ÜBUNGEN ZUR VORLESUNG FUNKTIONALANALYSIS

Blatt 12

Aufgabe 12.1. (6 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Sei $u \in L^1_{loc}(\Omega)$ eine schwach differenzierbare Funktion.

(i) Zeige, dass |u| schwach differenzierbar ist und dass

$$D|u| = \begin{cases} Du, & u > 0 \\ 0, & u = 0 \\ -Du, & u < 0, \end{cases}$$

fast überall gilt.

(ii) Sei $I \subset \mathbb{R}$ eine endliche Teilmenge von \mathbb{R} . Sei $f \in C^0(\mathbb{R}) \cap C^1(\mathbb{R} \setminus I)$ mit $f' \in L^{\infty}(\mathbb{R})$. Zeige, dass $f \circ u$ eine schwach differenzierbare Funktion mit

$$D(f \circ u) = \begin{cases} f'(u)Du, & u \notin I \\ 0, & u \in I \end{cases}$$

ist. Zeige ausserdem, dass $u \in W^{1,p}(\Omega)$ auch $f \circ u \in W^{1,p}(\Omega)$ impliziert.

Aufgabe 12.2. (4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt, $\partial \Omega \in C^1$. Sei n . Zeige, dass <math>u einen stetigen Repräsentanten u^* mit $u^* \in C^{0,\gamma}(\overline{\Omega}), \gamma = 1 - \frac{n}{p}$, besitzt und dass

$$||u^*||_{C^{0,\gamma}(\overline{\Omega})} \le c \cdot ||u||_{W^{1,p}(\Omega)}$$

mit $c = c(p, n, \Omega)$ gilt.

Aufgabe 12.3. (6 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt mit $\partial \Omega \in C^1$. Seien $f \in L^2(\Omega)$ und $\varphi \in W^{1,2}(\Omega)$. Sei

$$M := \{ u \in W^{1,2}(\Omega, \mathbb{R}) : u - \varphi \in W_0^{1,2}(\Omega, \mathbb{R}) \}.$$

Wir definieren das Energiefunktional durch

$$I: M \to \mathbb{R}, \quad u \mapsto \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 - fu\right).$$

- (i) Zeige, dass es ein eindeutiges Minimum von I gibt, d.h. es gibt $u \in M$ mit $I(u) \leq I(v)$ für alle $v \in M$.
- (ii) Sei nun $\varphi \in C^2(\bar{\Omega})$ und $f \in C^0(\Omega)$. Nehme an, dass das Minimum u von I in $C^2(\bar{\Omega})$ ist. Zeige, dass u das folgende Randwertproblem erfüllt:

$$\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
u = \varphi & \text{auf } \partial\Omega.
\end{cases}$$

Webseite: http://www.math.uni-konstanz.de/~makowski/veranstaltungen12.html#FA Abgabe: Bis Dienstag, 10.07.2012, 9.55 Uhr, in die Briefkästen bei F 411.