ÜBUNGEN ZUR VORLESUNG PARTIELLE DIFFERENTIALGLEICHUNGEN II

Blatt 8

Aufgabe 8.1. (5 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen. Sei 1 .

Sei $a^{ij} \in C^0(\Omega)$ gleichmäßig elliptisch mit $a^{ij}(x)\xi_i\xi_j \geq \vartheta|\xi|^2$ für alle $x \in \Omega$ und alle $\xi \in \mathbb{R}^n$. Sei $u \in W^{2,p}_{\text{loc}}(\Omega) \cap L^p(\Omega)$ eine starke Lösung von

$$a^{ij}u_{ij} = f \text{ in } \Omega,$$

d. h. die Gleichheit gilt für L^p -Funktionen. Zeige für $\Omega' \subseteq \Omega$ die a priori Abschätzung

$$||u||_{W^{2,p}(\Omega')} \le c(n, p, \vartheta, \Omega', \Omega, a^{ij}) \cdot \{||f||_{L^p(\Omega)} + ||u||_{L^p(\Omega)}\},$$

falls solch eine Abschätzung im Spezialfall $a^{ij} \equiv \delta^{ij}$ gilt.

Hinweis: Modifiziere die Herleitung der Schauderabschätzungen aus den Potentialabschätzungen und benutze, dass a^{ij} lokal gleichmäßig stetig ist.

Aufgabe 8.2. (4 Punkte)

Seien Ω, L wie in Theorem 2.13 der Schaudertheorie.

Definiere $C_0^{2,\alpha}(\overline{\Omega}) := C^{2,\alpha}(\overline{\Omega}) \cap \{u \in C^0(\overline{\Omega}) : u = 0 \text{ auf } \partial\Omega\}.$ Dann ist $L: C_0^{2,\alpha}(\overline{\Omega}) \to C^{0,\alpha}(\overline{\Omega})$ ein stetiger surjektiver linearer Operator mit stetiger Inversen:

$$||u||_{C^{2,\alpha}(\Omega)} \le c \cdot ||Lu||_{C^{0,\alpha}(\Omega)}.$$

Gib eine analoge funktionalanalytische Beschreibung für den Fall an, dass die Randwerte nicht notwendigerweise Null sind.

Aufgabe 8.3. (4 Punkte)

Führe die Details zu Bemerkung 2.15 aus.

Aufgabe 8.4. (3 Punkte)

Zeige für Theorem 3.8:

Aus der Variante für R=1 folgt durch Skalieren bereits der allgemeine Fall.

Abgabe:

Bis Montag, 16.12.2013, 13:30 Uhr, in der Vorlesung oder am darauffolgenden Tag in den Übungsgruppen.