ÜBUNGEN ZUR VORLESUNG LINEARE ALGEBRA 2

Blatt 2

Aufgabe 2.1. (4 Punkte)

Sei V ein reeller Vektorraum mit Skalarprodukt. Zeigen Sie, dass zwei Teilmengen $T, S \subset V$ genau dann orthogonal sind, wenn $\langle S \rangle$ und $\langle T \rangle$ orthogonal sind.

Aufgabe 2.2. (4 Punkte)

Sei V der Raum der auf $[-\pi,\pi]$ stetigen reellwertigen Funktionen mit Skalarprodukt

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$$
, für $f, g \in V$.

Beweisen Sie, dass $\{1, \sin x, \cos x, \sin 2x, \cos 2x, \sin 3x, \cos 3x, \ldots\}$ eine orthogonale Familie in V ist.

Aufgabe 2.3. (4 Punkte) Sei V der Raum der Polynome vom Grad kleiner gleich 3 mit dem durch

$$\langle p, q \rangle = \int_0^1 p(x)q(x)dx$$
, für $p, q \in V$

definierten Skalarprodukt. Orthonormalisieren Sie die Basis $\{1,x,x^2,x^3\}$ (wobei $x^2=x\cdot x$ und $x^3=x\cdot x\cdot x$ ist) mit dem Verfahren von Gram-Schmidt.

Aufgabe 2.4. (4 Punkte)

Sei V ein endlich-dimensionaler euklidischer Vektorraum der Dimension n. Sei $({}^kA)_{k\in\mathbb{N}}$ eine Folge orthogonaler Matrizen in $\mathbb{R}^{n\times n}$ mit $({}^kA)=({}^ka^i_j)_{1\leq i,j\leq n}$. Zeigen Sie, dass es eine Teilfolge $({}^{k_l}A)$ und eine orthogonale Matrix $A=(a^i_j)_{1\leq i,j\leq n}\in\mathbb{R}^{n\times n}$ mit

$$a_l^i a_j^i \to a_j^i$$
 für $k_l \to \infty$ und alle $1 \le i, j \le n$

gibt. "Die orthogonale Matrizen (kA) besitzen eine konvergente Teilfolge mit Grenzwert A." (Eine analoge Aussage gilt auch für unitäre Matrizen.)

Webseite: http://www.math.uni-konstanz.de/~makowski/veranstaltungen11.html#LAII Abgabe: Bis Dienstag, 3.5.2011, 10.00 Uhr, in die Briefkästen bei F 411.