(ξi), with ξi ∈ Z(IΛ).

ii)Let Λ ∈ AΛ an eigenvector common to all endomorphism M t
a, a ∈ K(x). If γ=(γ1, ..., γn) ∈

Kn satis�es M t
xi=γiΛ, with i=1, ..., n , then any monomial xα satis�es:

(M t
xi(Λ))(x)α=Λ(xix

α)=γiΛ(xα)

Then for any α=(α1, ..., αn) ∈ Nn,

Λ(xα) = γα1
1 · · · γαnn Λ(1) = Λ(1)ev(γ)(xα).
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Therefore Λ=Λ(1)ev(γ), since Λ ∈ AΛ=I⊥Λ , Λ(p) = Λ(1)p(γ) = 0 for any p ∈ IΛ. Since Λ(1) 6= 0,
γ ∈ Z(IΛ) and ev(γ) ∈ AΛ.

Theorem 7.12. If rankHΛ = r <∞ ,then:

• i)AΛ is of dimension r over K and the set of roots Z(IΛ) = {ξ1, .., ξd} is �nite with d ≤ r.

• ii)There exists pi ∈ K[∂1, .., ∂n] such that Λ =
∑d

i=1 ev(ξi) ◦ pi(α).
Moreover, the multiplicity of ξi is the dimension of the vector space generated by ev(ξi) ◦
pi(α).

Proof. i)Since rank(HΛ) < ∞ the dimension of the vector space AΛ = R/IΛ is also r. Thus, let
us see that, the number of zeros of the ideal IΛ, denoted {ξ1, .., ξd}, is at most r, with d ≤ r:
If r is the dimension of the K-vector space AΛ, then for any i ∈ {1, ..., n}, {1, xi, x2

i , ..., x
r
i } is a set

linearly dependent of AΛ. Then, there exists, c0, ..., cr ∈ K such that, qi(xi) = c0+c1xi+...+crx
r
i

∈ IΛ . For any i ∈ {1, ..., n} the ith-coordinates of the zeros of Z(IΛ), are roots of qi(xi). Thus,
if ξj ∈ Z(IΛ) then qi(ξji) = 0 and like qi has at most r roots, |Z(IΛ)| ≤ r.
ii) We can apply the structure theorem 5.3, in order to get the decomposition since obviously
Λ ∈ I⊥Λ : Λ ∈ I⊥Λ if Λ(p) = 0 for all p ∈ IΛ but IΛ = kerHΛ then p ∗ Λ ≡ 0 for all p ∈ IΛ in
particular p ∗ Λ(1) = Λ(p) = 0. On the other hand, we saw in the proof of the proposition 7.5
that Λ is the residue of AΛ, then by the proof of 6.7 and due to the decomposition is unique,
pi(∂) ◦ ev(ξi) is the residue of the sub-algebra Q

⊥
ξi
that is, (pi ◦ ev(ξi)) ∗Q⊥ξ = (Q⊥ξi)

∗, where Qξi
is the component mξi-primary of IΛ. Therefore, the dimension of the vector space generated by
pi(∂) ◦ ev(ξi) is the multiplicity of ξi.

Remark 7.13. If the �eld K is of characteristic 0, the inverse system ev(ξi)◦pi(α) is isomorphic
to the vector space generated by pi and its derivatives of any order with respect to the variables
∂i

De�nition 7.14. For f ∈ Sd, we call generalized decomposition of f∗ a decomposition such that
f∗ =

∑d
i=1 ev(ξi) ◦ pi(α) where the sum for i = 1, ..., d of the dimensions of the vector space

spanned by the inverse system generated by ev(ξi) ◦ pi(α) is minimal. This minimal sum of the
dimensions is called length of f .

Remark 7.15. The length of f∗ is the rank of the corresponding Hankel operator HΛ.

Theorem 7.16. Let Λ ∈ R∗. Λ =
∑r

i=1 λiev(ξi) with λi 6= 0 and ξi distinct points of Kn, i�
rankHΛ = r and IΛ is a radical ideal.

Proof. If Λ =
∑r

i=i λ1ev(ξ1), with λi 6= 0 and ξi distinct points of Kn. Let {e1, ..., er} be a family
of interpolation polynomials at these points: ei(ξj) = 1 if i = j and 0 otherwise. Let Iξ be the
ideal of polynomials which vanish at ξ1, ..., ξr, which is a radical ideal. Clearly we have Iξ ⊂ IΛ:
let p ∈ Iξ then p(ξi) = 0 for any i = 1, ..., r and Λ(p) =

∑r
i=1 λip(ξi) = 0 thus p ∈ IΛ. Let us see

that IΛ ⊂ Iξ: for any p ∈ IΛ, and i = 1, ..., r, we have p ∗ Λ(ei) = Λ(pei) = λip(ξi) = 0, which
proves that IΛ = Iξ, and IΛ is a radical ideal. And the rank(HΛ) = r because the quotient AΛ

is generated by the interpolation polynomials e1, ..., er.

Conversely if rankHΛ = r and IΛ is radical, then by the previous theorem Λ =
∑r

i=1 ev(ξ)◦pi(∂),
and due to the multiplicity of ξ is the dimension of the vector space spanned by the inverse system
generated by ev(ξ) ◦ pi(α) the multiplicity of ξi is 1 and the polynomials pi are of degree 0.
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Proposition 7.17. For any linear form Λ ∈ R∗ such that rank HΛ < ∞ and any a ∈ AΛ, we
have:

Ha∗Λ(p) = M t
a ◦HΛ(p)

Proof. Ha∗Λ(p) = a ∗ (p ∗ Λ) = M t
a ◦HΛ(p)

Using the previous Proposition and Theorem 3, we can recover the points ξi ∈ Kn by eigenvector
computation as follows:

Assume that B = 〈b1, ..., br〉 ⊂ R with |B| = rank(HΛ) and HB
Λ invertible, then by the previous

proposition, Ha∗Λ(p) = M t
a ◦HΛ(p). Then by the theorem 7.11, the solutions of the generalized

eigenvalue problem:

Mt
a(HB

Λv) = λHB
Λv if and only if (HB

a∗Λ − ΛHλ)v = 0

for any a ∈ R, yield the common eigenvectors HB
Λv of Mt

a, that are the evaluation ev(ξ) at
the roots, i = 1, ..., d. Therefore these common eigenvectors HB

Λv are up to scalar, the vectors
[b1(ξi), ..., br(ξi)] (i = 1, ..., d), since:

If the dual basis to the basis 〈b1, ..., br〉 is 〈B〉∗ =
〈
δ1, ..., δr

〉
then for any Λ ∈ A∗:

Λ = Λ(b1)δ1 + ...+ Λ(br)δ
r ,

particularly :

ev(ξi) = b1(ξi)δ
1 + ...+ br(ξi)δ

r,

then the vectors [b1(ξi), ..., br(ξi)] for i = 1, ..., d are the eigenvectors ev(ξi) in the basis 〈B〉∗.
Notice that it is enough to compute the common eigenvectors of Hxi∗Λ for i = 1, ..., n. Once the
common eigenvectors ev(ξi) for i = 1, ..., d have been computed, in order to recover the points
ξi ∈ Kn for i = 1, ..., d, it is necessary to compute the eigenvalue of Hxj∗Λ for j = 1, ..., n which
is the j-th coordinate of the point ξi.

Particularly if Λ =
∑d

i=1 λiev(ξi) (λi 6= 0), then the roots are simple, and the computation of
the eigenvectors of one operator Ma for any a ∈ R is su�cient, since: for any a ∈ R, Ma is
diagonalizable and all the eigenvectors HB

Λv are, up to scalar factor, the evaluations ev(ξi) at the
roots.



Chapter 8

Truncated Hankel Operators

As we saw in the section "Decomposition using duality", our problem of symmetric tensor de-
composition can be restated as follows:

"Let Λf∗ ∈ R∗d �nd the minimal number of non-zero vectors k1, ..., kr ∈ Kn and non-zero scalars
λ1, ..., λr ∈ K such that Λf∗ =

∑
λiev(ki)".

Then by virtue of the Theorem 7.16, Λ =
∑r

i=1 λiev(ki) with λi 6= 0 and ki distinct points of Kn

if and only if rank(HΛ) = r and IΛ is a radical ideal.

In this section, we characterize the conditions under which Λf∗ ∈ R∗d can be extended to Λ ∈ R∗
when the rank of HΛ is r. To get this result, �rst we study how to parametrize the set of ideals
I of R such that a given set B of monomials is a connected basis of the quotient R/I.

Lemma 8.1. Let B ⊂ R a �nite set of monomials connected to 1. For z ∈ KN :=|B|×|∂B| we
de�ne the linear maps, for i = 1, ..., n:

MB
i (z) : 〈B〉 → 〈B〉

such that:

MB
i (z)(b) =

{
xib if xi ∈ B;∑

β zxib,βx
β if xib ∈ ∂B.

And we de�ne also the following subsets:

V B := {z ∈ KN : MB
j (z) ◦MB

i (z)−MB
i (z) ◦MB

j (z)}

and

HB := {I ⊂ R ideal : B is a basis of R/I}

Then HB is in bijection with V B.

Proof. We de�ne the following application:

φ : HB → V B

I 7−→ z

39
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where z = (zα,β)α∈∂B,β∈B is de�ned as follows: for all α ∈ ∂B we get zα,β due to the unique
decomposition of xα on B module I, that is:

xα =
∑

β∈B zα,βx
β

This application is well de�ned because R/I has structure of commutative algebra. We will show
that φ is injective. In order to do this we only have to prove that ({hα(x)}α∈∂B) = I, where for
all α ∈ ∂B:

hα(x) = xα −
∑

β∈B zα,βx
β

It is easy to see that ({hα(x)}α∈∂B) ⊂ I. Reciprocally, we will show I ⊂ ({hα(x)}α∈∂B). We
de�ne for all P =

∑
γ aγx

γ ∈ R the following application:

P (M) : 〈B〉 → 〈B〉

where P (M) =
∑

γ aγ(MB(z))γ and (MB(z))γ := MB
1 (z)γ1 ◦...◦MB

n (z)γn . As the multiplication
operators commute the application is well de�ned. Note that P (M)(1) is the decomposition of
P in the basis B on R/I as K-vector space of �nite dimension. Then we will prove by induction
on the degree of P , that:

P − P (M)(1) ∈ ({hα(x)}α∈∂B)

We can assume P is a monomial, due to the linearity of the operators.

• If P = k with k a constant, then it is clear that P −P (M)(1) = k−k = 0 ∈ ({hα(x)}α∈∂B)

• If we assume it holds true for degree N . Let us see that for P of degree N + 1 it holds
true also. We can write P = xiP

′
with P

′
of degree N . And we want to prove that

xiP
′ − P (M)(1) ∈ ({hα(x)}α∈∂B). In order to prove this, we write:

xiP
′ − P (M)(1) = xi(P

′ − P ′(M)(1)) + xiP
′
(M)(1)− P (M)(1)

By induction hypothesis we have P
′ − P ′(M)(1) ∈ ({hα(x)}α∈∂B), thus we only have to

prove that:
xiP

′
(M)(1)− P (M)(1) ∈ ({hα(x)}α∈∂B) (8.1)

where P = xiP
′
. We will prove 8.1 by induction with respect to the distance from P

′
to

the border:

� If P
′ ∈ B then either xiP

′ ∈ ∂B or xiP
′ ∈ B:

∗ If xiP
′ ∈ B then:

xiP
′
(M)(1)− P (M)(1) = xiP

′ − xiP
′

= 0 ∈ ({hα(x)}α∈∂B)

∗ If xiP
′ ∈ ∂B then:

xiP
′
(M)(1)− P (M)(1) = xiP

′ −
∑

β∈B zxiP ′ ,βx
β ∈ ({hα(x)}α∈∂B)

� Assume 8.1 holds true for monomials P ′ such that the distance from P ′ to the ∂B
is less than or equal to η, that is, for monomials P

′
= xγ1

1 . . . xγnn b, where b ∈ B and
|γ1 + ...+ γn| = η.

We are going to prove that it holds also true for monomials R′ such that the distances
to ∂B is less than or equal to η+ 1. Namely, let R′ = xjx

γ1
1 . . . xγnn b, then we want to

prove that, xiR
′
(M)(1)−R(M)(1) ∈ ({hα(x)}α∈∂B), where R = xiR

′
. We have:

xiR
′
(M)(1)−R(M)(1) =
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xi(M
B
j (z)◦MB

1 (z)γ1◦...◦MB
n (z)γn)(b)−(MB

i (z)◦MB
j (z)◦MB

1 (z)γ1◦...◦MB
n (z)γn)(b) =

MB
j (z)xi(M

B
1 (z)γ1 ◦ ...◦MB

n (z)γn)(b)−MB
j (z)(MB

i (z)◦MB
1 (z)γ1 ◦ ...◦MB

n (z)γn)(b) =

MB
j (z)[xi(M

B
1 (z)γ1 ◦ ... ◦MB

n (z)γn)(b)− (MB
i (z) ◦MB

1 (z)γ1 ◦ ... ◦MB
n (z)γn)(b)] =

MB
j (z)[xiP

′
(M)(1)− P (M)(1)] = 0 ∈ ({hα(x)}α∈∂B)

The last equality is due to by induction hypothesis: xiP
′
(M)(1)−P (M)(1) ∈ ({hα(x)}α∈∂B),

and moreover (hα(x)}α∈∂B) ⊂ I and B is a basis of R/I.

Thus P − P (M)(1) ∈ ({hα(x)}α∈∂B).

Therefore, if P ∈ I, P ∈ ({hα(x)}α∈∂B). And, �nally, I = ({hα(x)}α∈∂B) and φ is injective. In
order to prove, φ is surjective, we are going to build the application J such that φ(J(z)) = z for
all z ∈ V B. Let z = (zα,β)α∈∂B,β∈B ∈ V B, and we de�ne the following application:

σz : R → 〈B〉
P 7−→ P (M)(1)

It is well de�ned since the multiplication operators (MB
i (z))1≤i≤n commute. Then, we can de�ne

the following application:

J : V B → HB

z 7−→ ker(σz)

It is well de�ned since for all z, J(z) = ker(σz) is an ideal due to σz is a ring homomorphism.
Moreover, as for all b ∈ B, b(M)(1) = b, the application σz is surjective , then R/J(z) ∼= 〈B〉.
Thus, J(z) ∈ HB, and for all α ∈ ∂B, xα =

∑
β∈B zα,βx

β module J(z), then φ(J(z)) = z.
Therefore φ is a bijection.

De�nition 8.2. Let B ⊂ Rd a set of monomials of degree at most d, and let Λ ∈ R∗d, the Hankel
matrix HB

Λ (h) is the matrix de�ned as follows:

HB
Λ (h)(xγ) =

{
Λ(xγ) if |γ| ≤ d;
hγ in other case.

where hγ is a variable, and h is the set of new variables. We will denote by HB
Λ (h) : 〈B〉 → 〈B〉∗

the linear form associated to the matrix HB
Λ (h) in the basis B.

De�nition 8.3. Let Λ ∈ R∗d such that HB
Λ (h) is invertible in K(h), that is the rational polynomial

functions in h and B ⊂ Rd a set of monomials. We de�ne the multiplication operators:

MB
i (h) := (HB

Λ (h))−1Hxi∗Λ(h)

Remark 8.4. With the previous de�nition of the multiplication operators we have: for all i ∈
{1, ..., n} and for all h ∈ KN (for some N ∈ N):

• Mi(h)(b) = xib for all b ∈ B if xib ∈ B
• Mi(h)(b) =

∑
β∈B hxibxβx

β if xib ∈ ∂B
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Notation 8.5. For any h ∈ N (for some N ∈ N) we write:

hxα+β := hα+β

We are going to need the following property on the basis of AΛ.

De�nition 8.6. Let B ⊂ R a set of monomials. We say B is connected to 1 is for all b ∈ B
either b = 1 or there exists a variable xi and b ∈ B for i = 1, ..., n such that b = xib

′
.

Theorem 8.7. Let B = {xβ1 , ..., xβr} be a set of monomials of degree at most d, connected to
1 and let Λ be a linear form in 〈BB+〉≤d. Let Λ(h) be the linear form of 〈BB+〉∗ de�ned as
follows:

Λ(h)(xγ) =

{
Λ(xγ) if |γ| ≤ d;
hγ in other case.

where hγ ∈ K is a variable. Then Λ admits an extension Λ̃ ∈ R∗ such that H
Λ̃
is of rank r with

B a basis of A
Λ̃
if and only if there exists a solution h for the following problem:

• MB
i (h)MB

j (h)−MB
j (h)MB

i (h) = 0, (1 ≤ i < j ≤ n)

• det(HB
Λ (h) 6= 0.

Moreover, for every solution h0 ∈ KN an extension such Λ̃ = Λ(h0) over 〈BB+〉 is unique.

Proof. If there exists Λ̃ ∈ R∗ which extends Λ with H
Λ̃
of rank r and B a basis of A

Λ̃
. We de�ne

h
0 ∈ KN (for some N ∈ N) as follows:

for all xγ ∈ 〈BB+〉 and |γ| > d:

h0
γ := Λ̃(xγ)

then Λ(h
0
) = Λ̃ over 〈BB+〉 and HB

Λ(h
0
)

= HB
Λ̃

but rank(H
Λ̃

) = r and B a basis of H
Λ̃
then H

Λ̃

is invertible and then Λ(h
0
) is invertible. Therefore we can de�ne the multiplication operators:

MB
i (h0) := (HB

Λ (h0))−1Hxi∗Λ(h0)

then:

MB
i (h0)MB

j (h0) : 〈B〉
HB
xj∗Λ

(h0)

→ 〈B〉∗
(HB

Λ (h0))−1

→ 〈B〉
HB
xi∗Λ

(h0)
→ 〈B〉∗

(HB
Λ (h0))−1

→ 〈B〉
b 7−→ xjb ∗ Λ 7−→ xjb 7−→ xixjb ∗ Λ 7−→ xixjb

as AΛ is a commutative algebra for all b ∈ 〈B〉 = A
Λ̃
, xixjb = xjxib and:

MB
i (h0)MB

j (h0)−MB
i (h0)MB

j (h0) = 0
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Thus h
0
is a solution of the problem.

Reciprocally, if there exists h
0 ∈ KN (for some N ∈ N) such that the multiplication opera-

tors commute. By the theorem 8.1, there exists a bijection between the variety, V B := {h :
MB
i (h)MB

j (h) −MB
i (h)MB

j (h), 1 ≤ i < j ≤ n} = 0 and the set HB := {I ⊂ R : R/I is a
free R-module of rank µ < ∞ and B as basis }. Therefore, there exists a unique ideal I ⊂ R
generated by the set border relations:

K := {xα −
∑

β∈B hα+βx
β ∀α ∈ ∂B} = {xib−

∑
β∈B x

β ∀1 ≤ i ≤ n and ∀b ∈ B} =

{xib−MB
i (h

0
)(b)∀1 ≤ i ≤ n and ∀b ∈ B} 1

such that R = 〈B〉 ⊕ I, where I = (K). We de�ne Λ̃ ∈ R∗ as follows:

∀p ∈ R Λ̃[p] = Λ(h
0
)[p(M)(1)]

where p(M) is the operator obtained by substitution of the variables xi by the commuting
operators Mi, then p(M) is the operator of multiplication by p module I.
If p ∈ I , for any q ∈ R then:

Λ̃[pq] = Λ(h
0
)[0 · q(M)(1)] = 0

then I ⊂ KeH
Λ̃
.

We will prove by induction on the degree of b
′ ∈ B:

Λ(h
0
)[b
′
b] = Λ(h

0
)[b
′
(M)(b)]

for all b ∈ B.

• for b
′

= 1 Λ(h
0
)[b] = Λ(h

0
)[1(M)(b)] = Λ(h)0[1b] = Λ(h

0
)[b]

• if b
′ 6= 1 as B is connected to 1 then b

′
= xib

′′
for some variable xi and some element

b
′′ ∈ B. By construction of the operators MB

i (h
0
) and for all b ∈ B:

Λ(h
0
)[b
′
b] = Λ(h

0
)[b
′′
xib] = Λ(h

0
)[b
′′
MB
i (h

0
)(b)].

By induction hypothesis and as b
′′
has smaller degree than b

′
,for all b ∈ B we have:

Λ(h
0
)[b
′′
b] = Λ(h

0
)[b
′′
(M)(b)]

In particular, MB
i (h

0
)(b) ∈ B then:

Λ(h
0
)[b
′′
MB
i (h

0
)(b)] = Λ(h

0
)[b
′′
(M) ◦MB

i (h
0
)(b)].

as b
′

= xib
′′
, thus:

Λ(h
0
)[b
′′
(M) ◦MB

i (h
0
)(b)] = Λ(h

0
)[b
′
(M)(b)]

Therefore:

Λ(h
0
)[b
′
b] = Λ(h

0
)[b
′
(M)(b)]

On the other hand, let b+ ∈ B+, there exists 1 ≤ i ≤ n and b ∈ B such that xib = b+. By
de�nition :

b(M)(1) = b for all b ∈ B.
1Note that in the lemma 8.1 we write zα,β and in this case it is convenient to write zα+β
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Then for all b
′ ∈ B:

Λ(h
0
)[b
′
b+] = Λ(h

0
)[b
′
xib] = Λ(h

0
)[b
′
MB
i (h

0
)(b)] = Λ(h

0
)[b
′
MB
i (h

0
)◦b(M)(1)] = Λ(h

0
)[b
′
b+(M)(1)].

Then for all b ∈ B and b+ ∈ B+

Λ(h
0
)[bb+] = Λ̃[bb+].

Therefore, Λ(h
0
) = Λ̃ over 〈BB+〉 and Λ̃ is an extension of Λ.And det(HB

Λ̃
) = det(HB

Λ(h
0
)
) 6= 0.

Then we deduce that B is a basis of A
Λ̃
and H

Λ̃
has rank r.

Suppose there exists another Λ
′ ∈ R∗ which extends Λ(h) ∈ 〈BB+〉∗ such that rankHΛ′ = r

with B a basis of HΛ
′ . By the Proposition 7.7:

IΛ′ = kerHΛ′ = (kerHBB+

Λ′
) = (kerHBB+

Λ̃
) = I

Λ̃

therefore Λ
′

= Λ̃ because Λ
′
coincides with Λ̃ on B.

Example 8.8. If we have the following Λ(h) de�ned over 〈B.B+〉 with B =
〈
1, x1, x2, x3, x

2
1

〉
and B ⊂ R := K[x1, x2, x3] such that:

Λ(h)(xγ) =

{
Λ(xγ) if |γ| ≤ 4;
hγ in other case.

where the matrix HBB+

Λ (h) is:

HBB+

Λ (h) =



1 x1 x2 x3 x2
1

1 0 0 0 0 2
x1 0 2 0 0 0
x2 0 0 2 0 0
x3 0 0 0 2 0
x2

1 2 0 0 0 0
x1x2 0 0 0 0 0
x1x3 0 0 0 0 0
x2

2 2 0 0 0 0
x2x3 0 0 0 0 0
x2

3 2 0 0 0 0
x3

1 0 0 0 0 h500

x2
1x2 0 0 0 0 h410

x2
1x3 0 0 0 0 h401


We are going to compute h = (h500, h410, h401), in the case there exists solution, in the same
way that the �nal symmetric tensor decomposition does it, in order to say that Λ(h) admits an
extension Λ̃ ∈ R∗:

The second condition of the previous theorem is satis�ed by HB
Λ (h) since det(HB

Λ (h)) 6= 0 and:
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(HB
Λ (h))−1 =


0 0 0 0 1

2
0 1

2 0 0 0
0 0 1

2 0 0
0 0 0 1

2 0
1
2 0 0 0 0


Also we need that the multiplication operators commute, in order to do this we compute the
matrix HB

x1∗Λ,H
B
x2∗Λ,H

B
x3∗Λ:

Hx1∗Λ(h) =


0 2 0 0 0
2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 h500



Hx2∗Λ(h) =


0 0 2 0 0
0 0 0 0 0
2 0 0 0 0
0 0 0 0 0
0 0 0 0 h410



Hx3∗Λ(h) =


0 0 0 2 0
0 0 0 0 0
0 0 0 0 0
2 0 0 0 0
0 0 0 0 h401


We compute the multiplication operators:

MB
i (h) := (HB

Λ (h))−1Hxi∗Λ(h)

and we form all the possible matrix equations:

MB
i (h)MB

j (h)−MB
j (h)MB

i (h) = 0, 1 ≤ i < j ≤ 3)

Then we get
(

3
2

)
equations whose solutions are h500 = h410 = h401 = 0. Then by the theorem

8.7, Λ(h) admits an extension Λ̃ ∈ R∗. Moreover, for this solution the extension is unique, and
for h = (0, 0, 0), we have HBB+

Λ (h)=HBB+

τ where τ = δα1 + δα2 + δα3 de�ned in the example

7.1,then Λ̃ = τ .

Theorem 8.9. Let B = {xβ1 , ..., xβr} be a set of monomials of degree at most d, connected to
1, and let Λ ∈ 〈B+B+〉∗≤d and Λ(h) ∈ 〈B+B+〉∗ de�ned as follows:

Λ(h)(xγ) =

{
Λ(xγ) if |γ| ≤ d;
hγ in other case.
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Then, Λ admits an extension Λ̃ ∈ R∗ such that H
Λ̃
is of rank r, with B a basis of A

Λ̃
if and only

if there exists a solution h to the problem:

• i) All (r + 1)× (r + 1) minors of HB+

Λ (h) vanish.

• ii) det(HB
Λ )(h) 6= 0

Moreover, for every solution h0 ∈ KN an extension such Λ̃ = Λ(h0) over 〈B+B+〉 is unique.

Proof. If there exists Λ̃ ∈ R∗ extension. We de�ne h
0 ∈ KM (for some M ∈ N) as follows: for

all xγ ∈ 〈B+B+〉 such that |γ| > d:

h0
γ := Λ̃(xγ)

As H
Λ̃
is of rank r and A

Λ̃
has B as basis then all (r + 1) × (r + 1) minors of HB+

Λ̃
= HB+

Λ(h
0
)

vanish and HB
Λ̃

= HB

Λ(h
0
)
is invertible. Thus h

0
is solution for the problem i) and ii).

Reciprocally, if there exists h
0 ∈ KN solution for the problem i) and ii).We de�ne: h

1 ∈ KN

(N ≤M): for all xγ ∈ 〈BB+〉 and |γ| > d:

h1
γ := h0

γ

We are going to prove that the multiplication operators (MB
i (h

1
))i commute and then we apply

the previous theorem. In order to do this, we realize that for all b, b
′
and for all 1 ≤ n:

Λ(h
1
)[MB

i (h
1
)(b)b

′
] = Λ(h

0
)[MB

i (h
1
(b)b

′
] = Λ(h

0
)[xibb

′
]

then:

Λ(h
0
)[(xib−MB

i (h
1
)(b))b

′
] = 0

Moreover, as all (r + 1)× (r + 1) of HB+B+

Λ(h
0
)

vanish and HB

Λ(h
0
)
is invertible, then:

Λ(h0)[(xib−MB
i (h

1
(b))b

′′
] = 0

for all b
′′ ∈ B+:

Λ(h
0
)[MB

i (h
1
)(b)b

′′
] = Λ(h

0
)[xibb

′′
] (8.2)

for all b
′′ ∈ B+.

If we �x b ∈ B and 1 ≤ i < j ≤ n. We have:

Λ(h
1
)[MB

i (h
1
) ◦MB

j (h
1
)(b)b

′
] = Λ(h

0
)[MB

i (h
1
) ◦MB

j (h
1
)(b)b

′
] = Λ(h

0
)[MB

j (h
1
)(b)xib

′
]. For all

b
′ ∈ B. By 8.2 we have:

Λ(h
1
)[MB

i (h
1
) ◦MB

j (h
1
)(b)b

′
] = Λ(h

0
)[MB

j (h
1
)(b)xib

′
] = Λ(h

0
)[xjbxib

′
]

Then we get:

Λ(h
1
)[MB

i (h
1
)◦MB

j (h
1
)(b)b

′
] = Λ(h

0
)[xjbxib

′
] = Λ(h

0
)[xibxjb

′
] = Λ(h

1
)[MB

j (h
1
)◦MB

i (h
1
)(b)b

′
]

thus:

Λ(h
1
)[MB

i (h
1
) ◦MB

j (h
1
)(b)b

′
] = Λ(h

1
)[MB

j (h
1
) ◦MB

i (h
1
)(b)b

′
]
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for all b
′ ∈ B. As HB

Λ(h
1
)

= HB

Λ(h
0
)
is invertible, we obtain:

MB
i (h

1
) ◦MB

j (h
1
)(b) = MB

j (h
1
) ◦MB

i (h
1
)(b)

for all b ∈ B and 1 ≤ i < j ≤ n.

Example 8.10. Let B = 〈1〉 and Λ ∈ 〈B+〉≤0 de�ned as follows:

Λ : 〈1〉 7−→ K
1 7−→ 1

Does Λ ∈ 〈B〉∗ admit an extension Λ̃ ∈ R∗ with H
Λ̃
of rank r and B a basis of A

Λ̃
?. And in the

a�rmative case, is there unique?

First, we have:

HB
Λ = (1)

then det(HΛ)B = 1 6= 0.
On the other hand, taking h = (h1, ..., hn) ∈ Kn, with:

HB+

Λ =



1 x1 x2 · · · xn
1 1 h1 h2 · · · hn
x1 h1 h2

1 h1h2 · · · h1hn
x2 h2 h2h1 h2

2 h2nn
...

...
. . .

...
xn hn h1hn · · · · · · h2

n


All the (2)×(2) minors of H

B+(h)
Λ vanish for all h ∈ Kn. Then by the previous theorem Λ admits

an extension Λ̃ ∈ (K[x1, ..., xn])∗. Note, that in this case the extensions are Λ̃ = ev(h1, ...hn).
Moreover, if we take for example h1 = ... = hn = 0 the extension is unique , and in this case is
ev(0, ..., 0) such that Λ(0, ...0) = ev(0, ..., 0) over 〈B+B+〉.

Proposition 8.11. Let B = {xβ1 , ..., x
β
r } be a set of monomials of degree at most d, connected

to 1. Then, the linear form Λ ∈ 〈B+B+〉∗≤d admits an extension Λ̃ ∈ R∗ such that H
Λ̃
is of rank

r with B a basis of A
Λ̃
if and only if there exists h:

• i)

HB+

Λ(h)
=

(
H G
Gt J

)
(8.3)

where H = HB
Λ(h)

and G = HW and J = WtHW for some matrix W ∈ K|B|×|∂B|

• ii) HB
Λ(h)

is invertible

where Λ(h) ∈ 〈B+B+〉∗ is de�nided as follows:
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Λ(h)(xγ) =

{
Λ(xγ) if |γ| ≤ d;
hγ in other case.

Proof. If there exists h, such that G = HW, and J = WtHW for some matrix W ∈ K |B|×|∂B|,
and det(HB

Λ(h)
) 6= 0, then:

HB+

Λ(h)
=

(
H HW

WtH WtHW

)
(8.4)

HB+

Λ(h)
is of rank r and then h is a solution for the previous theorem, then there exists an extension

Λ̃ ∈ R∗ such that H
Λ̃
is of rank r and B a basis of A

Λ̃
.

Conversely, if there exists an extension Λ ∈ R∗ such that H
Λ̃
is of rank r and B a basis of A

Λ̃
.

We de�ne h
0 ∈ KM (for some M ∈ N) as follows: for all xα ∈ 〈B+B+〉 such that α > d we have:

h0
α := Λ(xα)

then h
0
is solution for the previous theorem, then rank(HB+

Λ(h
0
)
) = rank(HB

Λ(h
0
)
) = r. Let us

decompose HB+

Λ(h
0
)
as 8.3: we know that HB+

Λ(h)
is of the form:

HB+

Λ(h)
=

B ∂B︷ ︸︸ ︷(
H G
Gt J

)
(8.5)

but, as rank(HB+

Λ(h
0
)
) = rank(H) = r, then the image of G is in the image of H, then there exists

W ∈ K|B|×|∂B| such that G = HW. We realize that W ∈ K|B|×|∂B| is the matrix of the following
map:

Ω∂B : 〈∂B〉 → 〈B〉 = A
Λ̃
//

which is the projection of the border in B, then we have , for all b, b
′ ∈ ∂B:

Λ̃[bb
′
] = Λ̃[Ω∂B(b)Ω∂B(b

′
)] = Λ(h

0
)[Ω∂B(b)Ω∂B(b

′
)].

Therefore:

J = WtHW

Example 8.12. Let τ = δ2
1 + δ2

2 + δ2
3 de�ned as 7.1, let us see that can be decomposed as 8.3.

We have the following matrix:
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HB+

τ =



1 x1 x2 x3 x2
1 x1x2 x1x3 x2

2 x2x3 x2
3 x3

1 x2
1x2 x2

1x3

1 0 0 0 0 2 0 0 2 0 2 0 0 0
x1 0 2 0 0 0 0 0 0 0 0 0 0 0
x2 0 0 2 0 0 0 0 0 0 0 0 0 0
x3 0 0 0 2 0 0 0 0 0 0 0 0 0
x2

1 2 0 0 0 0 0 0 0 0 0 0 0 0
x1x2 0 0 0 0 0 0 0 0 0 0 0 0 0
x1x3 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

2 2 0 0 0 0 0 0 0 0 0 0 0 0
x2x3 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

3 2 0 0 0 0 0 0 0 0 0 0 0 0
x3

1 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

1x2 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

1x3 0 0 0 0 0 0 0 0 0 0 0 0 0


with B =

〈
1, x1, x2, x3, x

2
1

〉
basis of Aτ = R[x1, x2, x3]/Iτ and Iτ = (x2

1−x2
2, x

2
1−x2

3, x1x2, x1x3, x2x3)

In order to compute W ∈ K|B|×|∂B, we know that W is the matrix of the projection:

Ω∂B : 〈∂B〉 → 〈B〉 module Iτ

W =



x1x2 x1x3 x2
2 x2x3 x2

3 x3
1 x2

1x2 x2
1x3

1 0 0 0 0 0 0 0 0
x1 0 0 0 0 0 0 0 0
x2 0 0 0 0 0 0 0 0
x3 0 0 0 0 0 0 0 0
x2

1 0 0 1 0 1 0 0 0


and indeed:

G = HW and J = WtHW
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Chapter 9

Symmetric tensor decomposition

algorithm

This algorithm for decomposing a symmetric tensor as sum of rank one symmetric tensors gen-
eralizes the algorithm of Sylvester, and was devised by Bernard Mourrain and his team. First
of all, we will introduce two easy examples for decomposing of homogeneous polynomials, and
then we will describe this algorithm.

Notation 9.1. For all f ∈ Sd we denote f := f(1, x1, ..., xn).

Example 9.2. Consider a tensor of dimension 3 and order 3 ,which corresponds to the following
homogeneous polynomial:

f(x0, x1, x2) = x3
0 + 3x2

0x1 + 3x2
0x2 + 3x0x

2
1 + 6x0x1x2 + 3x0x

2
2 + x3

1 + 3x2
1x2 + 3x1x

2
2 + x3

2

We may assume without loss of generality, that at least one variable, say x0 , all its coe�cients
in the decomposition are non-zero, then we deshomogenize f with respect to this variable:

f := f(1, x1, x2)

And under τ de�ned in 4.2 f is mapped to:

f∗ = d
(0,0)

+ d
(1,0)

+ d
(0,1)

+ d
(2,0)

+ d
(1,1)

+ d
(0,2)

+ d
(3,0)

+ d
(2,1)

+ d
(1,2)

+ d
(0,3)

de�ned in K[x1, x2]≤3. First, we prove with B = 〈1〉 as a basis, and we obtain:

HB+

f∗ =


1 x1 x2

1 1 1 1
x1 1 1 1
x2 1 1 1

 (9.1)

In this case HB
f∗ = (1) , HB

x1∗f∗ = (1) and HB
x2∗f∗ = (1). Then:

MB
x1

= (HB
f∗)
−1HB

x1∗f∗ = (1)

MB
x2

= (HB
f∗)
−1HB

x2∗f∗ = (1)

The multiplication operators commute and by the theorem 8.7, f∗ admits an extension Λ ∈ R∗,
with rank(HΛ) = r. Moreover, this extension is of the form Λ =

∑r
i=1 λiev(ξi) with λi 6= 0 and

ξi distinct points of K
2 if and only if rank(HΛ) = r and IΛ is a radical ideal. IΛ is a radical ideal

since IΛ = kernel(HB
Λ ) = kernel(HB

f∗) = (x1 − 1, x2 − 1). In this case r = 1, and in order to
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recover the point ξ we recall that the eigenvalues of the operators Mxi are the i− th coordinates
of the root ξ, and the common eigenvector are the ev(ξ). The eigenvalue ofMx1 is 1, then ξ1 = 1
and the eigenvalue of Mx2 is 1, then ξ2 = 1 .Then Λ = λiev(1, 1).
Recall that the coe�cient of x0 are considered to be one. Thus the polynomial admits a decom-
position:

f(x0, x1, x0) = λ1(x0 + x1 + x2)3

We can compute λ1 easily equating coe�cients in the same monomials. Doing that we deduce:

f(x0, x1, x2) = (x0 + x1 + x2)3

that is the corresponding tensor is of rank 1.

Example 9.3. Consider a tensor of dimension 3 and order 3, which corresponds to the following
homogeneous polynomial:

f(x0, x1, x2) = 3x2
0x1 + 3x2

0x2 + 3x0x
2
1 + 6x0x1x2 + 3x0x

2
2 + x3

1 + 3x2
1x2 + 3x1x

2
2 + x3

2

We deshomogenize f with respect to the variable x0, and we denote:

f = f(1, x1, x2)

Under τ de�ned in 4.2 f is mapped to:

f∗ = d
(1,0)

+ d
(0,1)

+ d
(2,0)

+ d
(1,1)

+ d
(0,2)

+ d
(3,0)

+ d
(2,1)

+ d
(1,2)

+ d
(0,3)

f∗ ∈ (K[x1, x2]≤3)∗. If we take B = 〈1, y〉 then:

HB+

f∗(h) =



1 x1 x2 x1x2 x2
2

1 0 1 1 1 1
x1 1 1 1 1 1
z2 1 1 1 1 1
x1x2 1 1 1 h22 h31

x2
1 1 1 1 h31 h20


In this case,

HB
f∗(h)

=

(
0 1
1 1

)
and HB

f∗(h)
is invertible. Moreover, we have:

Hx1∗f∗ =

 x1 x2
1

1 1 1
x1 1 1



Hx1∗f∗ =

 x2 x1x2

1 1 1
x1 1 1


. Therefore:
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MB
x1

= (HB
f∗)
−1HB

x1∗f∗ =

(
0 0
1 1

)

MB
x2

= (HB
f∗)
−1HB

x2∗f∗ =

(
0 0
1 1

)
Obviously, the multiplication operators commute and by the theorem 8.7, f∗ admits an extension
Λ ∈ R∗ with HΛ of rank r. This extension can be written as Λ =

∑r
i=1 ev(ξi) by the theorem

7.16 if and only if HΛ is of rank r and IΛ is a radical ideal. Then we only have to see that
IΛ = kernel(HB+

f∗ ) is a radical ideal.Then v ∈ kernel(HB+

f∗ ) if and only if:

HB+

f∗ v =


0 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




v1

v2

v3

v4

v5

 =


0
0
0
0
0


The solutions are:

v1 = 0 v2 = −a− b− c v3 = a v4 = b v5 = c

for a, b, c ∈ K. Then p ∈ kernel(HB+

f∗ ) if and only if, p = a(x2−x1) + b(x1x2−x1) + c(x2
2−x2)+

terms of degree greater than 3. Thus we obtain kernel(HB+

f∗ ) = kernel(HB+

Λ ) = IΛ = (x2 −
x1, x2x1 − x1, x

2
1 − x1) which is an radical ideal.

Therefore Λ =
∑r

i=1 λiev(ξ), where r = 2 we can recover the points ξ1, ξ2 by two di�erent ways:

• 1) The eigenvalues ofMB
x1

are α1 = 0 and α2 = 1, and the eigenvector of (MB
i )t, associated

with α1 = 0 is:

ξ1 =

(
1
0

)
and the eigenvector associated with α2 = 1 is only:

ξ2 =

(
0
0

)
• 2) We know due to the theorem 7.12 that ξ1 and ξ2 are the roots of IΛ:
Z(IΛ) = {(0, 0), (1, 1)}

Recall that the coe�cient of x0 are considered to be one. Thus the polynomial admits a decom-
position:

f(x0, x1, x2) = λ1(x0 + x1 + x2)3 + λ2(x0)3

We can compute λ1 and λ2 easily . Doing that:

f(x0, x1, x2) = (x0 + x1 + x2)3 − (x0)3

which is a tensor of rank 2.
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9.1 Symmetric tensor decomposition algorithm

The algorithm for decomposition a symmetric tensor as a sum or rank one symmetric tensors
generalizes the algorithm of Sylvester, devised for dimension two tensors.

In this algorithm we may assume without loss of generality, that for at least one variable, say
x0, all its coe�cients in the decomposition are non-zeros, i.e. ki,0 6= 0 for 1 ≤ i ≤ r.

Symmetric tensor decomposition algorithm

Input: A homogeneous polynomial f(x0, .., xn) of degree d
Output: A decomposition of f as f =

∑r
i=1 λiki(x)d with r minimal

1. Compute the coe�cients of f∗: cα = aα
(
d
α

)−1
.

2. Initialize r := 0

3. Increment r := r + 1

4. Specialization:

• Take any basis B connected to 1 with |B| = r

• Build the matrix HB+

f∗(h)
with the coe�cients cα.

• If there exists any minor of order r + 1 in HB+

f∗(h)
, without coe�cients depending on

h, di�erent to zero, try another specialization. If cannot be obtained go to step 3.

• Else if all minors of order r+ 1 in HB+

f∗(h)
, without coe�cients depending on h, vanish,

compute h s.t:

� det(HB
f∗(h)

) 6= 0

� the operators MB
i (h) := (HB

f∗(h)
)−1(Hxi∗f∗(h)) commute

� the eigenvalues of MB
i (h) are simple

If there not exist such h try another specialization. If cannot be obtained go to step
3.

• Else if there exists such h compute the eigenvalues ξi,j and the eigenvectors vj s.t
MB
i vj = ξi,jvj for i = 1, ..., n and j = 1, ..., r.

5. Solve the linear system in (λj) s.t f(x) =
∑r

i=1 λjki(x)d where ki(x) = (x0 + vi,1x1 + ...+
vi,nxn).

Remark 9.4. This algorithm stops as we saw in Lemma 4.23, let f ∈ Sd there exists k1(x), ..., ks(x)
with s < ∞ such that: f =

∑s
i=1 ki(x)d. Once, the algorithm has computed the parameters h

such that det(HB
f∗(h)

) 6= 0 and the operators Mi = (HB
f∗(h)

)−1HB
xi∗f∗(h)

commute, we need to

ensure that IΛ is a radical ideal, and this holds true when the eigenvalues are simple.

Remark 9.5. It can be pointed out that ith-coordinate of several distinct points could be the
same, i.e. ξj,i = ξk,i with ξj 6= ξk, and then the eigenvalues of Mi are not simple. For this
reason, sometimes it is convenient to check that the eigenvalues are simple in the matrix Mp

instead of Mi, with a random polynomial p, for example p =
∑n

i=1 aixi. In this case, it would be
improbable that if the points are distinct not to obtain simple eigenvalues.
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Example 9.6. Let us apply the algorithm in order to obtain the decomposition of the homoge-
neous polynomial of dimension 3 and order 4:
f(x, y, z) = 3x4 + 4x3y − 4x3z + 6x2y2 − 12x2yz + 18x2z2 + 4xy3 − 12xy2z + 12xyz2 − 4xz3 +
y4 − 4y3z + 6y2z2 − 4yz3 + 3z4

We deshomogenize with x = 1 and compute the coe�cients cα = aα
(
d
α

)−1
. And we get the

following element of R∗4:

f∗ = 3d
(0,0)

+ d
(1,0) − d(0,1)

+ d
(2,0) − d(1,1)

+ 3d
(0,2)

+ d
(3,0) − d(2,1)

+ d
(1,2) − d(0,3)

+ d
(4,0) −

d
(3,1)

+ d
(2,2) − d(1,3)

+ 3d
(0,4)

.

Taking a connected basis with r = 1 and r = 2 elements, we �nd minors of order 2 and 3
respectively, in HB+

f∗ di�erent from zero hence, f has not rank equal to 1 or 2.

We follow to r = 3 and we take the connected basis B = {1, y, z}, then B+ = {1, y, z, yz, y2, z2},
we obtain the following matrix:

HB+

f∗ =



3 1 −1 1 3 −1
1 1 −1 1 1 −1
−1 −1 3 −1 −1 1
1 1 −1 1 1 −1
3 1 −1 1 3 −1
−1 −1 1 −1 −1 1

 (9.2)

All the minors of order 4 vanish, then we can continue with the algorithm,and we realize that:

det(HB
f∗) = det

 3 1 −1
1 1 −1
−1 −1 3

 6= 0 (9.3)

We need that the multiplication operators commute that is MB
y M

B
z = MB

z M
B
y , and we have:

MB
y = (HB

f∗)
−1Hy∗f∗ =

 1
2

−1
2 0

−1
2 2 1

2
0 1

2
1
2

 ·
 1 1 −1

1 1 −1
−1 −1 1

 =

 0 0 0
1 1 −1
0 0 0



MB
y = (HB

f∗)
−1Hy∗f∗ =

 1
2

−1
2 0

−1
2 2 1

2
0 1

2
1
2

 ·
 −1 −1 3
−1 −1 1
3 1 −1

 =

 0 0 1
0 −1 0
1 0 0


And it holds true that the multiplication operators commute, that is MB

y M
B
z = MB

z M
B
y . It

should be noted, that in this step the algorithm has to compute h such that the multiplication
operators commute but in this case all our entries are known. The following step is to ensure
the eigenvalues of (MB

z )t and (MB
y )t are simple, but in this case the eigenvalues of (MB

z )t are

x1 = −1, x2 = −1 and x3 = 1, and the eigenvalues of (MB
y )t are x1 = 0, x2 = 0 and x3 = 1, we
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are in the case of the 9.5 because if we take for example p = y + z then the eigenvalues of MB
p

are x1 = 2, x2 = −2 and x3 = 0 and these are simple. Then we can continue with the algorithm
and compute the eigenvectors of M t

z which are:

ξ1 =

 1
0
1

 ξ2 =

 1
0
−1

 ξ3 =

 1
1
−1


The coordinates of the eigenvectors correspond to the elements {1, y, z}. Thus we can recover
the coe�cients of y and z in the decomposition from coordinates of the eigenvectors. Recall that
the coe�cients of x are considered to be one. Thus, the polynomial admits a decomposition:

f = λ1(x+ z)4 + λ2(x+ y − z)4 + λ3(x− z)4

It remains to compute λ′s. We can do this easily by solving an over-determined linear system,
which we know has always a solution, since the decomposition exists. Doing this last step, we
deduce:

f(x, y, z) = (x+ z)4 + (x+ y − z)4 + (x− z)4 (9.4)

9.2 Future work

There are some questions that remain open: the complexity of the algorithm, the comput-
ing of the decomposition when some entries of the tensor are not known (case of missing data)
and to extend the algorithm to non-symmetric tensors.

The theorem of Alexander and Hirschowitz states [12], that the generic rank is always
the expected one, with a �nite list of exceptions. However, it has not received any answer yet,
either for non symmetric tensors, or for decompositions in the real �eld. Nevertheless, we know
there is always an open subset where the general rank is the same as the complex one. In other
words, for given order and dimension the smallest typical rank in the real �eld coincides with the
generic rank in the complex �eld, (see [14],[15],[16],[10]). We can see in [14], in order to exhibit
more than two typical ranks, that it seems necessary to consider tensors of order higher than 3.
An elementary example would be:

2x3 − 6xy2 = (x+
√
−1y)3 + (x−

√
−1)3 = (2x3)− (x+ y)3 − (x− y)3 (9.5)

In this case the complex rank is 2 and the real rank is 3.
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