ÜBUNGEN ZUR VORLESUNG LINEARE ALGEBRA 2

Blatt 4

Aufgabe 4.1. (2 Punkte)

Seien $f: \mathbb{C}^n \to \mathbb{C}^n$ ein Isomorphismus, $k \in \mathbb{N}$, und \mathbb{C}^n besitze eine Basis aus Eigenvektoren von f^k . Besitzt \mathbb{C}^n eine Basis aus Eigenvektoren von f?

Aufgabe 4.2. (4 Punkte)

- a) Sei $A \in M(n, \mathbb{C})$ antihermitesch, d.h. gelte $-A = \bar{A}^T$. Zeigen Sie, dass $\bar{A}^T A = A \bar{A}^T$ ist und dass alle Eigenwerte von A rein imaginäre Zahlen sind.
- b) Sei A eine orthogonale $(n \times n)$ -Matrix. Zeigen Sie, dass $\operatorname{im}(A 1) \perp \ker(A 1)$.

Aufgabe 4.3. (4 Punkte)

Seien V ein Vektorraum und U ein Unterraum von V. Der Unterraum

$$v + U = \{v + u \mid u \in U\}$$

heißt der affine Unterraum durch v zum Unterrraum U.

Betrachten Sie einen euklidischen Vektorraum V und einen affinen Unterraum $W \subset V$. Sei ferner $w \in W$ so gewählt, dass $||w|| \le ||u||$ für alle $u \in W$ gilt. Beweisen Sie, dass w senkrecht zu W steht, d.h. dass $\langle w, u_1 - u_2 \rangle = 0$ für alle $u_1, u_2 \in W$ ist.

Aufgabe 4.4. (6 Punkte)

Beweisen Sie Lemma 5.4.5 aus dem Skript für den Fall einer allgemeinen Matrix $A \in F^{n \times n}$.

Webseite: http://www.math.uni-konstanz.de/~makowski/veranstaltungen11.html#LAII Abgabe: Bis Dienstag, 17.5.2011, 10.00 Uhr, in die Briefkästen bei F 411.