ÜBUNGEN ZUR VORLESUNG DIFFERENTIALGEOMETRIE I

Blatt 11

Aufgabe 11.1. (4 Punkte)

Sei X ein glattes Vektorfeld auf einer kompakten Mannigfaltigkeit M.

- (i) Zeige, dass der maximale Fluss F von X auf ganz $M \times \mathbb{R}$ definiert ist.
- (ii) Zeige, dass $F(\cdot,t)$ für beliebiges $t \in \mathbb{R}$ ein Diffeomorphismus von M ist.

Aufgabe 11.2. (4 Punkte)

Sei $M \subset \mathbb{R}^n$ eine glatte kompakte Untermannigfaltigkeit. Sei $X : \mathbb{R}^n \to \mathbb{R}^n$ glatt. Sei X entlang M tangential, d. h. zu $p \in M$ gibt es eine glatte Kurve $\alpha : (-\varepsilon, \varepsilon) \to M$ mit $\alpha(0) = p$ und $\alpha'(0) = X(p)$. Sei F der maximale Fluss von X in \mathbb{R}^n .

- (i) Zeige, dass für beliebige $(p,t) \in M \times \mathbb{R} \subset \mathbb{R}^n \times \mathbb{R}$ auch $F(p,t) \in M$ gilt (falls F dort definiert ist), d. h. der Fluss von X bleibt in M.
- (ii) Fasse X vermöge $X(p) \mapsto [\alpha] \equiv Y(p) \in T_pM$ als Schnitt im Tangentialbündel TM der abstrakten Mannigfaltigkeit M bzw. als Vektorfeld auf M auf. Sei Φ der zugehörige maximale Fluss von Y auf M. Vergleiche $F|_{M \times \mathbb{R}}$ und Φ .

Aufgabe 11.3. (4 Punkte)

Sei $M^m \subset \mathbb{R}^n$ eine C^1 -Untermannigfaltigkeit. Definiere zu $p \in M$ den Normalenraum in p durch

$$N_pM := \{v \in \mathbb{R}^n : \langle \dot{\alpha}(0), v \rangle = 0 \text{ für alle Kurven } \alpha : (-\varepsilon, \varepsilon) \to M \text{ mit } \alpha(0) = p\}$$

und

$$NM := \bigcup_{p \in M} \{p\} \times N_p M.$$

Führe aus, wie $NM \subset \mathbb{R}^n \times \mathbb{R}^n$ zu einem Vektorbündel über M wird. Das Vektorbündel heißt Normalenbündel über M.

Aufgabe 11.4. (4 Punkte)

Man zeige, dass das Bild von

$$(0,2\pi] \times \left(-\frac{1}{2},\frac{1}{2}\right) \ni (\varphi,t) \mapsto \begin{pmatrix} \cos\varphi & \sin\varphi & 0 \\ -\sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1+t\sin\frac{\varphi}{2} \\ 0 \\ t\cos\frac{\varphi}{2} \end{pmatrix}$$

eine Untermannigfaltigkeit $M \subset \mathbb{R}^3$ ist. M bezeichnet man als Möbiusband.

Zeige, dass NM ein nichttriviales \mathbb{R} -Bündel (= Linienbündel) ist.

Abgabe:

Bis Montag, 20.01.2014, 10:00 Uhr, in der Vorlesung