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Algebraic varieties represent solutions of a system of polynomial equations. Given a set of k
polynomials f1, . . . , fk ∈ K[x], their (algebraic) variety is the set of common zeros:

V(f1, . . . , fk) :=
{

p = (p1, . . . , pn) ∈ Kn : f1(p) = · · · = fk(p) = 0
}
.

Different sets of polynomials can define the same variety. For instance, V(f1, f2) = V(f1, f1+
f2). Thus, instead of thinking about explicit polynomials it is more reasonable to consider
the ideal they generate, I = 〈f1, . . . , fk〉, and to define V(I) := V(f1, . . . , fk).

Subsets of Kn of the form V(I) for some ideal I ⊂ K[x] are called varieties. Given any
ideal I ⊂ K[x], by Hilbert Basis Theorem, we may always find a finite set of generators. By
Exercise 1, the definition of V(I) does not depend on the choice of generators of the ideal I.

Remark 1. Two distinct ideals may define the same variety, e.g. V(u) = V(u2) = {0} ⊂ K1.
Our later lecture on the Nullstellensätze deals with this issue for fields K that are either
algebraically closed, like the complex numbers K = C, or real closed, like the reals K = R.

Algebraic geometry is the study of the geometry of varieties. As in many branches of
mathematics, given a fundamental object - varieties in our case - one considers the basic,
irreducible building blocks. A variety V(I) is called irreducible if it cannot be written as a
union of proper subvarieties. In symbols, V(I) is irreducible if and only if

V(I) = V(J) ∪ V(J ′) =⇒ V(I) = V(J) or V(I) = V(J ′) for any ideals J and J ′.

We can turn Kn into a topological space, using the Zariski topology, in which varieties
are closed sets. In this setting, the definition of an irreducible variety coincides with the
definition of an irreducible topological space.

Our aim is to study relations between the geometry of V(I) and algebraic properties of I.
Consider a maximal ideal m := 〈x1−p1, . . . , xn−pn〉 ⊂ K[x]. Note that (p1, . . . , pn) ∈ V(I)
if and only if I ⊂ m. Given any subset V ⊂ Kn, we can consider the set of all polynomials
that vanish on V . This set is an ideal, denoted as

I(V ) :=
{
f ∈ K[x] : f(p) = 0 for all p ∈ V

}
.

Note that W is a variety if and only if W = V(I(W )). Furthermore, for varieties V,W , we
have V ⊆ W if and only if I(W ) ⊆ I(V ).
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Proposition 2. A variety W ⊂ Kn is irreducible if and only if its ideal I(W ) is prime.

Proof. Suppose I(W ) is prime and W = V(J)∪V(J ′). If W 6= V(J) then there exists f ∈ J
and v ∈ W such that f(v) 6= 0, i.e. f 6∈ I(W ). For any g ∈ J ′ we know that fg vanishes
on V(J) and V(J ′), hence on W . Thus fg ∈ I(W ). As I(W ) is prime, we have g ∈ I(W ),
i.e. J ′ ⊂ I(W ). By Exercise 2 this implies W = V(I(W )) ⊂ V(J ′).

Suppose now that W is irreducible and fg ∈ I(W ). Hence

W = W ∩ V(fg) = W ∩ (V(f) ∪ V(g)) = (W ∩ V(f)) ∪ (W ∩ V(g)).

Without loss of generality we may assume W = W ∩V(f), i.e. W ⊆ V(f), hence f ∈ I(W ),
which proves that I(W ) is a prime ideal.

Many examples of varieties appearing from applications are given as (closures) of images
of polynomial maps. Often we think about the domain Kn as the space of parameters and
the codomain as the space of possible (observable) outcomes – cf. Exercise 9. We note that
the (Zariski) closure of the image must be irreducible.

Example 3. Consider two independent discrete random variables X and Y each one
with n states. The probability distribution of X (resp. Y ) may be encoded as a point
(p1, . . . , pn) ∈ Kn (resp. (q1, . . . , qn)). The joint distribution of (X, Y ) has n2 states. The
map that associates to a distribution of X and a distribution of Y the joint distribution is
given as:

Kn ×Kn 3 (p1, . . . , pn, q1, . . . , qn)→ (p1q1, p1q2, . . . , p1qn, p2q1, . . . , pnqn) ∈ Kn2

. (1)

Further, as
∑
pi =

∑
qi = 1, we may in fact restrict the domain and obtain a map that we

write explicitly for n = 3:
(p1, p2, q1, q2)→ (2)

(p1q1, p1q2, p1(1−q1−q2), p2q1, p2q2, p2(1−q1−q2), (1−p1−p2)q1, (1−p1−p2)q2, (1−p1−p2)(1−q1−q2))
In Exercise 9 we ask for the description of the ideal of the closure of the image of these maps.

Prime ideals play a central role in algebraic geometry. This motivates the following
definition. We now take R to be any commutative ring with unity. The primary example is
the polynomial ring R = K[x], or its quotient R = K[x]/I for some ideal I.

Definition 4. The spectrum of the ring R is the set of all (proper) prime ideals:

Spec(R) :=
{
p ( R : p is a prime ideal

}
.

The set Spec(R) comes with an induced Zariski topology, where the closed set V(I) given
by an (arbitrary) ideal I is defined as

V(I) = {p ∈ SpecR : I ⊂ p}.

We note that the spectrum of the ring remembers a lot of information: all prime ideals.
In particular, SpecK[x] has points corresponding to all irreducible subvarieties of Kn - not
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only to usual points (p1, . . . , pn) ∈ Kn, which correspond to maximal ideals of the form
〈x1−p1, . . . , xn−pn〉. One could say that Kn is a subset of SpecK[x]. In Exercise 4 you will
prove that in fact the Zariski topology on Kn is the induced one from the Zariski topology
on SpecK[x].

Proposition 5. Any variety can be uniquely represented as a finite union of irreducible
varieties (pairwise not contained in each other).

Proof. We start by proving the existence of such a decomposition. Any variety W is either
irreducible or may be represented as a union W1 ∪ V1. We may continue presenting W1 as a
union W2 ∪ V2 etc. We obtain an ascending chain I(W1) ( I(W2) ( . . . which stabilizes as
the ring is noetherian by Hilbert Basis Theorem. Thus the decomposition procedure must
finish.

Suppose we have two decompositions V1 ∪ · · · ∪ Vk = W1 ∪ · · · ∪ Ws. As each Wi0 is
irreducible and covered by

⋃
j(Vj ∩Wi0) we have Wi0 ⊂ Vj0 . But similarly Vj0 ⊂ Wi1 for

some i1. As we cannot have Wi0 ( Wi1 it follows that Wi0 = Vj0 . Hence, for every component
Wi0 there exists a (unique) component Vj0 equal to it.

We recall that the ring K[x] represents the (polynomial) functions on Kn. We now would
like to represent (polynomial) functions on a variety W ⊂ Kn. They will form a ring K[W ].
Clearly, as we are interested in polynomial functions, we have a surjection K[x] � K[W ].
Two functions coincide on W if and only if their difference vanishes on W . Thus the kernel
of the above map equals I(W ) and we have an isomorphism K[W ] := K[x]/I(W ), that we
may consider as a definition of the ring of functions on W . The advantage of this approach
is that we may consider the ring K[W ] as an object representing W , without referring to
any embedding. As before, we identify points p = (p1, . . . , pn) in W with maximal ideals
〈x1−p1, . . . , xn−pn〉 ⊂ K[W ]. The Zariski topologies on W and Spec(K[W ]) are compatible.

We have defined our basic objects - affine varieties W and associated rings K[W ]. Fol-
lowing a category theory approach, our aim is to define morphisms of varieties.

Given two geometric objects X, Y and a map f : X → Y between them, one may pull-
back functions on Y . Explicitly, given g : Y → K we define the pull-back f ∗(g) = g ◦ f .
As we are dealing with algebraic varieties, we would like the pull-backs of polynomials to
be polynomials. Hence, given an algebraic map f : W1 → W2 between varieties, we would
like the induced map f ∗ : K[W2]→ K[W1] to be a well-defined ring morphism. In Exercise
5 you will show that any ring morphism K[W2] → K[W1] induces a map SpecK[W1] →
SpecK[W2]. Hence, we may think about algebraic maps between varieties as morphisms
among their rings of functions in the opposite direction. Using slightly more sophisticated
language there is a contravariant functor, inducing an equivalence of categories of affine
irreducible varieties (over K) and finitely generated integral K-algebras. We note that
(algebraic) maps between varieties are continuous in Zariski topology.

Remark 6. One may define affine algebraic varieties more generally as SpecR for any
(commutative, with unity) ring R, not only finitely generated K-algebra. However, in these
lectures all affine varieties will come from zero sets of polynomials defined over K.
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In next examples we note that the dependence on the field is crucial for many properties
of ideals. We start with the map f : K[x]→ K[y], given by f(x) = y2. This corresponds to
the map K1 3 λ → λ2 ∈ K1. If K = C the latter map is surjective. If K = R the image is
the set of nonnegative real numbers. In both cases the Zariski closure is the whole space. If
K = Fp and p 6= 2, the image is a proper subset of K1 and coincides with its Zariski closure.

Another important example is the ideal I = (x2 + 1). The reader is asked to provide the
description of V(I) in Exercise 6.

Example 7. We consider three ideals I1 = (x2 − y2), I2 = (x2 − 2y2) and I3 = (x2 + y2) in
K[x, y]. The first one is not prime for any K. The second one is not prime for K = R or
K = C. However, it is a prime ideal when K = Q. The last I3 is not prime for K = C, but
is a prime ideal for K = Q or K = R. Here we only prove the last statement and leave the
others as an exercise. Suppose fg ∈ I3 ⊂ R[x, y]. This means that fg = (x2 + y2) ∗ h, where
f, g, h ∈ R[x, y]. By the fundamental theorem of algebra every homogeneous polynomial p in
two variables has a unique (up to multiplication by constants) representation as a product of
linear forms with complex coefficients p =

∏
li. In particular, if p has real coefficients, the

decomposition must be stable under conjugation, i.e. for every i, either li has real coefficients
or li must also appear in the decomposition. We have x2 + y2 = (x + iy)(x − iy). In the
ring C[x, y], without loss of generality, we may assume (x + iy)|f . But then, by the above
argument also (x− iy)|f . Thus f = (x+ iy)(x− iy)

∏
i li for li ∈ C[x, y]. However,

∏
i li is

stable under conjugation, i.e. defines a real polynomial. Thus x2 + y2|f in R[x, y].

As we have already seen, the image of a variety does not have to be closed, even if K = C
or dense in its Zariski closure if K = R. The following theorem shows however that one can
always provide an algebraic description of the image. We start with a definition.

Definition 8. A subset A ⊂ Kn is (Zariski) constructible if it can be described as a finite
union of (set-theoretic) differences of two varieties.

A subset B ⊂ Rn is semi-algebraic if it can be described as a set of solutions of a finite
system of polynomial (weak and strong) inequalities or a finite union of such.

Theorem 9. 1. (Chevalley) If K is algebraically closed, then the image of a variety is a
constructible set.

2. (Tarski-Seidenberg) If K = R then the image of a variety is a semi-algebraic set.

Proof. The first part can be found e.g. in [6.4][4] and of the second part e.g. in [1.4] [1].

We define the dimension of an irreducible variety V as the maximal length r := dimV
of the chain of irreducible varieties

∅ ( V0 ( V1 ( · · · ( Vr = V.

If V is reducible then its dimension is equal to the maximum dimension of all irreducible
components from Proposition 5. The dimension is a basic invariant of a variety. This
invariant has very nice properties:
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• the dimension of the (closure of the) image of a variety V is at most dimV ,

• if V1 ( V2 then dimV1 ≤ dimV2. If V2 is irreducible, then the inequality is strict.

So far all the geometric objects we encountered were contained in Kn. We called them
varieties, but more precisely we should refer to them as affine varieties. We now change
our perspective with the aim of understanding projective algebraic varieties. We start by
recalling the construction of a projective space P(V ) over the vector space V of dimension
n + 1. Points of P(V ) correspond to lines in V . Hence [a0 : · · · : an] ∈ P(V ) represents a
line going through the point (a0, . . . , an) ∈ V , where we assume that not all ai are equal
to zero. Formally, P(V ) is the set of equivalence classes [v] for v ∈ V \ {0} modulo the
relation v1 ∼ v2 if and only if there exists a nonzero scalar λ such that v1 = λv2. For the
topological construction over R or C, we note that each line in V intersects the unit sphere
precisely in two points. Thus P(V ) may be regarded as a quotient of the sphere, identifying
two antipodal points. In particular, it is always compact, with respect to the usual topology.

If we look at the subset Si of P(V ) where ai 6= 0 we may always rescale and assume
ai = 1. This way we may identify Si = Kn. As for any p ∈ P(V ) some coordinate is nonzero,
the affine spaces Si = Kn cover P(V ), as i = 0, . . . , n. In fact, we may start from the affine
spaces Si = Kn and glue them together to obtain P(V ).

As before we are interested in polynomial functions on P(V ). The first problem we
encounter is that for a polynomial f it does not make sense to evaluate it on [a0 : · · · : an], as
the result depends on the choice of the representative. It may even happen that f vanishes
for some representatives, while it does not for others. Thus, from now on we focus on
homogeneous polynomials, i.e. linear combinations of monomials of fixed degree. If f is a
homogeneous polynomial of degree d in n+1 variables, then f(ta0, . . . , tan) = tdf(a0, . . . , an).
In particular, f vanishes on some representative of [a0 : · · · : an] if and only if it vanishes on
any representative. Given homogeneous polynomials f1, . . . , fk, possibly of distinct degrees,
we define the associated projective variety :

V(f1, . . . , fk) = {[a0 : · · · : an] ∈ P(V ) : f1(a0, . . . , an) = · · · = fk(a0, . . . , an) = 0}.

An ideal is called homogeneous if it may be generated by homogeneous polynomials.
In analogy to the affine case we define V(I) = V(f1, . . . , fk) for an ideal I generated by
homogeneous polynomials fi.

Remark 10. We note that homogeneous ideals contain (many) nonhomogeneous polyno-
mials. In particular, 〈x + y2, y〉 is a homogeneous ideal. For more characterisations and
examples see Exercise 11.

In theory, instead of considering a projective variety X ⊂ P(V ) one can consider the affine
cone X̂ over it, i.e. the variety defined by the same ideal, but considered in V . However, in
almost all cases, if possible it is preferable to work with projective varieties. The reason is
that projective varieties are simpler - they behave better with respect to many properties.
Below we present just a few of them.

First we note that (if X is not a projective subspace) the affine cone X̂ is always singular
at the point 0 ∈ V . Second, for K = C or K = R Zariski closed sets are closed in the usual
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topology. In particular, projective varieties are compact. Thus, the image of any projective
variety X is closed.

Theorem 11. Over an algebraically closed field, the image of a projective variety X is
Zariski closed.

Proof. The first idea, discussed in the next lecture, is to describe the image as a projection
of the graph of the map. Then one can apply Nullstellensatz - see Lecture 5 - to turn the
problem into one from linear algebra. Details can be found in e.g. [4, 7.4.6–7.4.8].

One of the important invariants of projective varieties, just as for affine varieties, is the
dimension. The second one is the degree. There are several ways to define it. For example,
when K is algebraically closed, a general projective subspace L ⊂ P(V ) of dimension equal
to the codimension of V = V(I) ⊂ P(V ) will intersect V only in finitely many, say d, points.
This is the degree of V . If I = (f) is principal and radical then the degree of V(I) equals
the degree of f .

One of the nicest properties of projective varieties over algebraically closed fields is their
behavior under intersection.

Theorem 12. [3, 6.2 Theorem 6] Let X, Y ⊂ P(V ) be two projective varieties of dimensions
respectively d1 and d2. The intersection X ∩ Y has dimension at least d1 + d2 − dimP(V ).

Exercises

Exercise 1. Prove that the definition of V(I) does not depend on the choice of the generators
of I.

Exercise 2. 1. Show that J ⊆ I implies V(I) ⊆ V(J).

2. Show that for any subsets A,B ⊆ Kn if A ⊂ B then I(B) ⊆ I(A).

3. Give counterexamples to both opposite implications.

Exercise 3. Prove that varieties (in Kn) satisfy the axioms of closed sets.

Exercise 4. By identifying the point (pi) ∈ Kn with the prime ideal 〈x1 − p1, . . . , xn − pn〉
consider Kn as a subset of SpecK[x]. Show that the Zariski topology induced from SpecK[x]
to Kn is the Zariski topology on Kn.

Exercise 5. Show that a morphism of rings f : R1 → R2 induces a map f ∗ : SpecR2 →
SpecR1, by proving that a pull-back of a prime ideal is prime. Show that the induced map is
continuous with respect to the Zariski topology.

Exercise 6. Describe V(I) ⊂ K1 for I = (x2 + 1) when K = C and K = R.

Exercise 7. Realize the set of n × n nilpotent matrices as an affine variety. What is its
dimension?
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Exercise 8. 1. Consider a polynomial f ∈ K[x] (e.g. f = x). Let D be the (open) set
Df = {p ∈ Kn : f(p) 6= 0}. Construct an affine variety V and a polynomial map
inducing a bijection V → D.

2. Realize nondegenerate n× n matrices as an affine variety.

Exercise 9. 1. Use (or not) your favorite computer algebra system to determine the ideal
of the image of the map given by formula (2). What is the meaning of the lowest degree
polynomial in this ideal?

2. Describe the ideal of the image of the map given by formula (1).

3. Generalize the previous point to more (independent) variables possibly with different
(but finite) number of states.

Exercise 10. Determine for which prime numbers p, the ideal I2 = 〈x2 − 2y2〉 ⊂ Fp[x, y] is
prime.

Exercise 11. For a polynomial f =
∑

a cax
a we call the degree k part of f the homogeneous

polynomial
∑

a:|a|=k cax
a.

1. Provide an example of a homogeneous ideal generated by nonhomogeneous polynomials.

2. Prove that an ideal I = 〈f1, . . . , fj〉 is homogeneous if and only if for any fi and any k
the degree k part of fi belongs to I.

3. Propose an algorithm that, given a set of generators of I ⊂ K[x], decides if I is a
homogeneous ideal.
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