
Primary Decomposition

Notes by Mateusz Micha lek
for the lecture on July 03, 2018, in the

IMPRS Ringvorlesung Introduction to Nonlinear Algebra

We have seen in several previous lectures that the idea of decomposing a mathematical object
into simpler pieces is very important. In this lecture we focus on a vast generalization of the
following two well-known, central facts.

1. Every integer n > 1 can be uniquely decomposed as a product of powers of prime
numbers:

n = pa11 · · · p
ak
k .

2. (Proposition 5 from Lecture 2) Any variety can be uniquely decomposed as a union of
irreducible varieties.

We claim that the central algebraic notion that binds the first - number theoretic - and
second - geometric - statement is that of an ideal. Indeed, any integer n can be identified
with an ideal (n) ⊂ Z of numbers divisible by n. Notice that (n) is a (nonzero) prime ideal if
and only if n is a prime number. We can restate fact (1) in terms of intersections of powers
of prime ideals as follows:

Every nonzero ideal I ⊂ Z has a unique representation as:

I = (I1)
a1 ∩ · · · ∩ (Ik)ak ,

where Ii are prime ideals.
Similarly, over an algebraically closed field, we have a correspondence between varieties

and radical ideals. We consider the following restatement of (2):
Every radical ideal I ⊂ C[x] has a unique decomposition as an intersection of prime

ideals, pairwise not contained in each other:

I = p1 ∩ · · · ∩ pk.

From the above examples we see that our aim should be to decompose ideals I in a ring
R. Further, decomposition should mean that we present them as an intersection of other
ideals. However, we still need to answer the following questions:

1. What kind of ideals should be allowed in the intersection?

2. What restrictions should be put on the ring R?
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3. Can we expect the decomposition to be unique?

We start with the first question. Already the number theoretic example shows that we
cannot expect to present an ideal as an intersection of prime ideals. Our next guess could
be that we should use powers of prime ideals.

Example 1. Consider the ideal I = (x2, y) ⊂ C[x, y]. It is not an intersection of powers of
prime ideals. Indeed, suppose I =

⋃
paii . Then each pi ⊃ I. Hence, each pi = (x, y) as this

is the only prime ideal that contains I. However, I is not a power of (x, y).

Exercise 3 gives us a hint that the right class of ideals are primary ideals. Recall that I
is primary if and only if for all a, b if ab ∈ I and a 6∈ I then bn ∈ I for some n.

Now we pass to the second question: which rings should be consider. Clearly Z and C[x]
share a lot of nice properties. It turns out that there is a very large class of rings that will
suit us.

Definition 2. A ring R is called Noetherian if every ascending chain of ideals:

I1 ⊆ I2 ⊆ I3 ⊆ . . .

stabilizes, i.e. there exists k such that Ik = Ik+1 = Ik+2 = . . . .

Noetherian rings are named after one of the most famous German mathematicians: Emmy
Noether. A hint how important they are is given in Exercises 4 and 5.

Before stating our main existence theorem let us introduce a technical definition.

Definition 3. An ideal I is irreducible if and only if whenever I = J1 ∩ J2 for some ideals
J1, J2 then I = J1 or I = J2.

Theorem 4. Let I be an ideal in a Noetherian ring R. Then there exist primary ideals
q1, . . . , qk such that:

I = q1 ∩ · · · ∩ qk.

Proof. First we show that every ideal in R can be presented as a finite intersection of ir-
reducible ideals. For a contradiction, let I1 be an ideal that cannot be presented in such a
way. In particular, it is not irreducible. Thus, I1 = J1 ∩ J2 and both Ji’s are strictly larger
than I1. If both Ji’s are finite intersections of irreducible ideals, then so is I1. Hence, we
may assume J1 cannot be presented in such a way. Let I2 := J1. We have I1 ( I2. We
repeat the construction starting with I2 and get an ideal I3 with I1 ( I2 ( I3, where I3 is
not a finite intersection of irreducible ideals. Continuing, we get a chain of strictly ascending
ideals, which is not possible in a Noetherian ring.

It remains to prove that every irreducible ideal in R is primary. Suppose q is irreducible.
By passing to the ring R/q we may assume q = 0. Suppose ab = 0 and a 6= 0. We have to
prove that b is nilpotent. Consider the following ascending chain of ideals:

{x : bx = 0} =: Ann(b) ⊆ Ann(b2) ⊆ Ann(b3) ⊆ . . .
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As the ring is Noetherian, we must have Ann(bn) = Ann(bn+1) for some n. We claim that
(a) ∩ (bn) = (0). Indeed, suppose λa = µbn ∈ (a) ∩ (bn) for some λ, µ ∈ R/q. Clearly:

0 = λab = µbn+1.

Hence, µ ∈ Ann(bn+1) = Ann(bn). Thus, µbn = 0. As (0) was assumed irreducible and
(a) ) (0) we must have bn = 0, which finishes the proof.

We now pass to the third question. In fact from now on we will not need to assume that
the ring is Noetherian, as long as the ideal is equal to an intersection of a finite number of
primary ideals.

First, we make the obvious assumption about the primary decomposition I =
⋂k

i=1 qi,
that all qi’s are indeed necessary, i.e.

⋂
j 6=i0

qj 6⊂ qi0 for all 1 ≤ i0 ≤ k. The next two lemmas
suggest how to group qi’s according to their radical.

Lemma 5. The radical of a primary ideal q is the unique smallest prime ideal containing it.

The (easy) proof is left as Exercise 6 for the reader. A primary ideal q with radical equal
to p is called p-primary.

Remark 6. The converse of Lemma 5 does not hold. Even powers of prime ideals do not have
to be primary in general. For example consider the ideal (x, z)2 in the ring C[x, y, z]/(xy−z2).

Lemma 7. If q1, . . . , qk are p-primary ideals, then so is
⋂k

i=1 qi.

Proof. First we notice that the radical of I :=
⋂k

i=1 qi equals p:

a ∈ rad(I)⇐⇒ ∃n : an ∈ I ⇐⇒ ∃n∀1≤i≤k an ∈ qi ⇐⇒ ∀1≤i≤k a ∈ rad(qi) = p⇐⇒ a ∈ p.

To prove that I is primary assume that ab ∈ I and a 6∈ I. Then a 6∈ qi0 for some i0. As
ab ∈ qi0 , which is primary, we have b ∈ rad(qi0) = p = rad(I), i.e. bn ∈ I for some n.

Lemma 7 shows that given a primary decomposition I =
⋂k

i=1 qi we should first group
together qi’s that have the same radical and replace them by their intersection. Hence, we
can always bring any presentation I =

⋂k
i=1 qi to the following form, which from now on will

be called minimal primary decomposition

Definition 8. A minimal primary decomposition of I is a presentation: I =
⋂k

i=1 qi, where

• all qi’s are primary ideals,

• qi’s have pairwise distinct radicals,

•
⋂

j 6=i0
qj 6⊂ qi0 for all 1 ≤ i0 ≤ k.

To sum up, we have proved that:

1. in a Noetherian ring every ideal has a (finite) primary decomposition and
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2. (in any ring) if an ideal has a (finite) primary decomposition it can be changed to a
minimal one (first applying Lemma 7 and then removing the unnecessary ideals).

The following example shows that minimal primary decomposition may still be not unique.

Example 9. The following are two minimal primary decompositions:

(x2, xy) = (x) ∩ (x, y)2 = (x) ∩ (x2, y) ⊂ C[x, y].

It turns out that, while qi’s in the decomposition are not unique, their radicals are. Recall
the notation:

I : a := {b ∈ R : ab ∈ I}.

Theorem 10. For any ideal I in a ring R, the set of radicals rad(qi) does not depend on
the choice of a minimal primary decomposition:

I =
k⋂

i=1

qi.

These radicals are precisely the prime ideals of the form rad(I : a) for some a ∈ R. Further,
if R is Noetherian, then these are also (exactly) prime ideals of the form I : a for a ∈ R.

Proof. Fix a minimal primary decomposition I =
⋂k

i=1 qi. We start by proving that rad(qi)
are exactly the prime ideals of the form rad(I : a).

Claim: rad(I : a) =
⋂

a6∈qj rad(qj)

Proof of the claim. We have the following:

x ∈ rad(I : a)⇔ ∃n : axn ∈
k⋂

i=1

qi ⇔ ∃n∀1≤i≤k axn ∈ qi ⇔ x ∈
k⋂

i=1

rad(qi : a),

i.e. rad(I : a) =
⋂k

i=1 rad(qi : a). Our next aim is to understand the ideals rad(qi : a). Clearly,
if a ∈ qi, then rad(qi : a) is the whole ring, thus may be removed from the intersection:

k⋂
i=1

rad(qi : a) =
⋂
a6∈qj

rad(qj : a).

To finish the proof of the claim we have to show that if a 6∈ qi then rad(qi : a) = rad(qi).
Suppose b ∈ rad(qi : a), i.e. bna ∈ qi. As qi is primary and a 6∈ qi, then (bn)m ∈ qi,
i.e. b ∈ rad(qi). Hence, rad(qi : a) ⊂ rad(qi) and the other inclusion is obvious.

The claim tells us that every ideal rad(I : a) equals the intersection of (some) prime
ideals rad(qj). By Exercise 8, we see that if rad(I : a) is prime it has to be in fact equal to
one of the rad(qj). Conversely, if we consider any rad(qi0), as the primary decomposition is
minimal, there exists a ∈

⋂
j 6=i0

qj \ qi0 . The claim shows that rad(I : a) = rad(qi0).
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It remains to prove the last statement of the theorem. Clearly, if I : a is prime, then it
is equal to its radical. Thus, we have to consider a prime ideal rad(I : a) and show it equals
I : a′ for some a′ ∈ I. From the first part we already know that rad(I : a) = rad(qi0) for
some i0. By Exercise 9 there exists n such that rad(qi0)

n ⊂ qi0 . Hence, there exists n such
that (

⋂
j 6=i0

qj) · (rad(qi0))
n ⊆ I and we fix the smallest possible n with this property. Then

we may pick

a′ ∈

(
(
⋂
j 6=i0

qj) · (rad(qi))
n−1

)
\ I.

(Here we notice that if n = 1 then rad(qi))
n−1 should be considered as the whole ring.) By

definition a′ · rad(qi) ⊆ I, thus rad(qi) ⊆ I : a′. However, a′ ∈ (
⋂

j 6=i0
qj) \ I, thus a′ 6∈ qi0 .

From the first part, we have a sequence of inclusions:

rad(qi) ⊆ I : a′ ⊆ rad(I : a′) = rad(qi),

which thus must be in fact equalities.

The uniquely determined radicals of qi’s are in fact so important that they deserve a
separate definition.

Definition 11. For an ideal I the associated primes are the radicals of the primary ideals
appearing in a minimal primary decomposition. Equivalently, these are the prime ideals of
the form rad(I : a) for some element a of the ring, or in case the ring is Noetherian, prime
ideals of the form I : a.

Before passing further let us discuss the geometry behind the associated primes. Notice
that if I =

⋂k
i=1 qi is a minimal primary decomposition then rad(I) =

⋂k
i=1 rad(qi). Thus

one is tempted to say that the associated primes correspond to components of the irreducible
decomposition of the variety V (I). This is not quite true; although qi’s are incomparable,
their radicals may still be!

Example 12. We continue Example 9 and consider the ideal I = (x2, xy) ⊂ C[x, y]. We
have rad(I) = (x), i.e. the associated variety is irreducible - a line in a plane. However, the
minimal primary decomposition:

(x2, xy) = (x) ∩ (x2, y)

tells us that there are two associated primes. The expected one (x) and the unexpected one:
(x, y) - a point on the line. Thus, the associated primes remember more information than
just the variety associated to the ideal; there is a ’hidden’ - embedded - point on that line
distinguished by the ideal I. Although we do not see the point, let us try to persuade you that
it is important.

Consider a situation in which you make a measurement y, but independently you get a
(very small, unknown) error x. Think about your observations as pairs of numbers (x, y).
We want to understand which points in the plain we may get. A priori the observation y is
arbitrary, but the error is very small. In algebraic setting, we could say that x is meaningful,
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but x2 is so small that in fact x2 = 0. Hence, we work modulo the ideal (x2). So far this
ideal defines a (double) line which tells us that we can get arbitrary y and ’almost zero’ value
of x.

The story does not end here: we just got new equipment that allows us to get rid of the
error - but only when y 6= 0. In other words if we get a nonzero observation then x = 0,
but if we get a zero observation y = 0 we still do not know the error. Hence, our new
equipment gives us a new restriction xy = 0. Now we indeed consider I = (x2, xy). From
the description of the situation we know which kind of points we can get: arbitrary nonzero
y and zero error x or zero y and some extremely small x. Primary decomposition tells us
about this! The embedded point (x, y) is precisely the point where the ’strange extremely
small’ error is allowed! This point, which geometrically is only (0, 0) remembers that in fact
the first coordinate could be ’infinitesimally small’ and we could say that the point has a
’direction’.

Although the previous example may sound science-fiction, the formal algebraic replace-
ment of purely geometric varieties (corresponding to radical ideals) by arbitrary ideals al-
lowed a tremendous advance of XX-th century algebraic geometry. We are now ready to
work with ’functions’ that are nonzero, but their square is zero, using basic, well-understood
algebra. Such an algebraic breakthrough could only be compared to introduction of complex
numbers in XVII-th and XVIII-th century, where basically in the same way, instead of an-
swering a question: does there exists a square root of −1?, one introduces a formal algebraic
object (field of complex numbers) and shows how to work with it in an efficient way.

Still, at each step we should not forget the ’classical’ geometry we started from. Clearly
the line from Example 12 is of different type than the point and these two should be distin-
guished.

Definition 13. For an ideal I let Ass(I) be the set of associated primes. The minimal (with
respect to inclusion) elements of Ass(I) are called the minimal (or isolated) primes. The
associated primes that are not minimal are called embedded.

First we note that an embedded prime p (for an ideal I) must contain a minimal prime p′.
We recall from Lecture 2, that this means that the variety of p′ contains that of p. Hence,
geometrically we do not see the variety represented by p - it is embedded in the variety
represented by p′. Further the minimal primes correspond exactly to irreducible components
of the variety associated to I, i.e. are the irredundant terms in the decomposition:

rad(I) =
k⋂

i=1

rad(qi).

The lemma below gives one more explanation for the name for minimal primes.

Lemma 14. A prime ideal is a minimal prime associated to I if and only if it is a minimal
element (with respect to inclusion) among the primes that contain I.
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Proof. It is enough to prove that every prime ideal p containing I contains also a prime
associated to I. Then p must also contain a minimal associated prime and hence, if p is
minimal with respect to inclusion it must be equal to it.

Thus, let us consider p ⊇ I and a minimal primary decomposition I =
⋂k

i=1 qi. Then

p ⊇ I =
k⋂

i=1

qi.

By Exercise 8 we have p ⊇ qi0 for some some i0. Hence, p = rad(p) ⊃ rad(qi0).

The geometry that lead us to distinguish among embedded and minimal associated primes
shows us an idea how to get additional uniqueness properties about the primary decompo-
sition. Indeed, in Example 9 it is the ideal corresponding to the embedded component that
changes, while the minimal prime remains the same.

Theorem 15. Let I =
⋂k

i=1 qi be a minimal primary decomposition of I. The primary ideals
qi corresponding to minimal primes (associated to I) are uniquely determined.

Proof. Let qi0 be such that rad(qi0) is a minimal prime. We claim that:

qi0 = {a : ∃b 6∈rad(qi0 ) : ab ∈ I}.

As we already proved the right hand side does not depend on the decomposition, thus indeed
it is enough to prove the claim. We show both inclusions.

First we pick a ∈ qi0 . For every j 6= i0 we must have qj 6⊂ rad qi0 , as otherwise we
would have rad(qj) ⊂ rad qi0 contradicting the fact that rad qi0 is minimal. Hence, there
exist bj ∈ qj \ rad(qi0). We define b :=

∏
j 6=i0

bj. As rad(qi0) is prime we have b 6∈ rad qi0 .

However, ab ∈ qj for j 6= i0, as b ∈ qj and ab ∈ qi0 , as a ∈ qi0 . Hence, ab ∈ I =
⋂k

i=1 qi and
a ∈ {a : ∃b 6∈rad qi0

: ab ∈ I}.
Now we pick a and b 6∈ rad(qi0) such that ab ∈ I. In particular, ab ∈ qi0 . If a 6∈ qi0 we

get a contradiction to the fact that qi0 is primary, which proves the second inclusion.

The Joy of Primary Decomposition

What follows is the additional material presented by Bernd on Tuesday, July 3, at 11:30am.
Every polynomial with real or complex coefficients can be interpreted as a linear differential
operator with constant coefficients. This operator is obtained by simply replacing xi by
the differential operator ∂

∂xi
. Every ideal I in R[x1, x2, . . . , xn] can thus we interpreted as

a system of linear partial differential equations (PDE) with constant coefficients. Suppose
we are interested in the solutions to these PDE within some nice class of functions, like
polynomial functions, real analytic functions Rn → R, or complex holomorphic functions
Cn → C. Then the set of solutions to our PDE is a linear space over R or C. We are
interested in computing a basis for that solutions space. This computation rests on the

7



primary decomposition of the ideal I. Both minimal primes and embedded primes will play
a role, and all primary components will contribute to our basis for the solution space.

We shall explain this for the ideal I = 〈x3 − yz, y3 − xz, z3 − xy〉, seen in Exercise 8 of
the first lecture (April 10) of the Ringvorlesung. The corresponding system of PDE equals

∂3f

∂x3
=

∂2f

∂y∂z
and

∂3f

∂y3
=

∂2f

∂x∂z
and

∂3f

∂z3
=

∂2f

∂x∂y
. (1)

We seek all holomorphic functions f : C3 → C that satisfy these equations, and among these,
we seek all real analytic solutions f : R3 → R, and especially all polynomial solutions.

The Bézout number of our ideal I is 27 = 3 × 3 × 3, which comes from the degrees of
the three generators of I. The number 27 is also the dimension of the space of holomorphic
solutions f to (1). A basis of that solution space is given by the following 27 functions:

1 , x , y , z , x2 , y2 , z2 , x3 + 6yz , y3 + 6xz , z3 + 6xy , x4 + y4 + z4 + 24xyz ,
exp(x− y − z) , exp(x+ y + z) , exp(−x− y + z) , exp(−x+ y − z) ,

exp(x− iy + iz) , exp(x+ iy − iz) , exp(−x− iy − iz) , exp(−x+ iy + iz) ,
exp(ix− y + iz) , exp(ix+ y − iz) , exp(ix− iy + z) , exp(ix+ iy − z) ,

exp(−ix− y − iz) , exp(−ix+ y + iz) , exp(−ix− iy − z) , exp(−ix+ iy + z).

(2)

The space of polynomial solution has dimension 11 and is spanned by the first row. The space
of real analytic solutions has dimension 15 and is spanned by the first two rows. All other
basis functions are exponentials of linear forms that have i =

√
−1 among its coefficients.

This basis of solutions in (2) was derived from the primary decomposition of our ideal:

I = Q ∩
⋂

a+b+c≡ 0
mod 4

〈
x− ia, y − ib, z − ic

〉
in C[x, y, z].

The 16 ideals in the intersection on the right hand side are maximal and hence prime. They
correspond to the 16 exponential solutions in (2). The ideal Q is primary to the maximal
ideal

√
Q = 〈x, y, z〉. Since all associated primes are minimal, this primary ideal is unique:

Q =
〈
x2y, x2z, xy2, xz2, y2z, yz2, x3 − yz, y3 − xz, z3 − xy

〉
.

This ideal has length 11, and it contributes the 11 polynomial solutions to our PDE.

We next consider an ideal that has an embedded component. Let n = 4 and consider

J = 〈xw, xz + yw, yz〉.

The ideal J as three associated primes. The primes 〈x, y〉 and 〈z, w〉 are minimal primes, and
the maximal ideal 〈x, y, z, w〉 is an embedded prime. A primary decomposition is given by

J = 〈x, y〉 ∩ 〈z, w〉 ∩ (J + 〈x, y, z, w〉3).

The third primary component is embedded. It is not unique. We can replace the third power
of the maximal ideal by any higher power and get the same intersection.
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The radical of the ideal J is the intersection of the two minimal primes:

√
J = 〈x, y〉 ∩ 〈z, w〉 = 〈xw, xz, yw, yz〉.

We now interpret the generators of J as a system of linear PDE with constant coefficients:

∂2f

∂x∂w
=

∂2f

∂x∂z
+

∂2f

∂y∂w
=

∂2f

∂y∂z
= 0.

The linear space of solutions is infinite-dimensional. It is spanned by all functions of the form
g(y, z) and h(x, y), together with the one special function xz − yw. The former correspond
to the two minimal primes, whereas the latter arises from the embedded primary component.

Whenever one encounters a system of polynomial equations with special structure, and
one is curious about the variety of solutions, it pays to explore the primary decomposition.
This decomposition often reveals interesting structures, and it tells us how to break up the
solutions into meaningful pieces. As an illustration consider the following question. Let
A,B,C be 2× 2-matrices. How is it possible that the triple product ABC is the zero matrix?

We approach this problem as follows. We set n = 12 and we consider the polynomial
ring R[aij, bij, cij] whose variables are the 12 entries of the matrices A,B,C. Let K be the
ideal of R[aij, bij, cij] that is generated by the four entries of the matrix product ABC.

A computation reveals that K is a radical ideal, and that K is the intersection of six
prime ideals. Three of them are ideals generated by the entries of A or B or C respectively.
The next two minimal primes are generated respectively by the 2× 2 minors of the matrices(

a11 a21 −b21 −b22
a12 a22 b11 b12

)
and

(
b11 b21 −c21 −c22
b12 b22 c11 c12

)
.

Finally, the last associated prime of K is the ideal K + 〈det(A), det(B)〉. One checks with
a computer algebra system that our ideal K is the intersection of these six prime ideals.

Geometrically, we have studied the variety V (K) which is defined by four cubic equations
and which lives in C12. It is the union of six irreducible components. Three of them are
linear spaces of dimension 8. The other three irreducible components have dimension 9 and
they are not linear spaces. Their degrees are 4, 4 and 8 respectively. In terms of the original
linear algebra question, the six irreducible components correspond to the following six cases:

rank(A) = 0 or rank(B) = 0 or rank(C) = 0 or
rank(A) = rank(B) = 1 or rank(B) = rank(C) = 1 or rank(A) = rank(C) = 1.

As always, taking a fresh look at linear algebra offers a point of entry to nonlinear algebra.

Exercises

1. Consider the ring C[x, y]/(x2, xy, y2). Is (0) an irreducible ideal? Is it primary?
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2. a) Prove that intersection of prime ideals is radical.

b)* Prove the opposite implication. Hint: Apply Kuratowski-Zorn lemma.

3. Prove that an ideal I ( Z is a power of a prime ideal if and only if it is primary.

4. Prove that a ring is Noetherian if and only if every ideal is finitely generated.

5. a) Prove that if R is Noetherian, then so is R/I for any ideal I.

b) Prove Hilbert Basis Theorem: If R is Noetherian, then so is R[x].

6. Prove Lemma 5

7. Check that Example 9 provides two distinct minimal primary decompositions.

8. a) Prove that a prime ideal p cannot be equal to an intersection of (finitely many, more
than one, incomparable) ideals.

b) More generally prove that if a prime ideal contains an intersection of finitely many
ideals, then it contains one of them.

9. Prove that in a Noetherian ring every ideal contains a power of its radical. Give a
counterexample in case of a non-Noetherian ring.
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