ÜBUNGEN ZUR VORLESUNG ELEMENTARE DIFFERENTIALGEOMETRIE

Blatt 3

Aufgabe 3.1. (4 Punkte)

Sei $I \subset \mathbb{R}$ ein offenes Intervall, $\alpha : I \to \mathbb{R}^2$ eine reguläre C^2 -Kurve.

(i) Nehme an, dass $|\alpha(t)|$ an der Stelle t_0 ein lokales Maximum hat. Zeige, dass dann

$$|\kappa(t_0)| \ge \frac{1}{|\alpha(t_0)|}$$

gilt, wobei $\kappa:I\to\mathbb{R}$ die Krümmung von α ist.

(ii) Nehme nun an, dass für ein $s_0 \in I$ und ein $r \in \mathbb{R}_+$ die Bedingungen

$$\alpha(s_0) = (r, 0), \quad \alpha'(s_0) = (0, 1), \quad \text{sowie } \kappa(s_0) > \frac{1}{r}$$

gelten. Zeige, dass die Kurve α lokal um $\alpha(s_0)$ innerhalb der Kreisscheibe $B_r(0)$ liegt.

Aufgabe 3.2. (4 Punkte)

Sei I=(a,b). Sei $\kappa \in C^0(I,\mathbb{R})$, $s_0 \in I$, $p \in \mathbb{R}^2$, $v \in \mathbb{S}^1$. Zeige, dass es genau eine nach der Bogenlänge parametrisierte Kurve $\alpha \in C^2(I,\mathbb{R}^2)$ mit $\alpha(s_0)=p$, $\alpha'(s_0)=v$ und Krümmung κ gibt. Zeige auch, dass es eine Funktion $\vartheta \in C^1(I,\mathbb{R})$ mit $\alpha'=\mu \circ \vartheta$ gibt, wobei $\mu(t):=(\cos t,\sin t)$ für $t \in \mathbb{R}$ sei.

Webseite: http://www.math.uni-konstanz.de/~makowski/veranstaltungen13.html#ELDG Abgabe: Bis Mittwoch, 15.05.2013, 15.15 Uhr, in der Vorlesung.