ÜBUNGEN ZUR VORLESUNG ELEMENTARE DIFFERENTIALGEOMETRIE

Blatt 2

Aufgabe 2.1. Zykloide (4 Punkte)

Ein Punkt auf dem Rand eines Kreises vom Radius Eins, der auf der x-Achse abrollt, beschreibt eine Zykloide. Die Zykloide hat die Parametrisierung

$$\alpha: [0, 2\pi] \to \mathbb{R}^2, \ \alpha(t) := \begin{pmatrix} t - \sin(t) \\ 1 - \cos(t) \end{pmatrix} \quad \text{bzw.}$$

$$\gamma: [0, 8] \to \mathbb{R}^2, \ \gamma(s) := \begin{pmatrix} 2\arccos(1 - \frac{s}{4}) - \frac{1}{8}(4 - s)\sqrt{s(8 - s)} \\ \frac{1}{8}s(8 - s) \end{pmatrix}.$$

Zeige

- (a) α ist nicht regulär und nicht nach der Bogenlänge parametrisiert.
- (b) γ ist regulär und nach der Bogenlänge parametrisiert.
- (c) α , γ sind injektiv, $\alpha([0, 2\pi]) = \gamma([0, 8])$ und $L(\alpha) = L(\gamma) = 8$.

Aufgabe 2.2. Wohldefiniertheit der orientierten Krümmung (4 Punkte)

Sei $\alpha \in C^2(I, \mathbb{R}^2)$ nach der Bogenlänge parametrisiert. Dann definieren wir die (orientierte) Krümmung $\kappa \colon I \to \mathbb{R}$ von α durch

$$\kappa(s) := \langle \alpha''(s), \nu(s) \rangle.$$

Ist α nicht nach der Bogenlänge parametrisiert, so definieren wir die Krümmung von α durch

$$\kappa_{\alpha} := \kappa_{\alpha \circ \varphi} \circ \varphi^{-1},$$

wobei φ eine orientierungserhaltende C^2 -Parametertransformation ist, so dass $\alpha \circ \varphi$ nach der Bogenlänge parametrisiert ist.

Zeige

Die Krümmung einer nicht nach der Bogenlänge parametrisieren Kurve ist wohldefiniert.

Webseite: http://www.math.uni-konstanz.de/~makowski/veranstaltungen13.html#ELDG Abgabe: Bis Mittwoch, 08.05.2013, 15.15Uhr, in der Vorlesung.