ÜBUNGEN ZUR VORLESUNG LINEARE ALGEBRA 1

Blatt 1

Aufgabe 1.1. (4 Punkte)

Beweisen Sie folgende Aussagen per Induktion:

(i)
$$\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$(ii) \qquad \sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2$$

Aufgabe 1.2. (4 Punkte)

Sei M eine n-elementige Menge, $n \in \mathbb{N}$.

(i) Weisen Sie die folgende Formel

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$

für $k \in \mathbb{N}$ nach, wobei wir für k > n und k < 0 definieren, dass $\binom{n}{k} := 0$ ist.

(ii) Zeigen Sie per Induktion, dass M genau

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

Teilmengen mit genau k Elementen besitzt, wobei $k \in \mathbb{N}$ mit $0 \le k \le n$ ist.

(iii) Verwenden Sie die Formel aus (i) um nachzuweisen, dass die Potenzmenge von M, bezeichnet mit $\mathcal{P}(M)$, genau 2^n Elemente enthält.

Aufgabe 1.3. (2 Punkte)

Wenden Sie den Gaußschen Algorithmus auf das folgende Gleichungssystem an und bestimmen Sie die Lösungsmenge:

Aufgabe 1.4. (2 Punkte)

Sei M eine Menge und seien $A, B, C \in \mathcal{P}(M)$ Elemente der Potenzmenge von M. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- (i) $C \subset A$
- (ii) $C \subset C \cap A$
- (iii) $C = C \cap A$
- (iv) Für jede beliebige Menge B gilt die Identität $(A \cap B) \cup C = A \cap (B \cup C)$.

Aufgabe 1.5. (4 Punkte)

- (i) Die natürlichen Zahlen sind durch eine Menge \mathbb{N} gegeben, in der es ein ausgezeichnetes Element 0 und eine Abbildung $\nu : \mathbb{N} \to \mathbb{N} \setminus \{0\}$ gibt mit den Eigenschaften:
 - $(P_1) \nu$ ist injektiv.
 - (P_2) Ist N eine Teilmenge von \mathbb{N} mit $0 \in N$ und der Eigenschaft, dass für alle $n \in N$ bereits $\nu(n) \in N$ gilt, dann ist bereits $N = \mathbb{N}$.

Diese Eigenschaften werden als Peano-Axiome bezeichnet und ein Tripel $(\mathbb{N}, 0, \nu)$ wie oben bezeichnen wir als ein Modell der natürlichen Zahlen.

Beweisen Sie, dass die Abbildung ν surjektiv ist.

(ii) Wir zeigen nun, dass das *Unendlichkeitsaxiom* der Zermelo-Fraenkel-Mengenlehre die Existenz eines Modells der natürlichen Zahlen impliziert:

Das Unendlichkeitsaxiom sichert die Existenz einer induktiven Menge, d.h. einer Menge M, welche die leere Menge und mit jedem $x \in M$ auch $x \cup \{x\}$ enthält. Sei I die Menge aller induktiven Mengen, so setzen wir

$$\mathbb{N} := \bigcap_{M \in I} M$$

und definieren $0 := \emptyset$ und $\nu : \mathbb{N} \to \mathbb{N}$ durch $\nu(n) := n \cup \{n\}$. Zeigen Sie nun, das \mathbb{N} eine induktive Menge ist und dass $(\mathbb{N}, 0, \nu)$ den Peano-Axiomen genügt.

 $\mathit{Hinweis}$: Um die Injektivität von ν zu zeigen, beweise man zunächst, dass jedes $n \in \mathbb{N}$ für jede beliebige Menge x die Eigenschaft " $x \in n \Longrightarrow x \subset n$ " erfüllt.

Abgabe: Bis Dienstag, 26.10.2010, 10.00 Uhr, in die Briefkästen bei F 411.