ÜBUNGEN ZUR VORLESUNG ELEMENTARE DIFFERENTIALGEOMETRIE

Blatt 5

Aufgabe 5.1. (6 Punkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine C^2 -Funktion. Der Gradient von f ist als $\nabla f: \mathbb{R}^2 \to \mathbb{R}^2$, $p \mapsto \left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p)\right)$ definiert. Beweise die folgenden Aussagen:

- a) Sei f(p) = 0 und $\nabla f(p) \neq 0$. Dann gilt mit dem Satz über implizite Funktionen: Es gibt eine Umgebung U von p und eine reguläre C^2 -Kurve $\gamma: I \to \mathbb{R}^2$, so dass für alle $q \in U$ gilt: f(q) = 0 genau dann, wenn es ein $t \in I$ mit $\gamma(t) = q$ gibt.
- b) Sei $\gamma: I \to \mathbb{R}^2$ eine reguläre C^2 -Kurve, so dass $f(\gamma(t)) = 0$ und $\nabla f(\gamma(t)) \neq 0$ für alle $t \in I$. Dann gilt

$$\nabla f(\gamma(t)) \perp e_1(t), \quad \kappa(t) = -\frac{D^2 f(\gamma(t)) (e_1(t), e_1(t))}{\nabla f(\gamma(t)) \cdot e_2(t)},$$

wobei $e_1(t) := \frac{\dot{\gamma}(t)}{|\dot{\gamma}(t)|}, \ e_2(t) := \frac{1}{\kappa(t)} \left(\frac{\ddot{\gamma}}{|\dot{\gamma}|^2} - \frac{\langle \ddot{\gamma}, \dot{\gamma} \rangle \dot{\gamma}}{|\dot{\gamma}|^4} \right)$ und $D^2 f(p)$ die zweite Ableitung oder Hesse-Matrix von f an der Stelle p ist. (Hinweis: Leite $(f \circ \gamma)(t) = 0$ zwei Mal nach t ab.)

Aufgabe 5.2. (2 Punkte)

Sei $c \in C^2(I, \mathbb{R}^2)$ eine nach der Bogenlänge parametrisierte Kurve und $\tilde{c} \in C^2(I, \mathbb{R}^3)$ die Kurve $I \to \mathbb{R}^3$, $t \mapsto (c(t), 0)$. Sei $t_0 \in I$.

- a) Zeige, dass $\kappa_{\tilde{c}}(t) = |\kappa_c(t)|$ gilt, wobei κ_c die orientierte Krümmung der Kurve c ist, und $\kappa_{\tilde{c}}$ die Krümmung der Raumkurve \tilde{c} ist.
- b) Sei $c \in C^3(I, \mathbb{R}^2)$ und sei $\kappa_c(t_0) \neq 0$. Zeige, dass für die Torsion $\tau_{\tilde{c}}(t_0) = 0$ gilt.
- c) Sei $\kappa_c(t_0) \neq 0$. Zeige, dass $N(t_0) = \pm(\nu(t_0), 0)$ gilt, wobei ν die Normale an c ist. Wann ist $N(t_0) = (\nu(t_0), 0)$ und wann ist $N(t_0) = -(\nu(t_0), 0)$?
- d) Sei $\kappa_c(t_0) \neq 0$. Zeige, dass $B(t_0) = \pm e_3(t_0)$ gilt. Wann ist $B(t_0) = e_3(t_0)$ und wann ist $B(t_0) = -e_3(t_0)$?

Webseite: http://www.math.uni-konstanz.de/~makowski/veranstaltungen13.html#ELDG Abgabe: Bis Mittwoch, 29.05.2013, 15.15 Uhr, in der Vorlesung.