ÜBUNGEN ZUR VORLESUNG LINEARE ALGEBRA 1

Blatt 12

Aufgabe 12.1. (4 Punkte)

Sei $V = \mathbb{R}^{\mathbb{N}}$ der \mathbb{R} -Vektorraum aller Folgen in \mathbb{R} .

- a) Sei die lineare Abbildung $f: V \to V$ durch $x = (x^i) \mapsto (0, x^0, x^1, x^2, \ldots)$ gegeben. Zeigen Sie, dass f injektiv, aber nicht surjektiv ist.
- b) Geben Sie ein Beispiel für eine lineare Abbildung $f: V \to V$ an, die surjektiv, aber nicht injektiv ist.

Aufgabe 12.2. (4 Punkte)

- a) Sei f die Abbildung aus Aufgabe 7.1. Seien $B_1 := \{(1,1,1,1), (2,-4,11,2), (3,1,4,0), (0,-2,1,5)\}$ und $B_2 := \{(1,0,1,0), (0,1,0,1), (1,0,-1,0), (0,1,0,-1)\}$ zwei Basen des \mathbb{R}^4 . Geben Sie die Darstellung der Abbildung f bezüglich der Basen B_1 und B_2 an.
- b) Sei $n \in \mathbb{N}^+$ und sei $\mathbb{R}_n[X]$ der Vektorraum der Polynome mit deg $p \leq n$. Weiterhin verwenden wir die Bezeichnungen von Aufgabe 11.1 für die Abbildung f_n und die Standardbasis B_n von $\mathbb{R}_n[X]$. Zu gegebenem $a \in \mathbb{R}$ sei $C_n^a := \{h_0, \dots h_n\}$ mit $h_0[X] := 1$, $h_i[X] := (X a)^i$ für $i \in \mathbb{N}$, $1 \leq i \leq n$, eine weitere Basis des $\mathbb{R}_n[X]$.
 - (i) Bestimmen Sie die Matrix des Basiswechsels von B_n nach C_n .
 - (ii) Seien $a, b \in \mathbb{R}$. Bestimmen Sie die zur linearen Abbildung f_3 gehörige Matrix A bezüglich der Basen C_3^a und C_2^b .

Hinweis: Sie dürfen die verallgemeinerte binomische Formel für $a,b\in\mathbb{R},\,n\in\mathbb{N}^+$ verwenden:

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}.$$

Aufgabe 12.3. (4 Punkte)

Seien V, W endlich-dimensionale K-Vektorräume und V_1, V_2 Unterräume von V sowie W_1, W_2 Unterräume von W mit $V = V_1 \oplus V_2$ und $W = W_1 \oplus W_2$. Sei $\varphi : V \to W$ eine lineare Abbildung mit $\varphi(V_1) \subset W_1$ und $\varphi(V_2) \subset W_2$. Zeigen Sie, dass es eine Basis B_1 von V und eine Basis B_2 von W gibt, so dass die darstellende Matrix A der Abbildung φ bezüglich B_1 und B_2 die Form

$$A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$$

hat mit $A_1 \in K^{\dim W_1 \times \dim V_1}$, $A_2 \in K^{\dim W_2 \times \dim V_2}$.

Aufgabe 12.4. (4 Punkte)

Sei V ein endlich-dimensionaler K-Vektorraum und $\varphi: V \to V$ eine lineare Abbildung mit $\varphi^2 = \varphi$. Zeigen Sie, dass es eine Basis B von V gibt, so dass die darstellende Matrix A von φ bezüglich B die Gestalt

$$A = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

hat, wobei $r \in \mathbb{N}$ und I_r die r-dimensionale Einheitsmatrix bezeichnet.

Abgabe: Bis Dienstag, 25.01.2010, 10.00 Uhr, in die Briefkästen bei F 411.