Übungen zur Vorlesung Funktionalanalysis

Blatt 9

Aufgabe 9.1. (4 Punkte)

Sei $n \in \mathbb{N}_+$ und sei $B_1(0) := \{x \in \mathbb{R}^n : |x| < 1\}.$

- (i) Zeige, dass es eine Funktion $\eta \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$ mit supp $\eta \subset B_1(0)$, $\int_{\mathbb{R}^n} f d\lambda = 1$ und $\eta \geq 0$ gibt. Bemerkung: Eine Funktion mit diesen Eigenschaften nennen wir eine Friedrichsche Glättungsfunktion.
- (ii) Sei η eine Friedrichsche Glättungsfunktion. Wir definieren für beliebige $\varepsilon > 0$ die zugehörige Diracfolge $\eta_\varepsilon := \varepsilon^{-n} \eta\left(\frac{x}{\varepsilon}\right)$. Zeige, dass $\eta_\varepsilon \in C_c^\infty(B_\varepsilon(0))$ ist und $\int_{B_\varepsilon(0)} \eta_\varepsilon d\lambda = 1$ erfüllt.

Aufgabe 9.2. (8 Punkte)

Sei $n \in \mathbb{N}_+$ und sei $\Omega \subset \mathbb{R}^n$ offen. Sei η eine Friedrichsche Glättungsfunktion und η_{ε} die zugehörige Diracfolge. Sei $f \in L^1(\Omega, \mathbb{R})$. Wir setzen f mit Null auf das Komplement von Ω fort und definieren für beliebige $\varepsilon > 0$ die Funktionen $f_{\varepsilon}: \mathbb{R}^n \to \mathbb{R}, x \mapsto \int_{\mathbb{R}^n} \eta_{\varepsilon}(x-y) f(y) dy$.

Sei $(\varepsilon_n)_{n\in\mathbb{N}}\subset\mathbb{R}_+$ eine Nullfolge und sei $\varepsilon>0$ beliebig. Zeige die folgenden Aussagen:

- (i) Es gilt $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$.
- (ii) Sei $K \subset \Omega$ eine kompakte Teilmenge von Ω und sei in dieser Teilaufgabe f noch zusätzlich stetig auf Ω . Dann gilt $f_{\varepsilon_n} \rightrightarrows f$ für $n \to \infty$ auf K.
- (iii) Es gilt supp $f_{\varepsilon} \subset B_{\varepsilon}(\operatorname{supp} f) := \left\{ x \in \mathbb{R}^n : \inf_{y \in \operatorname{supp} f} |x y| < \varepsilon \right\}.$
- (iv) Sei $m \in \mathbb{N}_+$ und sei in dieser Teilaufgabe f noch zusätzlich von der Klasse $C^m(\Omega)$. Sei $x \in \Omega$. Falls $B_{\varepsilon}(x) \subset \Omega$ gilt, dann ist $D^{\alpha}f_{\varepsilon}(x) = (D^{\alpha}f)_{\varepsilon}(x)$ für alle Multiindizes α mit $|\alpha| \leq m$. Sei $\Omega' \subset\subset \Omega$ offen, dann gilt $||f_{\varepsilon_n} - f||_{C^m(\Omega')} \to 0$ für $n \to \infty$. (v) Sei $1 \le p < \infty$ und sei $f \in L^p(\mathbb{R}^n)$. Dann gilt $||f_{\varepsilon_n} - f||_{L^p(\mathbb{R}^n)} \to 0$ für $n \to \infty$.
- (vi) Gelte nun $f \in L^{\infty}(\Omega)$. Dann gilt $||f_{\varepsilon}||_{L^{\infty}(\Omega)} \leq ||f||_{L^{\infty}(\Omega)}$.

Aufgabe 9.3. (4 Punkte)

Lese und verstehe den Beweis der Existenz einer Partition der Eins auf einer offenen Teilmenge des \mathbb{R}^n .

Webseite: http://www.math.uni-konstanz.de/~makowski/veranstaltungen12.html#FA Abgabe: Bis Dienstag, 19.06.2012, 9.55 Uhr, in die Briefkästen bei F 411.