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Maŕıa López Quijorna
Advisor: Markus Schweighofer

Konstanz, 12 July 2013
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Notation

R[x ] := R[x1, ..., xn], x = (x1, ..., xn)

R[x ]t := {p ∈ R[x ] : deg(p) ≤ t}
R[x ]∗t := {L : R[x ]t → R linear form}
α = (α1, ..., αn) ∈ Nn

xα := xα1
1 · · · xαn

n ∈ R[x ]d ↔ α ∈ Nn
d , (i.e.

|α| := α1 + ...+ αd ≤ d)



GNS construction

Notation

Definition

We say that a linear form L ∈ R[x ]∗2d is integration with respect to
a measure µ, if L(p) =

∫
pdµ ∀p ∈ R[x ]2d .

Definition

Given a linear form L ∈ R[x ]∗2d , we can define its respective
moment matrix, indexed by (xα)α,|α|≤d , in this way:

ML = ((L(xα+β))α,β,|α|≤d ,|β|≤d

Example

For L = ev(0, 1) ∈ R[x1, x2]∗2, its moment matrix is:

ML =

 L(1) L(x) L(y)
L(x) L(x2) L(xy)
L(y) L(xy) L(y2)

 =

 1 0 1
0 0 0
1 0 1


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Necessary conditions for moment sequences

Bayer and Teichmann Theorem

A linear form L ∈ R[x ]∗2d , is a integration with respect to a
measure if and only if there exists an integer N, nodes
x1, ..., xN ∈ Rn and weights λ1 > 0, ..., λN > 0, such that,
L(p) =

∑N
i=1 λi p(xi ), ∀p ∈ R[x ]2d .

Remark

If L ∈ R[x ]∗2d , and L is integration with respect to a measure, then
L(
∑

R[x ]2d ) ⊆ R≥0 , that is ML ≥ 0
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Truncated moment problem

Given L ∈ R[x ]∗2d , and L(
∑

R[x ]2d ) ⊆ R≥0
Is L ,or at least L|R[x]k for some k ≤ 2d , integration with
respect to a measure?

If L is integration with respect to a measure, How can I
recover the nodes and weights of such a measure?

For this we will use a variation of the Gelfand-Naimark-Segal
construction.
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Brief motivation

Given L ∈ R[x ]∗2d , and L(
∑

R[x ]2d ) ⊆ R≥0. We would like to find :

x1, ..., xN points in Rn, λ1, ..., λN > 0 weights such that
L =

∑N
i=1 λi ev(xi )

That is similar to find:

A finite dimensional space V and commuting self-adjoint
endomorphisms M1, ...,Mn of V and a ∈ V such that
L(p) =< p(M1, ...,Mn)a, a >

Idea: if we had L(p2) > 0 for all p 6= 0:

V := R[x ]

< p, q >:= L(pq)

Mi : R[x ]→ R[x ] : p 7→ xi p, i ∈ {1, ..., n}
a := 1 ∈ R[x ]
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Truncated GNS like construction

Let L ∈ R[x ]∗2d with L(
∑

R[x ]2) ⊆ R≥0

UL:={p ∈ R[x ]d : ∀q ∈ R[x ]d : L(pq) = 0} GNS kernel

VL:=R[x]d
UL

GNS representation space of L

< p, q >L:=L(pq) (p, q ∈ R[x ]d ) GNS scalar product

Then we have built (VL, <,>L) a Euclidean Vector Space
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Truncated GNS like construction

We had a euclidean vector space (VL, <,>L):

ΠL:VL → {p : p ∈ R[x ]d−1} orthogonal projection
ML,i :ΠLVL → ΠLVL : p → ΠL(Xi p) (p ∈ R[x ]d−1) and
i ∈ {1, ..., n}.

ML,i , called i-th truncated GNS multiplication operator, is
self-adjoint endomorphism of ΠLVL
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Results of truncated GNS construction

Simultaneaus Diagonalization

Let V be a finite euclidean vector space, and M1, ...,Mn,
commuting selfadjoint endomorphisms of V . Then there exists an
orthonormal basis of V which contains all the common
eigenvectors of Mi for i = 1, ..., n.

Proposition (Schweighofer)

Let L ∈ R[x ]∗2d with L(
∑

R[x ]2d ) ⊆ R≥0. Suppose that the
truncated GNS multiplication operators of L commute. And we set:

WL:={
∑m

i=1 pi qi : m ∈ N0, pi , qi ∈ R[x ]d−1 + UL} ⊇ R[x ]2(d−1)

Then L|WL
is integration with respect to a finitely supported

measure.
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Flatness

Definition

Let L ∈ R[x ]∗2d with L(R[x ]2d ) ⊆ R≥0 . We say L is flat if
R[x ]d−1 + UL = R[x ]d .

Proposition (Schweighofer)

Let L ∈ R[x ]∗2d with L(R[x ]2d ) ⊆ R≥0 and L
′

:= L|R[x]2(d−1)
. Then

the following are equivalent:

L is flat.

ΠL(VL) = VL

For all α ∈n :(|α| = d ⇒ ∃p ∈ R[x ]d−1 such that
xα − p ∈ UL)

dim(VL′ ) = dim(VL)

(L(Xα+β))|α|,|β|≤d−1 and (L(Xα+β))|α|,|β|≤d have the same
rank.
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Flatness

Proposition (Schweighofer)

Let L ∈ R[x ]∗2d with L(R[x ]2d ) ⊆ R≥0. If L is flat then the GNS
multiplication operators commute.

Corollary

Let L ∈ R[x ]∗2d with L(R[x ]2d ) ⊆ R≥0 in one variable. Then
L|R[x]2(d−1)

comes from a measure.

Corollary (Curto and Fialkow,1996)

Let L ∈ R[x ]∗2d with L(R[x ]2d ) ⊆ R≥0. If L is flat then L|R[x]2(d−1)

comes from a mesure.
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Flatness

ML,i commute does not necessarily imply that L is flat:

Example

Let L = 1
3(ev(1, 2) + ev(2, 3) + ev(4, 5)) ∈ R[x1, x2]∗4, (with points

in the linie y = x + 1) here we have:

ML,1 =

(
3 1,6330

1,6330 3

)
ML,2 =

(
4 1,6330

1,6330 4

)
ML,1ML,2 = ML,2ML,1 and L is not flat. And
L′ := 1

2(ev(1.37, 2.37) + ev(4.63, 5.63)) with L′ = L|R[x]2 .

Example

Let L = 1
6(ev(1, 1) + ev(−1,−1) + ev(−1, 1) + ev(1,−1) +

ev(2,−2) + ev(−2, 2)) ∈ R[x1, x2]∗6, (points in x2 = y2 ) here L is
not flat and the operators commute.
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Flatness

Interested

L ∈ R[x ]∗2d with L(
∑

R[x ]2d ) ⊆ R≥0 such that L is not necessarily
flat and ML,i commute

Remark

Let L =
∑r

i=1 λi evxi ∈ R[x , y ]∗2d (two variables) such that
xi ∈ {(x , y)|y = mx + n} ⊂ R2. Then the GNS multiplication
operators commute.

Remark

Let L =
∑r

i=1 λi evxi ∈ R[x ]∗2d with r ≤ dim(R[x ]d−1) then
”almost always” L is flat. For example for n = 2 if we take points
in the circle sometimes L is not flat.
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Polynomial Optimization

Polynomial optimization problem: minimize p[x] over x ∈ Rn , such that p ∈ R[x]. We denote deg(p) := d .

First SDP (Nie-Demmel-Sturmfels)

(NDSk )
min L(p) with:

L ∈ R[x]∗2k

L(
∑

R[x]2k ) ⊆ R≥0

L( ∂p
∂xi

(xα)) = 0

for all α with |α| + d − 1 ≤ 2k

Second SDP (Heuristic-Program)

(Hk,λ)
min (1− λ)L(p) + λE

L ∈ R[x]∗2k

L(
∑

R[x]2k ) ⊆ R≥0

L ≈ flat

where λ ∈ [0, 1] is fixed.
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Polynomial Optimization

Some examples:

Example 1

With NDS4 for p = x4y2 + x2y4 + 1− 3x2y2, the Moztkin polynomial. I get the minimizers :
(−16,8583, 0), (0,−16,8583), (±1,±1), (16,583, 0), (0, 16,583)

Example 2

With NDS4 for p = x6 + y6 + 1− x4y2 − x2y4 − x4 − y4 − x2 − y2 + 3x2y2, the Robinson polynomial. I geth
the minimizers: (±1,±1), (1, 0), (0, 1), (−1, 0), (0,−1)

Example 3

With NDS4 fot the polynomial x2y2(x2 + y2 − 1). I get the minimizers
(−14,89, 0), (0,−14,89), (0, 14,89), (14,89, 0), (±0,5774,±0,5774)

Example 4

With H3,1/60 for the Moztkin polynomial I get (aproximately) the minimizers (±1,±1), (0, 0)
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Polynomial Optimization

Dankeschön!
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