GNS construction

María López Quijorna
Advisor: Markus Schweighofer

Konstanz, 12 July 2013

$\square \mathbb{R}[x]:=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right], x=\left(x_{1}, \ldots, x_{n}\right)$
■ $\mathbb{R}[x]_{t}:=\{p \in \mathbb{R}[x]: \operatorname{deg}(p) \leq t\}$
■ $\mathbb{R}[x]_{t}^{*}:=\left\{L: \mathbb{R}[x]_{t} \rightarrow \mathbb{R}\right.$ linear form $\}$

- $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$

■ $x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \in \mathbb{R}[x]_{d} \leftrightarrow \alpha \in \mathbb{N}_{d}^{n}$, (i.e.
$\left.|\alpha|:=\alpha_{1}+\ldots+\alpha_{d} \leq d\right)$

Definition

We say that a linear form $L \in \mathbb{R}[x]_{2 d}^{*}$ is integration with respect to a measure μ, if $L(p)=\int p d \mu \forall p \in \mathbb{R}[x]_{2 d}$.

Definition

Given a linear form $L \in \mathbb{R}[x]_{2 d}^{*}$, we can define its respective moment matrix, indexed by $\left(x^{\alpha}\right)_{\alpha,|\alpha| \leq d}$, in this way:
$M_{L}=\left(\left(L\left(x^{\alpha+\beta}\right)\right)_{\alpha, \beta,|\alpha| \leq d,|\beta| \leq d}\right.$

Example

For $L=e v(0,1) \in \mathbb{R}\left[x_{1}, x_{2}\right]_{2}^{*}$, its moment matrix is:
$M_{L}=\left(\begin{array}{ccc}L(1) & L(x) & L(y) \\ L(x) & L\left(x^{2}\right) & L(x y) \\ L(y) & L(x y) & L\left(y^{2}\right)\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$

Bayer and Teichmann Theorem

A linear form $L \in \mathbb{R}[x]_{2 d}^{*}$, is a integration with respect to a measure if and only if there exists an integer N, nodes $x_{1}, \ldots, x_{N} \in \mathbb{R}^{n}$ and weights $\lambda_{1}>0, \ldots, \lambda_{N}>0$, such that, $L(p)=\sum_{i=1}^{N} \lambda_{i} p\left(x_{i}\right), \forall p \in \mathbb{R}[x]_{2 d}$.

Remark

If $L \in \mathbb{R}[x]_{2 d}^{*}$, and L is integration with respect to a measure, then $L\left(\sum \mathbb{R}[x]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$, that is $M_{L} \geq 0$

Given $L \in \mathbb{R}[x]_{2 d}^{*}$, and $L\left(\sum \mathbb{R}[x]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$
■ Is L,or at least $L_{\mid \mathbb{R}[x]_{k}}$ for some $k \leq 2 d$, integration with respect to a measure?

- If L is integration with respect to a measure, How can I recover the nodes and weights of such a measure?
For this we will use a variation of the Gelfand-Naimark-Segal construction.

Given $L \in \mathbb{R}[x]_{2 d}^{*}$, and $L\left(\sum \mathbb{R}[x]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$. We would like to find :
■ x_{1}, \ldots, x_{N} points in $\mathbb{R}^{n}, \lambda_{1}, \ldots, \lambda_{N}>0$ weights such that $L=\sum_{i=1}^{N} \lambda_{i} \operatorname{ev}\left(x_{i}\right)$
That is similar to find:

- A finite dimensional space V and commuting self-adjoint endomorphisms M_{1}, \ldots, M_{n} of V and $a \in V$ such that $L(p)=<p\left(M_{1}, \ldots, M_{n}\right) a, a>$
Idea: if we had $L\left(p^{2}\right)>0$ for all $p \neq 0$:
- $V:=\mathbb{R}[x]$
- $<p, q>:=L(p q)$

■ $M_{i}: \mathbb{R}[x] \rightarrow \mathbb{R}[x]: p \mapsto x_{i} p, i \in\{1, \ldots, n\}$

- $a:=1 \in \mathbb{R}[x]$

Let $L \in \mathbb{R}[x]_{2 d}^{*}$ with $L\left(\sum \mathbb{R}[x]^{2}\right) \subseteq \mathbb{R}_{\geq 0}$

- $U_{L}:=\left\{p \in \mathbb{R}[x]_{d}: \forall q \in \mathbb{R}[x]_{d}: L(p q)=0\right\}$ GNS kernel
- $V_{L}:=\frac{\mathbb{R}[x]_{d}}{U_{L}}$ GNS representation space of \mathbf{L}
- $<\bar{p}, \bar{q}>_{L}:=L(p q)\left(p, q \in \mathbb{R}[x]_{d}\right)$ GNS scalar product
- Then we have built $\left(V_{L},<,>_{L}\right)$ a Euclidean Vector Space

We had a euclidean vector space $\left(V_{L},<,>_{L}\right)$:
■ $\Pi_{L}: V_{L} \rightarrow\left\{\bar{p}: p \in \mathbb{R}[x]_{d-1}\right\}$ orthogonal projection

- $M_{L, i}: \Pi_{L} V_{L} \rightarrow \Pi_{L} V_{L}: \bar{p} \rightarrow \Pi_{L}\left(\overline{X_{i} p}\right)\left(p \in \mathbb{R}[x]_{d-1}\right)$ and $i \in\{1, \ldots, n\}$.
$M_{L, i}$, called i-th truncated GNS multiplication operator, is self-adjoint endomorphism of $\Pi_{L} V_{L}$

Simultaneaus Diagonalization

Let V be a finite euclidean vector space, and M_{1}, \ldots, M_{n}, commuting selfadjoint endomorphisms of V. Then there exists an orthonormal basis of V which contains all the common eigenvectors of M_{i} for $i=1, \ldots, n$.

Proposition (Schweighofer)

Let $L \in \mathbb{R}[x]_{2 d}^{*}$ with $L\left(\sum \mathbb{R}[x]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$. Suppose that the truncated GNS multiplication operators of L commute. And we set:

$$
W_{L}:=\left\{\sum_{i=1}^{m} p_{i} q_{i}: m \in \mathbb{N}_{0}, p_{i}, q_{i} \in \mathbb{R}[x]_{d-1}+U_{L}\right\} \supseteq \mathbb{R}[x]_{2(d-1)}
$$

Then $L_{\mid W_{L}}$ is integration with respect to a finitely supported measure.

Definition

Let $L \in \mathbb{R}[x]_{2 d}^{*}$ with $L\left(\mathbb{R}[x]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$. We say L is flat if $\mathbb{R}[x]_{d-1}+U_{L}=\mathbb{R}[x]_{d}$.

Proposition (Schweighofer)

Let $L \in \mathbb{R}[x]_{2 d}^{*}$ with $L\left(\mathbb{R}[x]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$ and $L^{\prime}:=L_{\mid \mathbb{R}[x]_{2(d-1)}}$. Then the following are equivalent:

- L is flat.
- $\Pi_{L}\left(V_{L}\right)=V_{L}$

■ For all $\alpha \in^{n}:\left(|\alpha|=d \Rightarrow \exists p \in \mathbb{R}[x]_{d-1}\right.$ such that $\left.x^{\alpha}-p \in U_{L}\right)$

- $\operatorname{dim}\left(V_{L^{\prime}}\right)=\operatorname{dim}\left(V_{L}\right)$
- $\left(L\left(X^{\alpha+\beta}\right)\right)_{|\alpha|,|\beta| \leq d-1}$ and $\left(L\left(X^{\alpha+\beta}\right)\right)_{|\alpha|,|\beta| \leq d}$ have the same rank.

Proposition (Schweighofer)

Let $L \in \mathbb{R}[x]_{2 d}^{*}$ with $L\left(\mathbb{R}[x]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$. If L is flat then the $G N S$ multiplication operators commute.

Corollary

Let $L \in \mathbb{R}[x]_{2 d}^{*}$ with $L\left(\mathbb{R}[x]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$ in one variable. Then $L_{\mid \mathbb{R}[x]_{2(d-1)}}$ comes from a measure.

Corollary (Curto and Fialkow,1996)
Let $L \in \mathbb{R}[x]_{2 d}^{*}$ with $L\left(\mathbb{R}[x]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$. If L is flat then $L_{\mid \mathbb{R}[x]_{2(d-1)}}$ comes from a mesure.
$M_{L, i}$ commute does not necessarily imply that L is flat:

Example

Let $L=\frac{1}{3}(e v(1,2)+e v(2,3)+e v(4,5)) \in \mathbb{R}\left[x_{1}, x_{2}\right]_{4}^{*}$, (with points in the linie $y=x+1$) here we have:

$$
M_{L, 1}=\left(\begin{array}{cc}
3 & 1,6330 \\
1,6330 & 3
\end{array}\right) M_{L, 2}=\left(\begin{array}{cc}
4 & 1,6330 \\
1,6330 & 4
\end{array}\right)
$$

$M_{L, 1} M_{L, 2}=M_{L, 2} M_{L, 1}$ and L is not flat. And
$L^{\prime}:=\frac{1}{2}(e v(1.37,2.37)+e v(4.63,5.63))$ with $L^{\prime}=L_{\mid \mathbb{R}[x]_{2}}$.

Example

Let $L=\frac{1}{6}(e v(1,1)+\operatorname{ev}(-1,-1)+\operatorname{ev}(-1,1)+\operatorname{ev}(1,-1)+$ $\operatorname{ev}(2,-2)+e v(-2,2)) \in \mathbb{R}\left[x_{1}, x_{2}\right]_{6}^{*}$, (points in $x^{2}=y^{2}$) here L is not flat and the operators commute.

Interested

$L \in \mathbb{R}[x]_{2 d}^{*}$ with $L\left(\sum \mathbb{R}[x]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$ such that L is not necessarily flat and $M_{L, i}$ commute

Remark

Let $L=\sum_{i=1}^{r} \lambda_{i} e v_{x_{i}} \in \mathbb{R}[x, y]_{2 d}^{*}$ (two variables) such that $x_{i} \in\{(x, y) \mid y=m x+n\} \subset \mathbb{R}^{2}$. Then the GNS multiplication operators commute.

Remark

Let $L=\sum_{i=1}^{r} \lambda_{i} e v_{x_{i}} \in \mathbb{R}[x]_{2 d}^{*}$ with $r \leq \operatorname{dim}\left(\mathbb{R}[x]_{d-1}\right)$ then "almost always" L is flat. For example for $n=2$ if we take points in the circle sometimes L is not flat.

Polynomial optimization problem: minimize $p[x]$ over $x \in \mathbb{R}^{n}$, such that $p \in \mathbb{R}[x]$. We denote $\operatorname{deg}(p):=d$.

First SDP (Nie-Demmel-Sturmfels)

$\left(N D S_{k}\right)$
$\min L(p)$ with:

- $L \in \mathbb{R}[x]_{2 k}^{*}$
- $L\left(\sum \mathbb{R}[x]_{k}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$
- $L\left(\frac{\partial p}{\partial x_{i}}\left(x^{\alpha}\right)\right)=0$
for all α with $|\alpha|+d-1 \leq 2 k$

Second SDP (Heuristic-Program)

(H_{k}, λ)
$\min (1-\lambda) L(p)+\lambda E$

- $L \in \mathbb{R}[x]_{2 k}^{*}$
- $L\left(\sum \mathbb{R}[x]_{k}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$
- $L \approx$ flat
where $\lambda \in[0,1]$ is fixed.

Some examples:

Example 1

With NDS_{4} for $p=x^{4} y^{2}+x^{2} y^{4}+1-3 x^{2} y^{2}$, the Moztkin polynomial. I get the minimizers :
$(-16,8583,0),(0,-16,8583),(\pm 1, \pm 1),(16,583,0),(0,16,583)$

Example 2

With NDS_{4} for $p=x^{6}+y^{6}+1-x^{4} y^{2}-x^{2} y^{4}-x^{4}-y^{4}-x^{2}-y^{2}+3 x^{2} y^{2}$, the Robinson polynomial. I geth the minimizers: $(\pm 1, \pm 1),(1,0),(0,1),(-1,0),(0,-1)$

Example 3

With NDS_{4} fot the polynomial $x^{2} y^{2}\left(x^{2}+y^{2}-1\right)$. I get the minimizers
$(-14,89,0),(0,-14,89),(0,14,89),(14,89,0),(\pm 0,5774, \pm 0,5774)$

Example 4

With $H_{3,1 / 60}$ for the Moztkin polynomial I get (aproximately) the minimizers $(\pm 1, \pm 1),(0,0)$

Dankeschön!

