ÜBUNGEN ZUR VORLESUNG VARIATIONSRECHNUNG

Blatt 3

Aufgabe 3.1. (4 Punkte)

Sei V ein normierter Raum. Sei $\Omega \subset V$ eine konvexe Teilmenge von V. Sei $F: V \to \mathbb{R} \cup \{\infty\}$ ein konvexes, unterhalbstetiges Funktional. Zeige, dass F schwach unterhalbstetig ist.

Aufgabe 3.2. (4 Punkte + zusätzlich 4 Punkte)

Sei $1 . Sei <math>\Omega \subset \mathbb{R}^n$ offen. Wir definieren das Funktional

$$F: L^p(\Omega) \to \mathbb{R}, \quad f \mapsto \int_{\Omega} |f|^p(x) d\lambda(x).$$

Zeige, dass $F \in C^1(L^p(\Omega))$ gilt und dass für die partielle Ableitung an der Stelle $u \in L^p(\Omega)$ in die Richtung $v \in L^p(\Omega)$

$$DF(u)v = p \int_{\Omega} |u|^{p-2} uv$$

gilt.

Zusatz: Sei p > 2. Zeige, dass $F \in C^2(L^p(\Omega))$ gilt und dass für die partielle Ableitung an der Stelle $u \in L^p(\Omega)$ in die Richtungen $v, w \in L^p(\Omega)$

$$D^2F(u)\langle v, w \rangle = p(p-1)\int_{\Omega} |u|^{p-2}vw$$

gilt.

Aufgabe 3.3. (4 Punkte)

(i) Sei $n \in \mathbb{N}$. Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt mit glattem Rand. Sei $H \in \mathbb{R}$. Sei $u \in C^2(\Omega) \cap H^{1,1}(\Omega)$. Nehme an, dass die erste Variation des Funktionals

$$F_1(u) = \int_{\Omega} [(1 + |Du|^2)^{\frac{1}{2}} + Hu] dx$$

an der Stelle u für alle Variationen $(-\varepsilon,\varepsilon) \ni t \mapsto u(\cdot,t) \in H^{1,1}(\Omega)$ mit $u(\cdot,t) - u(\cdot,0) \in C_c^2(\Omega)$ verschwindet. Berechne die Euler-Lagrange Gleichung von F_1 .

(ii) Sei $n \in \mathbb{N}$ mit $n \geq 2$. Sei $B_1(0) \subset \mathbb{R}^n$ die Einheitskugel. Sei $u \in H^{1,2}(B_1(0), \mathbb{S}^{n-1}) \cap C^2(B_1(0), \mathbb{R}^n)$. Nehme an, dass die erste Variation des Funktionals

$$F_2(u) = \frac{1}{2} \int_{B_1(0)} |Du|^2$$

an der Stelle u für alle Variationen $(-\varepsilon,\varepsilon) \ni t \mapsto u(\cdot,t) \in H^{1,2}(B_1(0),\mathbb{S}^{n-1})$ mit $u(\cdot,t) - u(\cdot,0) \in H^{1,2}_0(B_1(0),\mathbb{R}^n) \cap L^{\infty}(B_1(0),\mathbb{R}^n)$ verschwindet. Berechne die Euler-Lagrange Gleichung von F_2 .

Aufgabe 3.4. $(4 + zus \ddot{a}tzlich \ 2 \ Punkte)$

Sei I=[a,b] mit $a,b\in\mathbb{R},\ a< b.$ Sei $n\in\mathbb{N}$ mit $n\geq 2.$ Wir definieren die Länge der Kurve $\gamma\in C^1(I,\mathbb{R}^n)$

$$L(\gamma) := \int_a^b \|\dot{\gamma}(t)\| dt$$

und die Energie der Kurve durch

$$E(\gamma):=\frac{1}{2}\int_a^b\|\dot{\gamma}(t)\|^2dt.$$

Sei $X_1:=\mathbb{R}^n$ und sei $X_2:=\mathbb{S}^{n-1}$. Für $i\in\{1,2\}$ und $p,q\in X_i$ definieren wir $C^i_{pq}:=\{\gamma\in C^1(I,\mathbb{R}^n):\gamma(a)=1\}$ $p, \gamma(b) = q, \gamma(I) \subset X_i$ \}.

- (i) Berechne für $i \in \{1, 2\}$ die Euler-Lagrange Gleichung des Funktionals E in der Klasse $C^i_{pq} \cap C^2((a, b), \mathbb{R}^n)$.
- (ii) Sei $i \in \{1,2\}$. Zeige, dass $\gamma_0 \in C^i_{pq}$ genau dann das Funktional E in C^i_{pq} minimiert, wenn γ_0 das Funktional L in C_{pq}^i minimiert und eine Konstante $c \in \mathbb{R}_+$ existiert, so dass $\|\dot{\gamma}(t)\| = c$ für alle $t \in I$
- (iii) Berechne einen Minimierer des Längenfunktionals in der Klasse C^1_{pq} . (iv) Sei n=3. Sei $\alpha\in(0,\pi)$. Seien $p=(1,0,0)^t$, $q=(\cos(\alpha),\sin(\alpha),0)^t$, a=0 und $b=\alpha$. Gib' eine Lösung der Euler-Lagrange Gleichung des Funktionals E in der Klasse $C^2_{pq}\cap C^2((a,b),\mathbb{R}^n)$ an. Zusatz: Zeige, dass die Lösung auch ein Minimierer des Längenfunktionals in der Klasse C_{pq}^2 ist.

Webseite: http://www.math.uni-konstanz.de/~makowski/veranstaltungen1213.html#VAR Abgabe: Bis Mittwoch, 14.11.2012, 13.25 Uhr, in die Briefkästen bei F 411.