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MATTHIAS MAKOWSKI

Abstract. We consider curvature flows in hyperbolic space with a curva-
ture function F , which is monotone, symmetric, homogeneous of degree
1 and either convex or concave and inverse concave, and a mixed vol-
ume preserving term. For initial hypersurfaces, which are compact and
strictly convex by horospheres, we prove long time existence and expo-
nential convergence to a geodesic sphere of the same mixed volume as the
initial hypersurface.
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1. Introduction

Let n ∈ N, n ≥ 2. We fix b ∈ R∗− and set a :=
√
|b|. Let Nb be a

(n+ 1)-dimensional, connected, simply connected Riemannian manifold of con-
stant sectional curvature b, i.e. Nb is isometric to Hn+1

1
a

, the hyperbolic space

of radius 1
a ,

(1.1) Hn+1
1
a

:= {p ∈ Ln+2 : 〈p, p〉L = − 1

a2
, p0 > 0}.
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Here (Ln+2, 〈., .〉) denotes the (n+2)-dimensional Lorentz-Minkowski space. We
want to consider a curvature flow in Nb, which is then equivalent to consider a
curvature flow in Hn+1

1
a

.
We show the long time existence and the exponential convergence to a geo-

desic sphere of the following curvature flow in Hn+1
1
a

:

ẋ = (f − F ) ν,

x(0) = x0,
(1.2)

where x0 : Sn → Hn+1
1
a

is the immersion of an initial, compact, connected,
smooth hypersurfaceM0 := x0(Sn) which is furthermore required to be strictly
convex by horospheres (this property will be explained further below). ν is the
corresponding outer normal, F is a smooth curvature function evaluated at the
principal curvatures of the flow hypersurfaces Mt, x(t) denotes the embedding
ofMt and f is a volume preserving global term, f = fk, see the definition below.
We need to provide the definition of convexity by horospheres. However, we
only give a rather analytic definition, for more geometric interpretations of this
property we refer the reader to the papers [4], [5], [6] and [7].

Definition 1.1. A hypersurfaceM in Hn+1
1
a

is called (strictly) convex by horo-
spheres, (strictly) h-convex for short, if its principal curvatures are (strictly)
bounded from below by a at each point. A domain Ω with smooth boundary
M is called (strictly) h-convex, if its boundary is (strictly) h-convex.

Depending on which type of mixed volume has to be preserved, we define
the global term similar as in [22], however, we have to modify it for k > 1 due
to the curvature of Hn+1

1
a

:

(1.3) fk(t) =

∫
Mt

(kHk + a2(n− k + 2)Hk−2)F dµt∫
Mt

(kHk + a2(n− k + 2)Hk−2) dµt
.

Here Hk, k = 0, ..., n, denotes the k-th elementary symmetric polynomial,

(1.4) Hk(κ1, · · · , κn) =
∑

i1<···<ik

κi1 · · ·κik , κ = (κi) ∈ Rn, 1 ≤ k ≤ n,

H0 = 1 and dµt is the volume element of Mt. For k ≤ 1 we use the same
definition as in [22]:

(1.5) fk(t) =

∫
Mt

HkF dµt∫
Mt

Hk dµt
.

We remind the reader of the definition of mixed volumes: For k ∈ {0, . . . , n}
and a strictly convex hypersurface M in Hn+1

1
a

represented by a graph u over a
geodesic sphere, i.e. M = graph u|Sn , we have:

(1.6) Vn+1−k(M) =

{∫
Sn
∫ u(x)

0
a−n sinhn(as) ds dσn(x), k = 0(

n
(k−1)

)−1 ∫
M
Hk−1 dµ, k = 1, . . . , n,
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where dσn is the volume element of the sphere.
The possible curvature functions are divided into two classes:

Assumption 1.2. Let α ∈ [0, 1]. Suppose F̃ is a smooth, symmetric function
defined on Γ, where Γ is the positive cone Γ+ := {κ = (κi) ∈ Rn : κi > 0 ∀ i ∈
{1, . . . , n}}. Set Γα := {κ = (κi) ∈ Rn : κi > α ∀ i ∈ {1, . . . , n}}. Let
ηα : Γα → Γ+, κ 7→ κ−αe, where e = (1, . . . , 1). Then we define the curvature
functions by F := F̃ ◦ η. Furthermore we need the following assumptions for
the curvature function F̃ :

• F̃ is positively homogeneous of degree 1, i.e. ∀κ ∈ Γ+, ∀λ ∈ R+:
F̃ (λκ) = λF̃ (κ).

• F̃ is strictly increasing in each argument: ∀ i ∈ {1, . . . , n}, ∀κ ∈ Γ+

there holds F̃i(κ) = ∂F̃
∂κi

(κ) > 0.
• F̃ is positive, F̃|Γ+

> 0, and F̃ is normalized, F̃ (1, . . . , 1) = 1.
• Either:

(i) F̃ is convex.
(ii) F̃ is concave and inverse concave, i.e. F̃−1(κi) := −F̃ (κ−1

i ) is
concave.

Remark 1.3. Note that for α ∈ [0, 1] the curvature functions F in Assumption
1.2 are homogeneous of degree 1 in κi−α, hence we have F ijhij = F +αF ijgij .

The most important examples of convex curvature functions F̃ fulfilling
these assumptions (apart from the normalization) are the mean curvature
H =

∑n
i=1 κi, the length of the second fundamental form |A| =

√∑n
i=1 κ

2
i

and the completely symmetric functions γk =
(∑

|β|=k κ
β
) 1

k

, 1 ≤ k ≤ n,

where β is a multiindex, β ∈ Nn, and κβ = κβ1

1 · κ
β2

2 . . . · κβn
n . For a proof that

these curvature functions are convex see [23, p. 105]. Examples of curvature
functions F̃ from the second class, namely the ones being concave and inverse

concave, are
(
Hk

Hl

) 1
k−l

, n ≥ k > l ≥ 0, or the power means (
∑n
i=1 κ

r
i )

1
r for

|r| ≤ 1 . We refer to [3, Section 2] for a proof of this fact and for an account of
the theory of this class of curvature functions.

Now we can state the main theorem:

Theorem 1.4. Let x0 be stated as earlier and suppose F is a function satisfying
the conditions in Assumption 1.2. Then the flow (1.2) with f = fk, k ∈
{0, . . . , n}, has a unique, smooth solution x existing for all times 0 ≤ t <
∞, the flow hypersurfaces Mt remain strictly convex by horospheres and the
volume Vn+1−k is preserved during the flow. Furthermore the flow converges
exponentially for t → ∞ to a geodesic sphere of the same volume Vn+1−k as
M0.

McCoy considered mixed volume preserving curvature flows in Euclidean
space, i. e. the flow (1.2) with the global term (1.5) for k ∈ {0, . . . , n}. He
showed that the k-th mixed volume is preserved under this curvature flow
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and the flow converges to a sphere for t → ∞. Since in Euclidean space the
quermassintegrals coincide with the mixed volumes, he obtains a new proof
of the Minkowski inequalities by using the flow (1.2) with special curvature
functions.

Following his approach, we were able to transfer the results to the case of
mixed volume preserving curvature flows in hyperbolic space.

Recently, Wang and Xia, see [27], showed that the curvature flow (1.2) with
the global term (1.5) for k ∈ {0, . . . , n} preserves the quermassintegral Wk in
hyperbolic space. For a definition of the quermassintegrals in hyperbolic space
and the relation between quermassintegrals and mixed volumes see [25].

Wang and Xia show that one can use a constant rank theorem to allow initial
h-convex (instead of strictly h-convex) hypersurfaces for the flow, since then
the flow is strictly h-convex for all positive times.

Our proofs of the long time existence and the convergence of the flow can
also be used in the case of quermassintegral-preserving curvature flows. No
modifications are necessary, apart from the fact, that one needs to use the
monotonicity of the quermassintegrals instead of the monotonicity of the mixed
volumes (see Lemma A.3) in the proof of Corollary 5.3. Hence the results in
Theorem 1.4 are also true in the case of quermassintegral-preserving curvature
flows.

From this observation, Wang and Xia deduce the following hyperbolic Alexan-
drov-Fenchel type inequalities, see [27, Theorem 1.1], by using special curvature
functions as in [22]:

Theorem 1.5. Let Ω be a bounded, h-convex domain in Hn+1. For 0 ≤ i ≤ n
we define the strictly monotone increasing functions

(1.7) fi : [0,∞)→ R+, r 7→Wk(Br),

where Br ⊂ Hn+1 is a geodesic ball of radius r. Denote by f−1
i the inverse

function to fi. Let 0 ≤ l < k ≤ n. Then there holds the inequality

(1.8) Wk(Ω) ≥ fk ◦ f−1
l (Wl(Ω)),

and equality holds if and only if Ω is a geodesic ball.

Finally, we want to name some of the works about volume preserving cur-
vature flows in different ambient manifolds and discuss shortly the results ob-
tained in this work.

Volume preserving curvature flows have been considered for various curva-
ture functions in different settings. Roughly speaking, if one assumes a certain
convexity assumption or pinching condition on the initial hypersurface and
shows that this condition is preserved during the flow, then after proving a pri-
ori estimates the existence of the flow for all times t ∈ [0,∞) can be deduced.
If the exponential convergence of a suitable quantity can be shown, then by
using interpolation inequalities, the exponential convergence of the flow to a
sphere or a geodesic sphere in the C∞-topology can be inferred.

In the case the ambient manifold is Rn+1, volume preserving mean curvature
flows have been previously considered by Gage for n = 1 in [10] and by Huisken
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for n ≥ 2 in [16]. In a series of papers, McCoy considered first the area
preserving mean curvature flow in [20], then the mixed volume preserving mean
curvature flow in [21] and later on extended the results to very general curvature
functions in [22].

In 2007 Cabezas-Rivas and Miquel proved similar results for a volume pre-
serving mean curvature flow in hyperbolic space by assuming that the initial
hypersurface is horosphere-convex, see [8]. Recently, Gerhardt has considered
in [14] inverse curvature flows of compact, starshaped hypersurfaces in hyper-
bolic space and has obtained the convergence of these flows to a geodesic sphere
after an appropriate rescaling.

There are few results on curvature flows of compact hypersurfaces in more
general Riemannian manifolds: In [15], Huisken has considered the mean cur-
vature flow in Riemannian manifolds of bounded curvature, i.e. Riemannian
manifolds with bounds on the Riemannian curvature tensor and the covariant
derivatives of the Riemann curvature tensor. Andrews proved a similar result
in Riemannian manifolds of bounded curvature, but he could drop the assump-
tion, that the covariant derivatives of the Riemannian curvature tensor need
to be bounded. However, he did not consider the mean curvature flow, but
flows by particular curvature functions. In our notation, he essentially allowed
for F̃ being the harmonic mean curvature function and α = a. Lately, Xu has
considered in [28] the harmonic mean curvature flow in Hadamard manifolds.
Furthermore there are works by Gerhardt, see [12, Chapter 3], where forced
curvature flows in ambient manifolds of non-positive or constant curvatures
are considered, and the convergence of the flow is shown on the assumption
that suitable barriers exist. As for the volume preserving mean curvature flow,
there is a paper by Alikakos and Freire, see [1]. They assume that the scalar
curvature of the ambient space has nondegenerate critical points and the initial
hypersurface of the flow is close enough to a geodesic sphere and prove the long
time existence and convergence of the flow to a hypersurface of constant mean
curvature.

Our work is mainly motivated by the approaches in the papers [8] and [22],
especially many results from [22] can be transferred from Euclidean to hyper-
bolic space. A sketch of our proof goes as follows:

Short time existence of the flow has been shown in [22]. For a detailed
account of the short time existence and also for a proof of the uniqueness of
the flow we refer to our work in [19]. Hence we can suppose the flow exists in
a maximal time interval [0, T ∗) for some T ∗ > 0 and is smooth. Our approach
is as follows:

First we show that, under the assumption that convexity by horospheres
is preserved, an initial pinching condition for the principal curvatures of the
evolving hypersurfaces is preserved as well. This result is new even for the
mean curvature flow in the hyperbolic space, where only the preservation of
h-convexity has been shown. Although the method of proof is similar as in the
Euclidean case, there is also an important difference. We do not estimate a
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quantity like κn

κ1
, where κn denotes the biggest and κ1 the smallest principal

curvature at a point, instead we have to consider the quantity κn−a
κ1−a .

The pinching allows us to show that there exists ε > 0 such that the following
holds: Let 0 ≤ t0 < T ∗ − ε and let pt0 be the center of an inball of Mt0 (an
inball of Mt0 is a ball contained in the interior of Mt0 with maximal radius).
Now let us represent Mt0 as a graph over the geodesic sphere with center pt0 .
Then for t ∈ [t0, t0 + ε) the hypersurface Mt can still be represented as a graph
over this sphere, which is a consequence of the pinching estimate. With this
result we can use a well known approach from Tso, see [26], to estimate the
curvature function F from above. An application of the Harnack inequality
yields the boundedness of F from below. These estimates yield the existence
for all times. Next, we use a new argument to show that the pinching of the
principal curvatures improves at an exponential rate. This allows us to use
an argument from Schulze in [24] to obtain the exponential convergence of the
flow to a geodesic sphere.

The paper is organized as follows. In Section 2, we introduce the notation
which is used throughout the paper and some results and inequalities concern-
ing the curvature functions are stated. In Section 3, we provide some facts
about graphs over geodesic spheres in hyperbolic space and list the evolution
equations of several important quantities. In Section 4, we show that the mixed
volume Vn+1−k and an initial pinching of the principal curvatures of the hyper-
surfaces are preserved during the flow (1.2) with f = fk. In Section 5, we show
that a graph representation is valid for a short but fixed time interval and prove
the uniform boundedness of F . Section 6 treats the lower bound for F , which
we infer from the parabolic Harnack inequality. The estimates obtained so far
will then allow us to conclude, that the flow exists for all times. In Section 7
we prove that the flow converges exponentially to a geodesic sphere. Finally,
Section 8 gives an example of how the flow can be used to deduce volume
inequalities. In the Appendix, we state some known results about h-convex
hypersurfaces in hyperbolic space, as well as a tensor maximum principle and
a parabolic Harnack inequality, which are used throughout the paper.

2. Notation and Curvature functions

The main objective of this section is to formulate the governing equations of
a hypersurface in Hn+1

1
a

and to provide some results about curvature functions.
For more detailed definitions about curvature functions, we refer the reader to
[12, Chapter 2.1, 2.2]. Unless stated otherwise, the summation convention is
used throughout the paper.

We will denote geometric quantities in the ambient space Hn+1
1
a

by Greek in-
dices with range from 0 to n and usually with a bar on top of them, for example
the metric and the Riemannian curvature tensor in Hn+1

1
a

will be denoted by
(ḡαβ) and (R̄αβγδ) respectively, etc., and geometric quantities of a hypersurface
M by Latin indices ranging from 1 to n, i.e. the induced metric and the Rie-
mannian curvature tensor on M are denoted by (gij) and (Rijkl) respectively.
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Ordinary partial differentiation will be denoted by a comma whereas covariant
differentiation will be indicated by indices or in case of possible ambiguity they
will be preceded by a semicolon, i.e. for a function u in Hn+1

1
a

, (uα) denotes
the gradient and (uαβ) the Hessian, but e.g. the covariant derivative of the
curvature tensor will be denoted by (R̄αβγδ;ε).

The induced metric of the hypersurface will be denoted by gij , i.e.

(2.1) gij = 〈xi, xj〉 ≡ ḡαβxαi x
β
j ,

(gij) denotes the inverse of (gij), the second fundamental form will be denoted
by (hij). The outer normal is denoted by ν, i.e. if M is a starshaped hypersur-
face represented as a graph in geodesic polar coordinates around a sphere with
center in the interior of M , then we choose the normal ν such that there holds

(2.2) 〈 ∂
∂r
, ν〉 > 0.

The geometric quantities of the hypersurface M are connected through the
Gauß formula, which can be considered as the definition of the second funda-
mental form,

(2.3) xij = −hijν.
Note that here and in the sequel a covariant derivative is always a full tensor,

i.e.

(2.4) xαij = xα,ij − Γkijx
α
k + Γ̄αβγx

β
i x

γ
j ,

where Γ̄αβγ and Γkij denote the Christoffel-symbols of the ambient space and
hypersurface respectively.

The second equation is the Weingarten equation:

(2.5) νi = hki xk = gkjhijxk.

Finally, we have the Codazzi equation

(2.6) hij;k = hik;j + R̄αβγδν
αxβi x

γ
j x

δ
k = hik;j ,

as well as the Gauß equation

Rijkl = {hikhjl − hilhjk}+ R̄αβγδx
α
i x

β
j x

γ
kx

δ
l

= {hikhjl − hilhjk}+ a2{gilgjk − gikgjl}.
(2.7)

Now we want to give some facts about the curvature functions. Firstly,
we provide the definition of these functions and mention some identifications,
which will be used in the sequel without explicitly stating them again.

Definition 2.1. Let Γ ⊂ Rn be an open, convex, symmetric cone, i.e.

(2.8) (κi) ∈ Γ =⇒ (κπi) ∈ Γ ∀π ∈ Pn,
where Pn is the set of all permutations of order n. Let f ∈ Cm,β(Γ), m ∈ N,
0 ≤ β ≤ 1, be symmetric, i.e.,

(2.9) f(κi) = f(κπi) ∀π ∈ Pn.
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Then f is said to be a curvature function of class Cm,β . For simplicity we will
also refer to the pair (f,Γ) as a curvature function.

Now denote by S the symmetric endomorphisms of Rn and by SΓ the sym-
metric endomorphisms with eigenvalues belonging to Γ, an open subset of S.
If (f,Γ) is a smooth curvature function, we can define a mapping

F̃ :SΓ → R,
A 7→ f(κi),

(2.10)

where the κi denote the eigenvalues of A. For the relation between these differ-
ent notions, especially the differentiability properties and the relation between
their derivatives, see [12, Chapter 2.1]. Since the differentiability properties are
the same for f as for F in our setting, see [12, Theorem 2.1.20], we do not dis-
tinguish between these notions and write always F for the curvature function.
Hence at a point x of a hypersurface we can consider a curvature function F̃
as a function defined on a cone Γ ⊂ Rn, F̃ = F̃ (κi) for (κi) ∈ Γ (represent-
ing the principal curvatures at the point x of the hypersurface), as a function
depending on (hji ), F̃ = F̃ (hji ) or as a function depending on (hij) and (gij),
F̃ = F̃ (hij , gij). However, we distinguish between the derivatives with respect
to Γ or S. We summarize briefly our notation and important properties:

For a smooth curvature function F̃ we denote by F̃ ij = ∂F̃
∂hij

, a contravariant

tensor of order 2, and F̃ ji = ∂F̃
∂hi

j
, a mixed tensor, contravariant with respect

to the index j and covariant with respect to i. We also distinguish the partial
derivative F̃,i = ∂F̃

∂κi
and the covariant derivative F̃;i = F̃ klhkl;i. Furthermore

F̃ ij is diagonal if hij is diagonal and in such a coordinate system there holds
F̃ ii = ∂F̃

∂κi
. For a relation between the second derivatives see [12, Lemma 2.1.14].

Finally, if F̃ ∈ C2(Γ) is concave (convex), then F̃ is also concave (convex) as a
curvature function depending on (hij).

For α ∈ [0, 1] and ηα as in the assumption 1.2 we can treat the derivatives
of F = F̃ ◦ ηα essentially as above by using the chain rule.

With these definitions we can turn to special classes of curvature functions.
We note some important and well-known properties of the elementary sym-

metric polynomials:

Lemma 2.2. Let 1 ≤ k ≤ n be fixed. Let Hn+1 := 0.
(i) We define the convex cone

(2.11) Γk = {(κi) ∈ Rn : H1(κi) > 0, H2(κi) > 0, . . . ,Hk(κi) > 0}.

Then Hk is strictly monotone on Γk and Γk is exactly the connected com-
ponent of

(2.12) {(κi) ∈ Rn : Hk(κi) > 0}

containing the positive cone.
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(ii) For fixed i, no summation over i, there holds

(2.13) Hk =
∂Hk+1

∂κi
+ κi

∂Hk

∂κi
.

Proof. The convexity of the cone Γk and (i) follows from [17, Section 2] and
(ii) follows directly from the definition of the Hk. �

�
As a consequence we obtain, see [13, Lemma 5.8]:

Lemma 2.3. Let N be a semi-Riemannian space of constant curvature, then
for the symmetric polynomials F = Hk, 1 ≤ k ≤ n, the tensor F ij evaluated at
M , where M is an arbitrary admissible hypersurface, thus a hypersurface with
principal curvatures κ = (κi) ∈ Γk, is divergence free. In case k = 2 it suffices
to assume that N is an Einstein manifold.

Now we state some well-known facts for general curvature functions:

Lemma 2.4. Let 0 ≤ α ≤ 1 and let ηα : Γα → Γ+, κ 7→ κ − αe, where
e = (1, . . . , 1). Let F̃ ∈ C2(Γ+) be a curvature function and let F := F̃ ◦ ηα.
Then there holds:
(i) Let F̃ be concave (convex), homogeneous of degree 1 with F̃ (1, . . . , 1) > 0,

then

(2.14) F ≤ (≥)
F̃ (1, . . . , 1)

n
H ◦ ηα.

(ii) Let F̃ be strictly monotone, concave (convex), positively homogeneous of
degree 1, then for all κ ∈ Γα there holds

(2.15)
n∑
i=1

Fi(κ) ≥ (≤) F̃ (1, . . . , 1).

(iii) If F̃ is convex (concave) in Γ+, then F is convex (concave) in Γα and at
all κ ∈ Γα we have for all i 6= j

(2.16)
Fi − Fj
κi − κj

≥ (≤) 0.

Proof. See [12, Lemma 2.2.20, Lemma 2.2.19] for the proof of (2.14) and (2.15).
Note that (2.16) can be viewed as valid in any point, regardless if κi = κj or
κi 6= κj for i 6= j, see the proof of this inequality in [12, Lemma 2.1.14]. The
modifications due to the composition of F̃ with ηα are trivial. �

3. Graph representation, evolution equations

First of all, we cite Hadamard’s theorem in hyperbolic space, for a proof see
[12, Theorem 10.3.1]. Since the proof can be easily adjusted to the hyperbolic
space of radius a−1, we only state the result:
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Theorem 3.1. Let M be a compact, connected, n-dimensional manifold and

(3.1) x : M → Hn+1
1
a

a strictly convex immersion of class C2, i.e., the second fundamental form
with respect to any normal is always (locally) invertible. Then the immersion
is actually an embedding and M̃ = x(M) is a strictly convex hypersurface that
bounds a strictly convex body Ω ⊂ Hn+1. M̃ andM are moreover diffeomorphic
to Sn and orientable.

The fact that such a hypersurface bounds a strictly convex body makes it
possible to represent it as a graph over a geodesic sphere. Hence let M be a
strictly convex hypersurface in Hn+1

1
a

, let p ∈ int M̂ and consider geodesic polar
coordinates centered at p. Then the metric can be expressed as

(3.2) ds̄2 = dr2 + ḡijdx
idxj ,

where σij is the canonical metric of Sn and

(3.3) ḡij = a−2 sinh2(ar)σij

is the induced metric of Sr(p), the geodesic spheres with center p and radius
r. A simple calculation using h̄ij = 1

2
˙̄gij yields

(3.4) h̄ij = a coth(ar)ḡij ,

where h̄ij denotes the second fundamental form of Sr(p).
Let M = graph u|Sn = {(x0, x) : x0 = u(x), x ∈ Sn}, then the induced

metric has the form

(3.5) gij = uiuj + ḡij ,

where ḡij is evaluated at (u, x) and its inverse (gij) = (gij)
−1 can be expressed

as

(3.6) gij = ḡij − v−2uiuj ,

where ui = ḡikuk with (ḡik) = (ḡik)−1 and

(3.7) v2 = 1 + ḡijuiuj ≡ 1 + |Du|2.
The outward normal has the following representation in these coordinates

(3.8) (να) = v−1(1,−ui).
Looking at the component α = 0 in the Gauß formula yields the equation

(3.9) v−1hij = −uij − Γ̄0
00uiuj − Γ̄0

0iuj − Γ̄0
0juj − Γ̄0

ij ,

where the covariant derivatives are taken with respect to the induced metric of
M and

(3.10) −Γ̄0
ij = h̄ij , Γ̄0

00 = Γ̄0
0i = Γ̄0

0j = 0.

From now on we fix k, 0 ≤ k ≤ n, and consider the flow (1.2) with f = fk. As
already mentioned in the introduction, short-time existence has been proved
for this flow, so we can assert the flow exists in the class C∞ in the time
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interval [0, T ∗) for some T ∗ > 0. Hence we can state the evolution equations of
the quantities to be used in the sequel, where we note that all derivatives are
covariant derivatives taken with respect to the induced metric of M and the
time derivatives are total derivatives, i.e. covariant derivatives of tensor fields
defined over the curve x(t).

Let g := det(gij) and note that H̄n−1 = a cosh(au)(sinh(au))−1. Further-
more, for a function ϕ ∈ C∞(M) we define Lϕ := ϕ̇ − F klϕ;kl, with a similar
definition for tensors.

Lemma 3.2. (Evolution equations)

ġij = −2(F − f)hij ,(3.11)
√̇
g = −(F − f)H

√
g,(3.12)

u̇ = −v−1(F − f)(3.13)
∂u

∂t
= −v(F − f)(3.14)

Lu = (αF ijgij + f)v−1 + (−F ijgij + F ijuiuj)H̄n
−1,(3.15)

Lχ = −F ijhki hkjχ− 2χ−1F ijχiχj + (2F + αF ijgij − f)H̄n−1vχ,(3.16)

where χ =
v

sinh(au)
,

LF = (F ijhki hkj − a2F ijgij)(F − f),(3.17)

ḣji = (F − f)ji + (F − f)hki h
j
k − (F − f)a2δji(3.18)

Lhij = (F klhrkh
r
l + a2F klgkl)h

i
j − (αF klgkl + f)hkjh

i
k(3.19)

− a2(2F + αF klgkl − f)δij + F kl,rshkl;jh
i

rs;

Lhij = (F klhrkh
r
l + a2F klgkl)hij − (αF klgkl + f)hki hkj(3.20)

+ F kl,rshkl;ihrs;j − a2(2F + αF klgkl − f)gij − 2(F − f)hki hkj .

Proof. For a proof see [12, Chapter 2]. Note that the curvature functions are
homogeneous of degree 1 in κi − α, hence we have F ijhij = F + αF ijgij . This
has to be taken into account for a derivation of the evolution equations. �

4. Preserved quantities

In this section we show which quantities are preserved during the flow.
First of all we show that the mixed volume Vn+1−k is preserved:

Lemma 4.1. The mixed volume Vn+1−k is preserved during the flow, i.e.
Vn+1−k(Mt) = Vn+1−k(M0) for all t ∈ [0, T ∗).

Proof. (i) k = 0: First we observe that for x ∈ Sn we have

(4.1)
√
g(u(x), x) = v

√
det(ḡij(u(x), x)).
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Taking this into account, we have for k = 0 in view of (3.14):

d

dt
Vn+1 =

∫
Sn

∂u

∂t

√
ḡ(u(x), x)√
σ(x)

dσn(x)

= −
∫
Sn

(F − f0)

√
g(u(x), x)√
σ(x)

dσn(x) = 0,

(4.2)

in view of the definition of f0. Hence the enclosed volume is preserved by
the flow.

(ii) k = 1: We have in view of (3.12)

n
d

dt
Vn =

d

dt
|Mt| = −

∫
Mt

(F − f1)H dµt = 0.(4.3)

(iii) 1 < k ≤ n: Now we exploit Lemma 2.3 and the identity (2.13). We get
from (3.18) and (3.12)

d

dt

∫
Mt

Hk−1dµt =

∫
Mt

(F − fk)(Hk−1)ijh
j
kh

k
i dµt

− a2

∫
Mt

(F − fk)(Hk−1)ijδ
j
i dµt −

∫
Mt

(F − fk)Hk−1Hdµt

= −
∫
Mt

(F − fk)
{
kHk + a2(n− k + 2)Hk−2

}
dµt = 0.

(4.4)

One can also derive this using [17, Proposition 2.2].
�

Next, we want to prove that a pinching of the principal curvatures of the
initial hypersurface is preserved during the flow. The two Theorems from the
appendix allow us to prove the pinching estimate for our flow:

Lemma 4.2. Let ε > 0 be a constant such that we have κ1−a ≥ ε̃(H−na) for
all x ∈ M0 in the case of curvature functions, which are concave and inverse
concave, and κ1 − a ≥ ε(F − (a − α)) for all x ∈ M0 in the case of convex
curvature functions, where κ1 denotes the smallest principal curvature of M0

at x. Let us assume that the hypersurfaces Mt remain strictly h-convex for
t ∈ [0, T ∗). Let ε̃ = ε

n . Then for every t ∈ [0, T ∗) and x ∈Mt there holds

κ1 − a ≥ ε(F − (a− α)),(4.5)
κ1 − a ≥ ε̃(H − na),(4.6)

where κ1 denotes the smallest principal curvature of Mt at x.

Proof. We need to distinguish between convex and concave curvature functions:

a) Firstly, we assume F to be a convex curvature function.
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Let Sij = hij − (a+ ε (F − (a−α)))gij . Then we obtain from (3.20) and
(3.11)

Ṡij − F klSij;kl = (F klhrkhrl + a2F klgkl)hij − (f + αF klgkl)h
r
ihrj

− a2(2F + αF klgkl − f)gij + F kl,rshkl;ihrs;j

− ε(F klhrkhrl − a2F klgkl)(F − f)gij − 2(F − f)hki Skj .

(4.7)

Denote the right hand side by Nij . Let 0 < t0 < T ∗ and x0 ∈ Mt0 be such
that at x0 there holds Sij ≥ 0 and there exists a normalized null eigenvector
v for (Sij), i.e. Sijvj = 0 and |v|2 = 1. We introduce Riemannian normal
coordinates at x0 such that the principal curvatures at x0 are monotonically
ordered, κ1 ≤ κ2 ≤ . . . ≤ κn. Note that we have κ1 = hijv

ivj . At x0 there
holds due to the convexity and homogeneity of F , see remark 1.3,

Nijv
ivj ≥ F klhrkhrl(hijvivj − εF ) + a2F klgkl(hijv

ivj + εF )− αa2F klgkl

− 2a2F − αF klgklκ2
1 + f

(
−κ2

1 + a2 + ε(F klhrkhrl − a2F klgkl))
)

= (a− ε(a− α))F klhrkhrl + a2F klgkl(a+ 2εF − ε(a− α))− 2a2F klhkl

+ α(a2 − κ2
1)F klgkl + f

[
a2 − κ2

1 + ε(F klhrkhrl − a2F klgkl)
]

(4.8)

The part in the square brackets is non-negative:

a2 − κ2
1 + ε

n∑
i=1

fi(κ
2
i − a2)

≥ −ε(F − (a− α))(a+ κ1) + ε(a+ κ1)

n∑
i=1

fi(κi − α+ α− a)

= ε(a+ κ1)

(
−F + a− α+ F −

n∑
i=1

fi(a− α)

)
≥ 0,

(4.9)

since we have
∑n
i=1 fi ≤ 1 in view of inequality (2.15). A short computation

also yields

(4.10) a2 − κ2
1 = −2εa(F − (a− α))− ε2(F − (a− α))2.
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Since f ≥ a− α, we obtain by reordering the terms in (4.8)

Nijv
ivj ≥ (a− ε(a− α))

n∑
i=1

fiκ
2
i − 2a2

n∑
i=1

fiκi + a2(a+ 2εF − ε(a− α))

n∑
i=1

fi

+ (a2 − κ2
1)

(
a− α+ α

n∑
i=1

fi

)
+ ε(a− α)

n∑
i=1

fi(κ
2
i − a2)

= a

n∑
i=1

fiκ
2
i − 2a2

n∑
i=1

fiκi + a3
n∑
i=1

fi

+ (a2 − κ2
1)

(
a− α

(
1−

n∑
i=1

fi

))
+ 2a2ε(F − (a− α))

n∑
i=1

fi

= a

n∑
i=1

fi(κi − a)2 − ε2(F − (a− α))2

(
a− α

(
1−

n∑
i=1

fi

))

− 2εa(a− α)(F − (a− α))

(
1−

n∑
i=1

fi

)
.

(4.11)

With
(4.12)
n∑
i=1

fi(κi − a)2 =

n∑
i=1

fi(κi − κ1)2 + 2

n∑
i=1

fi(κi − κ1)(κ1 − a) +

n∑
i=1

fi(κ1 − a)2

and

n∑
i=1

fi(κi − κ1)(κ1 − a) = (κ1 − a)

(
F − (κ1 − α)

n∑
i=1

fi

)

= ε(F − (a− α))

(
(a− α)

(
1−

n∑
i=1

fi

)

+(1− ε)(F − (a− α)) + ε(F − (a− α))

(
1−

n∑
i=1

fi

))
,

(4.13)

where we used the homogeneity of F in κi − α again, see remark 1.3, we
derive

Nijv
ivj ≥ 2aε(1− ε)(F − (a− α))2 ≥ 0.(4.14)

An application of Theorem B.1 implies the inequality (4.5) and from (2.14)
we then obtain the inequality (4.6).

b) Next, we assume F to be concave and inverse concave.
Let Sij = hij − (a+ ε̃(H − an))gij .
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Then Sij satisfies the following evolution equation:

Ṡij − F klSij;kl = (F klhrkh
r
l + a2F klgkl)(hij − ε̃Hgij)

+ (f + αF klgkl)(ε̃|A|2gij − hki hkj) + F kl,rshkl;phrs;q(δ
p
i δ
q
j − ε̃g

pqgij)

− a2(2F + αF klgkl − f)(1− ε̃n)gij − 2(F − f)hki Skj .

(4.15)

We denote the right hand side of this equation by Nij . Now we want to use
Theorem B.1 to obtain (4.6).

Let 0 < t0 < T ∗ and x0 ∈ Mt0 be such that at x0 there holds Sij ≥ 0
and there exists a normalized null eigenvector v for (Sij), i.e. Sijvj = 0 and
|v|2 = 1. We introduce Riemannian normal coordinates at x0 such that the
principal curvatures at x0 are monotonically ordered, κ1 ≤ κ2 ≤ . . . ≤ κn.
Note that we have κ1 = hijv

ivj . Using Theorem B.2 we only need to show
that the remaining terms in Nijvivj are non-negative:

(F klhrkh
r
l + a2F klgkl)(hijv

ivj − ε̃H)− a2(2F + αF klgkl) (1− ε̃n)

+ αF klgkl(ε̃|A|2 − κ2
1) + f(ε̃|A|2 − κ2

1 + a2(1− ε̃n))

− 2(F − f)hki Skjv
ivj

≥ (F klhrkh
r
l + a2F klgkl − 2aF klhkl) a (1− ε̃n)

+ (f + αF klgkl)(ε̃|A|2 − ((1− ε̃n)a+ ε̃H)2 + a2(1− ε̃n)).

(4.16)

Since the hypersurface is strictly convex at x0, we have |A|2 ≥ H2

n . Now
the terms involving (f + αF klgkl) are positive as can be seen by using the
binomial inequality to obtain the estimate

(4.17) 2ε̃(1− ε̃n)aH ≤ ε̃H2 1− ε̃n
n

+ ε̃a2n(1− ε̃n),

such that the terms in the brackets after (f +αF klgkl) can be estimated as
follows:

ε̃|A|2 − ε̃2H2 − 2ε̃a(1− ε̃n)H − a2(1− ε̃n)2 + a2(1− ε̃n)

≥ ε̃H2

(
1

n
− ε̃− 1− ε̃n

n

)
+ a2(1− ε̃n) (1− (1− ε̃n)− ε̃n) = 0.

(4.18)

The remaining terms are positive, since they can be expressed as

a(1− ε̃n)

n∑
i=1

fi(κ
2
i + a2 − 2aκi) = a(1− ε̃n)

∑
i

fi (κi − a)
2

≥ a(1− ε̃n)ε̃2(H − an)2
n∑
i=1

fi ≥ 0.

(4.19)

Hence we obtain

(4.20) Nijv
ivj ≥ ε̃2(1− ε̃n)a(H − an)2

n∑
i=1

fi ≥ 0.
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We can infer the inequality (4.6). This inequality together with the inequal-
ity (2.14) implies (4.5), finishing the proof.

�

Curvature pinching has an important consequence, which follows from the
fact that our curvature functions are homogeneous of degree 1 and hence the
derivative of the curvature function is homogeneous of degree 0:

Corollary 4.3. There exists a constant c0 > 0 depending only on n,M0 and
the curvature function, such that for every t ∈ [0, T ∗) and x ∈Mt there holds

(4.21) c−1
0 δij ≤ F ij ((hkl )(x)) ≤ c0δij

holds as long as the hypersurfaces Mt are strictly h-convex.

Proof. We can argue exactly as in [2, Corollary 4.6], only we define λi := κi−α
for i ∈ {1, . . . , n} and λ = (λi). �

5. Estimates of the principal curvatures

Throughout this section we will assume that the hypersurfaces remain strictly
h-convex as long as the flow exists. We will justify this assumption in the next
section.

We will see that we can bound F uniformly from above, if we have an upper
bound on χ. Hence our goal is to estimate χ from above for some small but
fixed interval [0, ε], only depending on bounded quantities.

Firstly, we note the following:

Lemma 5.1. Let t0 ∈ [0, T ∗) be fixed and let Mt0 be a graph over the geodesic
sphere with center equal to the center of the inball of Mt0 , Mt0 = graph u|Sn .
Choose β > 0 such that eβ ≤ infMt0

cosh(au).
Let t1 := min{t0 + β

2a2c0
, T ∗}, where c0 is the constant from Corollary 4.3.

Then for t ∈ [t0, t1) the graph representation is still valid for Mt and we have
the estimate

(5.1) u ≥ β

2a
.

Furthermore we also get an upper estimate for χ:

(5.2) sup
t∈[t0,t1)

sup
x∈Mt

χ(x) ≤ sup
t∈[t0,t1)

sup
x∈Mt

1

sinh(au)(x)
≤ 1

sinh
(
β
2

) .
Proof. Define ϕ := ea

2c0(t−t0) cosh(au). Let 0 < T < T ∗. Let x0 = x0(t0), with
0 < t0 ≤ T , be a point in Mt0 such that

(5.3) inf
M0

ϕ > inf

{
inf
Mt

ϕ : 0 < t ≤ T
}

= ϕ(x0).

In view of the maximum principle we obtain from (3.15) the following inequality
at x0:

(5.4) 0 ≥ ϕ−1(ϕ̇− F ijϕ;ij) > a2c0 − F ijgija2 ≥ 0.
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Hence

(5.5) inf
Mt

cosh(au) ≥ e−a
2c0(t−t0) inf

M0

cosh(au),

which implies

(5.6) u ≥ a−1
(
β − a2c0(t− t0)

)
.

This proves the first part of the claims.
Let t ∈ [t0, t1) be arbitrary and let x0 ∈Mt be given such that χ(t) assumes

its supremum at x0. Then we have χi = 0 for i ∈ {1, . . . n}, which is tantamount
to

(5.7) 0 =
vi

sinh(au)
− v H̄

n sinh(au)
ui.

If we take into account, that vi = −v2hki uk + v3h̄iku
k, see the derivation of

equation [11, (5.28)], we obtain at x0

(5.8) 0 = − hki ukv
2

sinh(au)
.

Since (hij) is positive definite, this implies Du = 0. Hence v = 1 and we obtain
inequality (5.2). �

Next, we want to establish uniform bounds on the outer radius and the
inradius of Mt for t ∈ [0, T ∗). The following Lemma follows essentially from
Theorem A.2.

Lemma 5.2. Let Ω be a compact, h-convex domain in Hn+1
1
a

. Let ρ denote
the inradius of Ω and let R denote the outer radius of Ω. Then there exists a
constant c = c(a) > 0 such that

(5.9) R ≤ c(ρ+ ρ
1
2 ).

Proof. Let τ := tanh(aρ2 ) and let p be the center of an inball. To prove (5.9)
we note R ≤ maxd(p, ∂Ω) and obtain from inequality (A.2)

(5.10) eR ≤ eρ ·
(
1 + 2

√
τ
)a
.

If aρ2 ≥
1
4 , then (1 + 2

√
τ)a ≤ 3a ≤ (6aρ)a ≤ ecρ with some constant c = c(a).

This implies R ≤ cρ.
On the other hand, if aρ

2 < 1
4 , then by using ex − e−x = e−x(e2x − 1) ≤

2x
1−2x ≤ 4x for x < 1

4 , we obtain from the Bernoulli inequality

(5.11) (1 + 2
√
τ)a ≤ (1 + 4

√
aρ)a ≤ e4a

√
aρ.

This implies (5.9) with c = 1 + 4a
3
2 . �

As a consequence of Lemma 5.2 and the monotonicity of mixed volumes we
obtain by the same proof as in the Euclidean case, see [22, Corollary 3.6]:
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Corollary 5.3. Denote by ρt the inradius and by Rt the outer radius of the
hypersurfaces Mt. Then there exists a constant 0 < c1 = c1(a, Vn+1−k(M0))
such that for t ∈ [0, T ∗) we have

(5.12) c−1
1 ≤ ρt ≤ Rt ≤ c1.

This also implies for t ∈ [0, T ∗) and p, q ∈ Ωt

(5.13) dist(p, q) ≤ 2c1.

Proof. This follows from Theorem 5.2 by noting that for the flow (1.2) with
f = fk, k ∈ {0, . . . , n}, the mixed volume Vn+1−k is preserved. We show only
the lower bound in (5.12), the upper bound follows analogously.

Let r = r(Vn+1−k(M0)) be such that Vn+1−k(Br) = Vn+1−k(M0), where Br
denotes a geodesic ball of radius r. Due to Lemma A.3 we obtain r ≤ Rt for
all t ∈ [0, T ∗). Assume ρt ≤ 1, for otherwise the lower estimate on ρt is trivial.
Inequality (5.9) implies

(5.14) ρt ≥
(
Rt
2c

)2

≥
( r

2c

)2

=: c−1
1 .

�

Now we have everything we need to get a uniform bound for the curvature
function. We use a well known method going back to Tso, see [26].

Theorem 5.4. There exists c2 = c2(n, a2,M0) > 0 such that

(5.15) sup
t∈[0,T∗)

sup
x∈Mt

F (x) ≤ c2.

Proof. Let t0 ∈ [0, T ∗), and let Mt0 be represented as a graph in geodesic
polar coordinates centered at the center of an inball of Mt0 , Mt0 = graph
u|Sn . Corollary 5.3 implies c1 ≥ u(t0) ≥ c−1

1 . Hence from Lemma 5.1 we
confer that for small δ > 0 we can choose β := log cosh a

c1
such that the graph

representation is valid for t ∈ [t0,min{t0 + β
2a2c0

, T ∗ − δ}︸ ︷︷ ︸
=:t1

] and

(5.16)
β

2a
≤ u(t) ≤ 2c1.

Let γ := 1
2 sinh β

2 and define η := 1
χ−1−γ , then for t ∈ [t0, t1] we obtain

(5.17)
1

sinh(2c1a)− γ
≤ η(t) ≤ 1

γ

in view of (5.2).
We also obtain the following evolution equation for Fη:

L(Fη) = −F ijhki hkjFη2γ − fηF ijhki hkj + a2η(f − F )F ijgij

+ 2F ij(Fη)iηjη
−1 + (2F + αF ijgij − f)a cosh(au)Fη2.

(5.18)
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Let t ∈ [t0, t1] and x0 ∈Mt be given such that

(5.19) sup
t∈[t0,t1]

sup
x∈Mt

(Fη)(x) = (Fη)(x0).

We introduce Riemannian normal coordinates at x0 such that the principal
curvatures are monotonically ordered, κ1 ≤ κ2 ≤ . . . ≤ κn. Then we use the
maximum principle and infer

0 ≤ d

dt
(Fη)− F ij(Fη);ij = −F ijhki hkjFη2γ − fηF ijhki hkj

+ a2η(f − F )F ijgij + 2F ij(Fη)i
ηj
η

+ (2F + αF klgkl − f)a cosh(au)Fη2.

(5.20)

Now (4.6) yields

(5.21) F ijhki hkj ≥ Fκ1 ≥ εF 2.

We infer the inequality

(5.22) 0 ≤ −εγF 3η2 + (2F + αF klgkl)Fη
2a cosh(2ac1),

which implies

(5.23) (Fη)(x0) ≤ max

{
3a cosh(2ac1)

εγ
, nc0α, sup

Mt0

(Fη)

}
.

The estimate (5.15) then follows from (5.17), taking the limit δ → 0 and the
fact that t0 can be chosen arbitrarily in [0, T ∗). �

The boundedness of F implies the boundedness of |A|2 due to the curvature
pinching, as we will show in the following

Corollary 5.5. There exists c3 = c3(n, c2, α) > 0, such that

(5.24) |A| ≤ c3.

Proof. We distinguish two cases:
Firstly, assume F is a convex curvature function. Using (2.14) and the

convexity of the hypersurfaces we obtain

(5.25) F = F̃ ◦ η ≥ 1

n
H ◦ η =

1

n
H − α ≥ 1

n
κn − α.

The boundedness of |A| now follows from the boundedness of F .
Now assume F is a concave curvature function. Then we infer from the

curvature pinching (4.6) and from (2.15)

(5.26) κn − a ≤
1

ε̃
(κ1 − a) ≤ 1

ε̃
(F − (a− α)).

Again the boundedness of |A| follows from the boundedness of F . �
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6. Long time existence of the flow

It remains to show that we have a uniform lower bound on the curvature
function to infer the long time existence of the flow. The following Lemma to-
gether with Lemma 4.2 justifies the assumption of strict h-convexity during the
flow. Note that for small times strict h-convexity holds due to the smoothness
of the flow and the strict h-convexity of the initial hypersurface.

The parabolic Harnack inequality, see Proposition B.3, will allow us to obtain
a uniform lower bound on (F − (a − α)). We use a method, which was used
by Andrews in [2, Section 7] to obtain a lower bound on F in the Euclidean
setting.

Lemma 6.1. There exists a constant 0 < c5 = c5(c1, c2, c3, ε̃) such that for all
t ∈ [0, T ∗)

(6.1) F − (a− α) ≥ c5.

Proof. Let 0 < T ≤ T ∗ be the maximal time such that the hypersurfaces Mt

remain strictly h-convex up to time T . For t ∈ [0, T ) let xt ∈Mt be a point in
contact with an enclosing sphere of radius 1

2c1
< ρ < 2c1. This implies

(6.2) sup
x∈Mt

F (x) ≥ F (xt) ≥ a coth(aρ) ≥ a coth(
a

2c1
).

Next we note that F − (a− α) satisfies the evolution equation

(6.3) L(F − (a− α)) = (F − f)
(
F ijhki hkj − a2F ijgij

)
.

In view of Corollary 4.3 and the boundedness of the principal curvatures, there
exists a constant c > 0 such that

(6.4) 0 ≤
n∑
i=1

fi(κ
2
i − a2) ≤ c(H − na).

In the case of a convex curvature function we use (2.14) and in the case of a
concave curvature function we use (2.15) to obtain

(6.5) 0 ≤
n∑
i=1

fi(κ
2
i − a2) ≤ c(F − (a− α)).

Since L is uniformly parabolic in view of Corollary 4.3, we can apply Proposi-
tion B.3 together with (6.2) to obtain the desired lower bound for F − (a− α)
up to time T . This also implies T = T ∗ in view of the pinching estimate. �

Hence we know that as long as the hypersurfaces are strictly h-convex,
Lemma 4.2 and Lemma 6.1 are valid. This implies that the hypersurfaces
remain uniformly strictly h-convex up to t = T ∗.

Finally, we want to establish the higher order estimates to obtain the long
time existence of the flow. Suppose the flow exists only in a time interval
[0, T ∗) with T ∗ <∞. Since the inradius is bounded from below, we can choose
a t0 ∈ [0, T ∗) and obtain a function u, such that Mt = graph u(t, ·) for all
t ∈ [t0, T

∗) and such that inf
t∈[t0,T∗),x∈Sn

u(t, x) ≥ c > 0, see Lemma 5.1. The
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pinching estimates and the uniform bound of F − (a − α) from below and
above imply the uniform ellipticity of the operator F ij and the boundedness of
u, χ and the principal curvatures implies C2-Estimates for the graph. Hence
to obtain higher order estimates, uniformly in time, we can follow the same
procedure as in [22, Section 8] and [9, Section 6], see also [19, Section 8] for a
more detailed account of this procedure. This shows the long time existence of
the flow. The uniform bounds we obtained for a graph representation, which
holds locally in time and space around an arbitrary fixed point, imply uniform
bounds in space and time for the embedding x.

7. Convergence to a geodesic sphere

To prove the convergence of the flow to a geodesic sphere, firstly we will show
that the pinching of the principal curvatures is improving at an exponential
rate. Then we will use the argument from [24, Theorem 3.5] to obtain the
exponential convergence of the flow to a geodesic sphere.

Proposition 7.1. There exists λ > 0 and t0 > 0 such that we have for all
t ∈ [t0,∞) at points x ∈Mt

(7.1) κ1 − a ≥
1

n
(1− e−λt)(H − na),

where we denote by κ1 the smallest principal curvature of Mt at x.

Proof. Firstly, we assume F to be a convex curvature function. We define
Sij = hij − (a + (1 − e−λt) (F − (a − α)))gij , where λ > 0 is a small number
yet to be chosen. We use Theorem B.1, however we start at the time t0 := ζ

λ

instead of t0 = 0, where ζ > 0 is a constant chosen such that ε ≥ 1 − e−ζ

and ε is chosen as in Lemma 4.2. As in the proof of Lemma 4.2 (we also use
analogous notation as in that Lemma), we obtain with ε̄ := 1− e−λt

(7.2) Nijv
ivj ≥ 2ε̄a e−λt(F − (a− α))2 − λe−λt(F − (a− α)) ≥ 0,

if we choose λ > 0 small enough depending on c5. Hence we obtain the desired
inequality in view of inequality (2.14).

Now we assume F to be a concave and inverse concave curvature function.
Let λ > 0 be a small number depending only on c5. Let Sij = hij − (a+ ε̄(H −
an))gij with ε̄ := 1

n (1− e−λt). Again we obtain

(7.3) Nijv
ivj ≥ ε̄2 e−λta(H − an)2

n∑
i=1

fi − λ
ne
−λt(H − an).

Since H − an ≥ n(F − (a − α)) in view of (2.14) and F ijgij ≥ 1 in view of
(2.15) we obtain the inequality (7.1) from Theorem B.1 (again starting at time
t0 := ζ

λ with λ small enough and ζ as above). �

From the preceding Proposition we can conclude with the same arguments as
in [24, Theorem 3.5] that the flow converges exponentially in C∞ to a geodesic
sphere:
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Corollary 7.2. There exists t0 > 0 and positive constants C, r0, δi, Ci for
i ∈ N+ such that for all t ∈ [t0,∞) the hypersurfaces Mt can be written as
graphs over a geodesic sphere, Mt = graph|Snu, and there holds

|A|2 − H2

n
≤ C0e

−δ0t,(7.4)

‖∇(i)A‖ ≤ Cie−δit,(7.5)

|F − f | ≤ Ce−δ1t(7.6)

|u− r0| ≤ Ce−δ1t.(7.7)

Hence the flow converges exponentially in C∞ to a geodesic sphere of radius
r0, which is determined by Vn+1−k(M0).

Proof. The estimate (7.4) follows directly from (7.1). By interpolation we ob-
tain the estimates (7.5) (see the proof of [24, Theorem 3.5]) for i ∈ N+. The
estimate (7.6) follows from (7.5) for i = 1 and the boundedness of ρt (which
implies the boundedness of diam(Mt)). Now since |F − f | is integrable over
time and ρt ≥ c−1

1 we know there exists t0 ∈ [0,∞), such that Mt can be rep-
resented as graph u for t ∈ [t0,∞). The last estimate (7.7) then follows from
(7.6) and (3.13). �

8. Volume inequalities in hyperbolic space

In this section we note, that we can use an idea from [22, Section 10] to prove
volume inequalities in hyperbolic space for strictly h-convex hypersurfaces. We
only give the easiest example of how to use the volume preserving curvature
flows to obtain such inequalities.

Corollary 8.1. Let M0 be a strictly h-convex hypersurface in hyperbolic space.
Let R0 > 0 be such that a geodesic sphere of radius R0 satisfies Vn+1(M0) =
Vn+1(BR0

). Then there holds

(8.1)
Vn+1(M0)

|M0|
≤ Vn+1(BR0

)

|BR0 |
.

Proof. We use the volume preserving curvature flow with F = H and obtain
that

(8.2) d
dt |Mt| ≤ 0,

in view of the Hölder inequality. Since Mt converges to a geodesic sphere of
radius R0, we obtain |M0| ≥ |BR0 |, showing the claimed inequality. �

Unfortunately, we were not able to prove all Minkowski inequalities (only
some further special cases), due to the fact, that the volume preserving term
has a different structure than in the Euclidean case.
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Appendix A. Results on h-convex domains

Definition A.1. Let Ω ⊂ Hn+1 be a domain. Then an inball of Ω is a geodesic
ball in Hn+1 contained in Ω with maximum radius, the inradius of Ω. An outer
ball of Ω is a geodesic ball in Hn+1 containing Ω with minimum radius, the
outer radius of Ω.

The proof of the following result can be found in [6, Theorem 3.1].

Theorem A.2. Let Ω be a compact, h-convex domain in Hn+1
1
a

and denote the
center of an inball by p and its radius by ρ. Furthermore let τ := tanh(aρ2 ).
We define

(A.1) maxd(p, ∂Ω) := sup{dist(p, q) : q ∈ ∂Ω}.
Then we have the inequality

(A.2) maxd(p, ∂Ω)− ρ ≤ a log
(1 +

√
τ)2

1 + τ
< a log 2.

We will also need the following monotonicity of mixed volumes, which has
been shown by Solanes in [25, Corollary 9].

Lemma A.3. Let A ⊂ B ⊂ Hn+1
1
a

be compact, convex domains. Then there
holds for all k ∈ {1, . . . , n+ 1}
(A.3) Vk(A) ≤ Vk(B).

Appendix B. Maximum principles

The following maximum principle is a modification of Hamilton’s maximum
principle for tensors by Andrews, see [3, Theorem 3.2]:

Theorem B.1. Let Sij be a smooth time-varying symmetric tensor field on a
compact manifold M (possibly with boundary), satisfying

(B.1) Ṡij = aklSij;kl + ukSij;k +Nij ,

where akl and uk are smooth and the covariant derivatives are taken with respect
to a smooth, possibly time-dependent, symmetric connection and akl is positive
definite everywhere. Suppose that

(B.2) Nijv
ivj + sup

Γ
2akl(2ΓpkSip;lv

i − ΓpkΓql Spq) ≥ 0,

whenever Sij ≥ 0 and Sijvj = 0. If Sij is positive definite everywhere on M at
time t = 0 and on ∂M for 0 ≤ t ≤ T , then it is positive definite on M × [0, T ].

In the paper cited above, roughly said, Andrews uses this maximum principle
to derive that a certain curvature pinching for closed hypersurfaces in Rn+1 is
preserved for curvature functions that are both concave and inverse concave
(and satisfy the other conditions of assumption 1.2 apart from the convexity).
To do so, he needs another important Theorem, which holds for such curvature
functions, namely [3, Theorem 4.1]. We need a slightly generalized version of
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this Theorem to apply Theorem B.1 to obtain the preservation of a curvature
pinching in our situation. The proof is identical to the one of [3, Theorem 4.1],
we only need a minor observation at the beginning of the proof.

Theorem B.2. Let α ∈ R+. Let F be a smooth, symmetric, monotone, con-
cave and inverse-concave curvature function defined on Γα. Let A be a symmet-
ric 2-Tensor with eigenvalues in Γα and v an eigenvector of A corresponding
to the smallest eigenvalue of A. Let Ã := A− αI, where I is the identity ma-
trix, and let ε :=

Ãijv
ivj

Tr Ã|v|2 ∈ (0, 1
n ). If T is a totally symmetric 3-tensor with

Tijkv
ivj = ε δijTijk for k = 1, . . . , n, then

β := vivjF kl,pq(A)TiklTjpq − ε|v|2δabF kl,pq(A)TaklTbpq

+ 2 sup
Γ
F kl(A)

(
2Γpk(Tlpiv

i − εδabTlabvp)− ΓpkΓql (Ãpq − εTr Ãδpq

)
≥ 0.

(B.3)

Proof. Firstly, we note that [3, Corollary 5.5] remains valid if Ω = Γα, hence
the inverse of the curvature function is concave as a function of the principal
curvatures if and only if it is concave as a function of the second fundamental
form. For fixed v and T the quantity β is upper semi-continuous in A, since
F is smooth. This allows us to assume that all eigenvalues of A are distinct,
since otherwise we can take a sequence {A(k)}k≥0 with A(k) → A for k → ∞,
Ãij(k) := A

(k)
ij − αδij , Ã

(k)
ij ≥ εTr Ã(k)δij and Ã

(k)
ij v

ivj = εTr Ã(k)|v|2, such
that the eigenvalues of each A(k) are distinct.

Let us take an orthonormal basis e1, . . . , en of eigenfunctions of A, with
eigenvalues in increasing order. Then we have in this basis v = e1, A =
diag(λ1, . . . , λn), F ij = f iδij and λ1 = α−nαε+ εH. We observe that the last
identity implies

(B.4) Ãpq − εTr Ãδpq = λpδpq − λ1δpq.

Now we can explicitly determine the Γ at which the supremum in β is at-
tained.

2F kl
(

(2Γpk(Tkpiv
i − εTlaavp)− ΓpkΓql (Ãpq − εTr Ãδpq)

)
= 2

n∑
k=1

n∑
p=2

fk
(
2ΓpkTkp1 − (Γpk)2(λp − λ1)

)
)

= 2
∑

k≥1,p≥2

(
fk

λp − λ1
T 2
kp1 − fk(λp − λ1)

(
Γpk −

Tkp1
λp − λ1

)2
)
.

(B.5)

Hence it follows, that the supremum is attained by the choice Γpk :=
Tkp1

λp−λ1
. At

this point we are in the exact same situation as in [3, Theorem 4.1] and the
rest of the proof remains the same. �

Finally, we want to cite a corollary of the parabolic Harnack inequality,
which will allow us to estimate F − (a− α) uniformly from below.
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Proposition B.3. For (x0, t0) ∈ Rn × R and r ∈ R+ we let Q((x0, t0), r) :=
Br(x0) × [t0 − r2, t0] ⊂ Rn × R and Q(r) := Q((0, 0), r). Let u ∈ C∞(Q(4R))
be a nonnegative solution of an equation of the form

(B.6) Lu = −u̇+ aijuij + biui = f.

Here f = f(x, t, u(x, t)) and we assume that there exists α ∈ R+ so that f
satisfies the inequality −αu(x, t) ≤ f(x, t, u(x, t)) ≤ αu(x, t) for all (x, t) ∈
Q(4R). We assume the coefficients are measureable and bounded by a constant
c0 ∈ R+ and there exist 0 < λ ≤ Λ < ∞ such that λ(δij) ≤ (aij) ≤ Λ(δij).
Then there exists c = c(n, λ,Λ, R, ‖b‖L∞ , c0, α) > 0 such that there holds

(B.7) sup
Q((0,−4R2),R2 )

u ≤ c · inf
Q(R)

u.

Proof. We apply [18, Theorem 7.36] to the function u and [18, Theorem 7.37]
to the function η := eαtu. �
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