GNS construction

María López Quijorna Advisor: Markus Schweighofer

Konstanz, 12 July 2013

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

•
$$\mathbb{R}[x] := \mathbb{R}[x_1, ..., x_n], x = (x_1, ..., x_n)$$

• $\mathbb{R}[x]_t := \{p \in \mathbb{R}[x] : deg(p) \le t\}$
• $\mathbb{R}[x]_t^* := \{L : \mathbb{R}[x]_t \to \mathbb{R} \text{ linear form}\}$
• $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$
• $x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n} \in \mathbb{R}[x]_d \leftrightarrow \alpha \in \mathbb{N}_d^n$, (i.e. $|\alpha| := \alpha_1 + ... + \alpha_d \le d$)

<□ > < @ > < E > < E > E のQ @

Definition

We say that a linear form $L \in \mathbb{R}[x]_{2d}^*$ is integration with respect to a measure μ , if $L(p) = \int p d\mu \ \forall p \in \mathbb{R}[x]_{2d}$.

Definition

Given a linear form $L \in \mathbb{R}[x]_{2d}^*$, we can define its respective moment matrix, indexed by $(x^{\alpha})_{\alpha,|\alpha| \leq d}$, in this way: $M_L = ((L(x^{\alpha+\beta}))_{\alpha,\beta,|\alpha| \leq d,|\beta| \leq d})$

Example

For
$$L = ev(0, 1) \in \mathbb{R}[x_1, x_2]_2^*$$
, its moment matrix is:

$$M_L = \begin{pmatrix} L(1) & L(x) & L(y) \\ L(x) & L(x^2) & L(xy) \\ L(y) & L(xy) & L(y^2) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

-Necessary conditions for moment sequences

Bayer and Teichmann Theorem

A linear form $L \in \mathbb{R}[x]_{2d}^*$, is a integration with respect to a measure if and only if there exists an integer N, nodes $x_1, ..., x_N \in \mathbb{R}^n$ and weights $\lambda_1 > 0, ..., \lambda_N > 0$, such that, $L(p) = \sum_{i=1}^N \lambda_i p(x_i), \forall p \in \mathbb{R}[x]_{2d}$.

Remark

If $L \in \mathbb{R}[x]_{2d}^*$, and L is integration with respect to a measure, then $L(\sum \mathbb{R}[x]_d^2) \subseteq \mathbb{R}_{\geq 0}$, that is $M_L \geq 0$

Given $L \in \mathbb{R}[x]_{2d}^*$, and $L(\sum \mathbb{R}[x]_d^2) \subseteq \mathbb{R}_{\geq 0}$

- Is L ,or at least L_{|ℝ[x]_k} for some k ≤ 2d, integration with respect to a measure?
- If L is integration with respect to a measure, How can I recover the nodes and weights of such a measure?

For this we will use a variation of the ${\bf G}{\it elfand}{\bf -}{\bf N}{\it aimark}{\bf -}{\bf S}{\it egal}$ construction.

Given $L \in \mathbb{R}[x]_{2d}^*$, and $L(\sum \mathbb{R}[x]_d^2) \subseteq \mathbb{R}_{\geq 0}$. We would like to find :

• $x_1, ..., x_N$ points in \mathbb{R}^n , $\lambda_1, ..., \lambda_N > 0$ weights such that $L = \sum_{i=1}^N \lambda_i ev(x_i)$

That is similar to find:

• A finite dimensional space V and commuting self-adjoint endomorphisms $M_1, ..., M_n$ of V and $a \in V$ such that $L(p) = \langle p(M_1, ..., M_n)a, a \rangle$

Idea: if we had $L(p^2) > 0$ for all $p \neq 0$:

•
$$V := \mathbb{R}[x]$$

• $\langle p, q \rangle := L(pq)$
• $M_i : \mathbb{R}[x] \rightarrow \mathbb{R}[x] : p \mapsto x_i p, i \in \{1, ..., n\}$
• $a := 1 \in \mathbb{R}[x]$

Let $L \in \mathbb{R}[x]_{2d}^*$ with $L(\sum \mathbb{R}[x]^2) \subseteq \mathbb{R}_{\geq 0}$

- $U_L := \{ p \in \mathbb{R}[x]_d : \forall q \in \mathbb{R}[x]_d : L(pq) = 0 \}$ GNS kernel
- $V_L := \frac{\mathbb{R}[x]_d}{U_l}$ GNS representation space of L
- lacksquare $< \overline{p}, \overline{q} >_L := L(pq) \ (p,q \in \mathbb{R}[x]_d)$ GNS scalar product
- Then we have built $(V_L, <, >_L)$ a Euclidean Vector Space

We had a euclidean vector space $(V_L, <, >_L)$:

- $\Pi_L: V_L \to \{\overline{p} : p \in \mathbb{R}[x]_{d-1}\}$ orthogonal projection
- $M_{L,i}: \prod_L V_L \to \prod_L V_L : \overline{p} \to \prod_L (\overline{X_i p}) \ (p \in \mathbb{R}[x]_{d-1})$ and $i \in \{1, ..., n\}.$

 $M_{L,i}$, called **i-th truncated GNS multiplication operator**, is self-adjoint endomorphism of $\Pi_L V_L$

Simultaneaus Diagonalization

Let V be a finite euclidean vector space, and $M_1, ..., M_n$, commuting selfadjoint endomorphisms of V. Then there exists an orthonormal basis of V which contains all the common eigenvectors of M_i for i = 1, ..., n.

Proposition (Schweighofer)

Let $L \in \mathbb{R}[x]_{2d}^*$ with $L(\sum \mathbb{R}[x]_d^2) \subseteq \mathbb{R}_{\geq 0}$. Suppose that the truncated GNS multiplication operators of L commute. And we set:

 $W_{L} := \{ \sum_{i=1}^{m} p_{i} q_{i} : m \in \mathbb{N}_{0}, p_{i}, q_{i} \in \mathbb{R}[x]_{d-1} + U_{L} \} \supseteq \mathbb{R}[x]_{2(d-1)}$

Then $L_{|W_L}$ is integration with respect to a finitely supported measure.

Definition

Let $L \in \mathbb{R}[x]_{2d}^*$ with $L(\mathbb{R}[x]_d^2) \subseteq \mathbb{R}_{\geq 0}$. We say L is flat if $\mathbb{R}[x]_{d-1} + U_L = \mathbb{R}[x]_d$.

Proposition (Schweighofer)

Let $L \in \mathbb{R}[x]_{2d}^*$ with $L(\mathbb{R}[x]_d^2) \subseteq \mathbb{R}_{\geq 0}$ and $L' := L_{|\mathbb{R}[x]_{2(d-1)}}$. Then the following are equivalent:

- L is flat.
- $\blacksquare \ \Pi_L(V_L) = V_L$
- For all $\alpha \in \mathcal{A}$:($|\alpha| = d \Rightarrow \exists p \in \mathbb{R}[x]_{d-1}$ such that $x^{\alpha} p \in U_L$)
- $\bullet \dim(V_{L'}) = \dim(V_L)$
- $(L(X^{\alpha+\beta}))_{|\alpha|,|\beta|\leq d-1}$ and $(L(X^{\alpha+\beta}))_{|\alpha|,|\beta|\leq d}$ have the same rank.

Proposition (Schweighofer)

Let $L \in \mathbb{R}[x]_{2d}^*$ with $L(\mathbb{R}[x]_d^2) \subseteq \mathbb{R}_{\geq 0}$. If L is flat then the GNS multiplication operators commute.

Corollary

Let $L \in \mathbb{R}[x]_{2d}^*$ with $L(\mathbb{R}[x]_d^2) \subseteq \mathbb{R}_{\geq 0}$ in one variable. Then $L_{|\mathbb{R}[x]_{2(d-1)}}$ comes from a measure.

Corollary (Curto and Fialkow, 1996)

Let $L \in \mathbb{R}[x]_{2d}^*$ with $L(\mathbb{R}[x]_d^2) \subseteq \mathbb{R}_{\geq 0}$. If L is flat then $L_{|\mathbb{R}[x]_{2(d-1)}}$ comes from a mesure.

$M_{L,i}$ commute does not necessarily imply that L is flat:

Example

Let $L = \frac{1}{3}(ev(1,2) + ev(2,3) + ev(4,5)) \in \mathbb{R}[x_1, x_2]_4^*$, (with points in the linie y = x + 1) here we have:

$$M_{L,1} = \begin{pmatrix} 3 & 1,6330 \\ 1,6330 & 3 \end{pmatrix} M_{L,2} = \begin{pmatrix} 4 & 1,6330 \\ 1,6330 & 4 \end{pmatrix}$$

 $M_{L,1}M_{L,2} = M_{L,2}M_{L,1}$ and L is not flat. And $L' := \frac{1}{2}(ev(1.37, 2.37) + ev(4.63, 5.63))$ with $L' = L_{|\mathbb{R}[x]_2}$.

Example

Let $L = \frac{1}{6}(ev(1, 1) + ev(-1, -1) + ev(-1, 1) + ev(1, -1) + ev(2, -2) + ev(-2, 2)) \in \mathbb{R}[x_1, x_2]_6^*$, (points in $x^2 = y^2$) here L is not flat and the operators commute.

Interested

 $L \in \mathbb{R}[x]_{2d}^*$ with $L(\sum \mathbb{R}[x]_d^2) \subseteq \mathbb{R}_{\geq 0}$ such that L is not necessarily flat and $M_{L,i}$ commute

Remark

Let $L = \sum_{i=1}^{r} \lambda_i ev_{x_i} \in \mathbb{R}[x, y]_{2d}^*$ (two variables) such that $x_i \in \{(x, y) | y = mx + n\} \subset \mathbb{R}^2$. Then the GNS multiplication operators commute.

Remark

Let $L = \sum_{i=1}^{r} \lambda_i ev_{x_i} \in \mathbb{R}[x]_{2d}^*$ with $r \leq dim(\mathbb{R}[x]_{d-1})$ then "almost always" L is flat. For example for n = 2 if we take points in the circle sometimes L is not flat.

Polynomial optimization problem: minimize p[x] over $x \in \mathbb{R}^n$, such that $p \in \mathbb{R}[x]$. We denote deg(p) := d.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

First SDP (Nie-Demmel-Sturmfels) (NDS_k) min L(p) with: • $L \in \mathbb{R}[x]_{2k}^*$ • $L(\sum \mathbb{R}[x]_k^2) \subseteq \mathbb{R}_{\geq 0}$ • $L(\frac{\partial p}{\partial x^i}(x^{\alpha})) = 0$

for all α with $|\alpha| + d - 1 < 2k$

Second SDP (Heuristic-Program)

 $(H_{k,\lambda})$ min $(1-\lambda)L(p) + \lambda E$

- $\blacksquare \ \mathbf{L} \in \mathbb{R}[x]_{2k}^*$
- $L(\sum \mathbb{R}[x]_k^2) \subseteq \mathbb{R}_{\geq 0}$
- $\blacksquare \ \ \textit{L} \approx \textit{flat}$

where $\lambda \in [0, 1]$ is fixed.

Some examples:

Example 1
With NDS ₄ for $p = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$, the Moztkin polynomial. I get the minimizers :
$(-16,8583,0), (0, -16,8583), (\pm 1, \pm 1), (16,583,0), (0, 16,583)$

Example 2

With NDS₄ for $p = x^6 + y^6 + 1 - x^4y^2 - x^2y^4 - x^4 - y^4 - x^2 - y^2 + 3x^2y^2$, the Robinson polynomial. I geth the minimizers: $(\pm 1, \pm 1), (1, 0), (0, 1), (-1, 0), (0, -1)$

Example 3

With NDS₄ fot the polynomial $x^2y^2(x^2 + y^2 - 1)$. I get the minimizers $(-14,89,0), (0, -14,89), (0, 14,89), (14,89,0), (\pm 0.5774, \pm 0.5774)$

Example 4

With $H_{3,1/60}$ for the Moztkin polynomial I get (aproximately) the minimizers $(\pm 1, \pm 1), (0, 0)$

Polynomial Optimization

Dankeschön!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ