ÜBUNGEN ZUR VORLESUNG LINEARE ALGEBRA 1

Blatt 14

Aufgabe 14.1. (6 Punkte)

Seien $a, b, c \in \mathbb{R}$. Sei $V = \{(x^n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : x^{n+3} = ax^{n+2} + bx^{n+1} + cx^n \text{ für alle } n \in \mathbb{N}\}.$

- a) Zeigen Sie, dass V ein Unterraum von $\mathbb{R}^{\mathbb{N}}$ ist.
- b) Zeigen Sie, dass es ein $k \in \mathbb{N}$ gibt, so dass V isomorph zu \mathbb{R}^k ist.
- c) Finden Sie eine Matrix $A \in \mathbb{R}^{3\times 3}$, so dass $A \begin{pmatrix} x^n \\ x^{n+1} \\ x^{n+2} \end{pmatrix} = \begin{pmatrix} x^{n+1} \\ x^{n+2} \\ x^{n+3} \end{pmatrix}$ gilt.
- d) Seien ab jetzt $a=-3,\,b=0,\,c=4.$ Bestimmen Sie die Eigenwerte von A, die zugehörigen Eigenvektoren und ergänzen Sie diese mit dem Vektor $3 \cdot e_3$ zu einer Basis von \mathbb{R}^3 . Stellen Sie A bezüglich dieser Basis

Aufgabe 14.2. (2 Punkte)

Aufgabe 14.2. (2 Punkte)
Bestimmen Sie die Determinante der Matrix
$$A = (a_j^i) \in \mathbb{R}^{n \times n}$$
 mit $a_j^i := \begin{cases} 1, & i < j, \\ 0, & i = j, \\ -1, & i > j. \end{cases}$

Abgabe: Bis Dienstag, 08.02.2011, 10.00 Uhr, in die Briefkästen bei F 411.