ÜBUNGEN ZUR VORLESUNG FUNKTIONALANALYSIS

Blatt 8

Bemerkung: Statt einer Aufgabe 8.4 gibt es am 04.06.2012 ab 15:15 Uhr in D 406 die Möglichkeit bei einer Präsenzaufgabe 4 Zusatzpunkte zu erwerben.

Aufgabe 8.1. (4 Punkte)

(i) Sei X ein Banachraum und $K \subset X$ kompakt. Sei $(x_n)_{n \in \mathbb{N}} \subset K$ eine Folge mit

$$x_n \rightarrow x$$
.

Beweise, dass

$$x_n \to x$$

gilt.

(ii) Sei H ein Hilbertraum und sei $\varphi: H \to \mathbb{R}$ konvex und stetig. Sei $u_n \to u$ eine schwach konvergente Folge, dann gilt $\varphi(u) \leq \liminf \varphi(u_n)$.

Aufgabe 8.2. (4 Punkte)

Sei $(X, \|\cdot\|)$ ein gleichmäßig konvexer Banachraum. Sei $x_0 \in X$ und sei $(x_n)_{n \in \mathbb{N}}$ eine Folge in X mit $x_n \to x_0$ und $\|x_n\| \to \|x_0\|$. Zeige, dass hieraus $\|x_n - x\| \to 0$ folgt.

Aufgabe 8.3. (4 Punkte))

Sei $n \in \mathbb{N}_+$ und sei $1 . Sei <math>\Omega \subset \mathbb{R}^n$ offen. Zeige, dass $L^p(\Omega)$ reflexiv ist. Hinweis: Verwende Theorem 3.4.2 aus der Vorlesung.

Webseite: http://www.math.uni-konstanz.de/~makowski/veranstaltungen12.html#FA Abgabe: Bis Dienstag, 12.06.2012, 9.55 Uhr, in die Briefkästen bei F 411.