
Polytopes and Matroids

Notes by Mateusz Micha lek
for the lecture on July 10, 2018, in the

IMPRS Ringvorlesung Introduction to Nonlinear Algebra

In the last lecture we discuss relations among (lattice) polytopes and matroids. As we
have seen in Lecture 7 lattice polytopes are strongly related to toric varieties. Indeed, toric
geometry has many connections to the theory of matroids and in this lecture we will be able
to present just a few of them. For many more interesting results we refer to [2, 5, 3, 6]. Our
main aim will be to show connections among: the Grassmannians (Lecture 4), toric varieties
(Lecture 7) and matroids.

We start by recalling the definition of a lattice polytope.

Definition 1 (Lattice polytope). Let Rn be a real vector space. A polytope P is the convex
hull of a finite set of points p1, . . . , pk ∈ Rn:

P := {x ∈ Rn : x =
k∑

i=1

λipi for some real λ1, . . . , λk ≥ 0,
k∑

i=1

λi = 1}.

We say that P is a lattice polytope if we may find p1, . . . , pk ∈ Zn ⊂ Rn.
For each polytope P there is an inclusion minimal set of pi’s of which it is a convex hull.

We call these pi’s the vertices of P .

The second basic class of objects we discuss are matroids. Their name suggests that they
could be regarded as generalizations of matrices. Indeed, as we will soon see every matrix
defines a matroid. Just as the groups abstract the notion of symmetry, matroids abstract
the notion of independence. We fix a finite set E, which we will refer to as the ground
set of a matroid. We would like to distinguish a family of subsets of E that we could call
independent. Thus a matroid M will be a family I ⊂ 2E of subsets E that we refer to as
independent sets. These are of course assumed to satisfy certain axioms.

A first observation is that whenever we have an independent set I ⊂ E, it is reasonable
to assume that every subset of I is also independent. We obtain the first axiom of a matroid
for the family I:

1. If I ∈ I and J ⊂ I, then J ∈ I.

What we defined so far is a very important object in mathematics: simplicial complex.
Another observation is that we would like I to be nonempty, or equivalently we want the
empty set to be independent:
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2. We have ∅ ∈ I.

It turns out that to obtain a matroid we need just one more axiom. To motivate it we make
a following observation. Whenever we have finite linearly independent subsets I, J ⊂ V of
a vector space V , if |I| < |J |, then we may extend I by an element of j ∈ J , in such a way
that I ∪ {j} is still linearly independent. This simple observation is precisely what we need
to get the last axiom for the family I:

3. If I, J ∈ I and |I| < |J | then there exists j ∈ J such that I ∪ {j} ∈ I.

Definition 2. A matroid is a family of subsets I satisfying Axioms 1,2 and 3 above.

In Exercise 1 the reader is asked to prove that the following structures are matroids.

Example 3. • (Representable/Realizable matroid) Let V be a vector space over an arbi-
trary field F . Let E ⊂ V be a nonempty, finite subset. We define I to be the family of
subsets of E that are linearly independent. We say that the matroid is representable
over F .

• (Graphic matroid) Let G be a graph with edge set E. Let I be the family of those
subsets of E that do not contain a cycle. Equivalently I is the family of forests in G.

• (Algebraic matroid) Let F ⊂ K be an arbitrary field extension. Let E be a finite subset
of K. Let I be the family of subsets of E that are algebraically independent over F .

• (Uniform matroid) Let E be a finite set and k ≤ |E|. Let I be the family of subsets of
cardinality at most k. This matroid is denoted by Uk,E or Uk,|E|.

Matroids are known for having many equivalent definitions, depending on the point of
view on the matroid. For example, due to the first axiom to determine a matroid we do not
have to know all independent sets, just those that are inclusion maximal. By analogy to
linear algebra, the inclusion maximal independent sets are called basis. It turns out - as the
reader is asked to prove in Exercise 2 - that a nonempty family B ⊂ 2E of subsets of E is a
family of basis of some matroid if and only if the following axiom is satisfied:

• For all B1, B2 ∈ B, b2 ∈ B2\B1 there exists b1 ∈ B1\B2 such that (B1\{b1})∪{b2} ∈ B.

The seamingly weak axiom on B in fact implies the following two statements:

• For all B1, B2 ∈ B, b2 ∈ B2 \B1 there exists b1 ∈ B1 \B2 such that both (B1 \ {b1})∪
{b2}, (B2 \ {b2}) ∪ {b1} ∈ B.

• For all B1, B2 ∈ B and any subset A2 ⊂ B2 \ B1 there exists a subset A1 ⊂ B1 \ B2

such that both (B1 \ A1) ∪ A2, (B2 \ A2) ∪ A1 ∈ B.
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The first point is known as the symmetric exchange property and the second one as multiple
symmetric exchange property. The facts that both exchange properties hold is nontrivial -
we refer the reader to the proofs in [1, 8]. We will soon see the algebraic meaning of the
exchange properties.

Exercise 3 states that all basis of a matroid have the same cardinality. The cardinality
of a basis is known as the rank of a matroid. More generally for a matorid on a ground set
E we may define the rank of any subset of A ⊂ E.

Definition 4. For a matroid on a ground set E and independent sets I ⊂ 2E we define the
rank function:

r : 2E 3 A→ max
I∈I
{|I ∩ A|} ∈ Z.

Equivalently, the rank of a set is the cardinality of a largest independent set contained in it.

We note that for a representable matroid the rank is simply the dimension of the vector
subspace spanned by the given vectors. Clearly, for any matroid the rank function r satisfies
the following:

• 0 ≤ r(A) for all A ⊂ E and r(∅) = 0.

• r(A) ≤ r(A ∪ {b}) ≤ r(A) + 1 for all A ⊂ E, x ∈ E.

Further, the rank function has one more property known as submodularity :

• for all A,B ⊂ E we have r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

In Exercise 7 the reader is asked to prove that any function r : 2E → Z satisfying the three
axioms above is a rank function of a matroid. The independent sets can be reconstructed as
those I ⊂ E for which r(I) = |I|. This gives us another possible definition of a matroid.

To pass from a combinatorial object, like a matroid, to a polytope, we apply the following
’standard’ construction. Consider a vector space R|E| with basis elements be corresponding to
the elements e ∈ E. Any subset A ⊂ E can be identified with a point pA :=

∑
e∈A be ∈ R|E|.

In this way a family of subsets may be identified with a set of points.

Definition 5 (Matroid basis polytope). Let M be a matroid on the ground set E and basis set
B. We use the notation introduced above. We define the matroid basis polytope PM ⊂ R|E|
as the convex hull of the points pB :=

∑
e∈B be ∈ R|E|, where we take all B ∈ B.

Clearly PM is a lattice polytope, hence we may consider the toric variety associated to
it. Precisely it is the image of the map given by monomials, in variables corresponding to
elements of E, that are products of elements in a basis.

Example 6. Consider a rank two uniform matroid on the set E = {1, 2, 3}. Precisely:

B = {{1, 2}, {1, 3}, {2, 3}}.

We consider R3. The three basis above correspond, in the given order to the three points:

(1, 1, 0), (1, 0, 1), (0, 1, 1) ∈ R3.
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Hence, the matroid basis polytope is a two dimensional triangle. The polynomial map is:

(C∗)3 3 (x1, x2, x3)→ (x1x2, x1x3, x2x3) ∈ P2.

The closure of the image is the whole P2, which is the associated toric variety.

The combinatorial statement equivalent to the proposition presented below was proved
by White [7].

Proposition 7. A matroid basis polytope is normal in the lattice that it spans.

In order to present the proof we state one of the most useful theorems about matroids.

Theorem 8 (The matroid union theorem). Let M1, . . . ,Mk be matroids on the same ground
set E with respective families of independent sets I1, . . . ,Ik and rank functions r1, . . . , rk.
Let

I := {I ⊂ E : I =
k⋃

i=1

Ii for Ii ∈ Ii}.

Then I is also a family of independent sets for a matroid, known as the union of M1, . . . ,Mk.
Further, the rank of any set A ⊂ E for the union matroid is given by:

r(A) = min
B⊂A
{|A \B|+

k∑
i=1

ri(B)}.

For the proof we refer to [6, 12.3.1]. As a corollary of the matroid union theorem we
obtain the following theorem due to Edmonds.

Theorem 9. Let M be a matroid on a ground set E with rank function r. E can be
partitioned into k independent sets if and only if |A| ≤ k · r(A) for all subsets A ⊂ E.

Proof. The implication ⇒ is straightforward.
For the other implication consider the union U of M with itself k times. We apply the

matroid union theorem to compute the rank of E:

rU(E) = min{|E| − |B|+ k · rM(B)}.

Clearly by assumption |E| − |B| + k · rM(B) ≥ |E| and equality holds for B = ∅. Hence,
rU(E) = |E|. This means that E is an independent set in U , and hence by definition it is a
union of k independent sets of M .

Definition 10. Let M be a matroid on a ground set E with the family of independent sets
I. Let E ′ ⊂ E. The restriction of M to E ′ is a matroid where A ⊂ E ′ is independent if and
only if A ∈ I.
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Proof of Proposition 7. Let M be a matroid on the ground set {1, . . . , n}. Let p ∈ kPM . We
know that p =

∑
b∈B λBpB with

∑
λB = k and 0 ≤ λB ∈ Q. After clearing the denominators

we have:
dp =

∑
λ′Bpb,

where
∑
λB = dk and 0 ≤ λB ∈ Z.

By restricting the matroid M we may assume that all coordinates of p = (p1, . . . , pn) are
nonzero.

We define two matroids. The first matroid N is on the ground set EN := {(i, j) : 1 ≤ i ≤
n, 1 ≤ j ≤ pi}. In other words, we replace a point i in the original matroid by pi equivalent
points. A subset {(i1, j1), . . . , (is, js)} ⊂ EN is independent if only if:

• all iq’s are distinct,

• {i1, . . . , is} is an independent set in M .

We note that a basis of N maps naturally to a basis of M . Also the rank function for N
is the same as the one for M if we forget the second coordinates. Further, the point p has a
decomposition as a sum of k points corresponding to basis of M if and only if the matroid
N is covered by k basis (i.e. the ground set is a union of k basis). Hence, by Theorem 9 our
aim is to prove the following statement:

For any A ⊂ EN we have |A| ≤ krN(A).
The second matroid N ′ is on the ground set EN ′ := {(i, j, l) : 1 ≤ i ≤ n, 1 ≤ j ≤

pi, 1 ≤ l ≤ d.}. In other words we replace any point of N by d equivalent points. A subset
{(i1, j1, l1), . . . , (is, js, ls)} ⊂ EN is independent if only if:

• all iq’s are distinct,

• {i1, . . . , is} is an independent set in M .

We have a natural projection π : EN ′ → EN given by forgetting the last coordinate. We note
that rN ′(π−1(A)) = rN(A). As the point dp is decomposable we know that the matroid N ′

can be covered by kd basis. Hence, for any B ⊂ EN ′ we have: |B| ≤ dk · rN ′(B). Applying
this to π−1(A) we obtain:

k|A| = |π−1(A)| ≤ dk · rN ′(π−1(A)) = dk · rN(A).

This is equivalent to the statement we wanted to prove!

Our next aim is to relate matroids with the geometry of special subvarieties of Grassman-
nians. We recall that one of the possible definitions of a Grassmannian G(k, n) is an orbit of
[e1 ∧ · · · ∧ ek] ∈ P(

∧k Cn) under the action of the group of n× n invertible matrices GL(n).
While the Grassmannian is an orbit of the big group GL(n), we may ask how smaller groups
act on G(k, n). In particular, consider the torus T := (C∗)n of diagonal matrices. This torus
acts on P(

∧k Cn) and on G(k, n). However, in general G(k, n) is not an orbit of T or even a
closure of an orbit of T . Indeed, we already know that G(k, n) has dimension k(n−k) which
may be much larger than n. Let us fix a point p ∈ G(k, n). The questions that motivate us
are as follows:
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• What is the T -orbit of p?

• What is the closure of this orbit?

• How can we describe this variety?

A beautiful answer was provided by Gelfand, Goresky, MacPherson and Serganova [4]. The
point p = [v1 ∧ · · · ∧ vk] ∈ G(k, n) represents a k-dimensional subspace V = 〈v1, . . . , vk〉 in
Cn. We may present the vectors v1, . . . , vk as a k × n matrix Np. From Lecture 4 we know

that the coordinates of p ∈ P(
∧k Cn), are given by maximal minors of Np. How does a point

t = (t1, . . . , tn) ∈ T act on p? In general, t acts on the coordinate indexed by ei1 ∧ · · · ∧ eik
rescaling it by ti1 · · · tik . Hence, the orbit of p is the image of the map:

T 3 (t1, . . . , tn)→ (ti1 · · · tik det((Np)i1,...,ik))1≤i1<···<ik≤n ∈ P(
k∧
Cn),

where (NP )i1,...,ik denotes the k × k submatrix of Np with the chosen columns indexed by
i1, . . . , ik.

Example 11. Consider the two dimensional subspace of the four dimensional space spanned
by the rows of the following matrix: [

1 1 1 1
1 2 3 4

]
.

In the coordinates of the Grassmannian we have the associated point:

(e1+e2+e3+e4)∧(e1+2e2+3e3+4e4) = e1∧e2+2e1∧e3+3e1∧e4+e2∧e3+2e2∧e4+e3∧e4.

The orbit in the coordinates above is parameterized as follows:

(t1, t2, t3, t4)→ (t1t2, 2t1t3, 3t1t4, t2t3, 2t2t4, t3t4).

We see that the orbit is almost an image of a monomial map! Indeed, the only thing
that changes are the constants given by minors of the matrix Np. However, these constants

do not depend on t ∈ T and hence we may define an automorphism of P(
∧k Cn) that turns

the orbit to an image of a monomial map, by simply rescaling the coordinates.
At this point one could have a false impression that the orbit is isomorphic to the image

of a monomial map defined by all squarefree monomials of degree k. This is not the case, as
some of the monomials may not appear at all! This happens if the corresponding minor was
equal to zero - then we cannot rescale it.

Example 12. 1. First we continue Example 11. The polytope associated to the toric
variety has the following vertices:

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1).

This is the hypersimplex ∆2,4. The associated projective toric variety is three dimen-
sional. It represents the closure of the T -orbit of a general point in the Grassmannian
G(2, 4). The associated matroid is the uniform rank two matroid on four elements.
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2. Let us now consider a different point of G(2, 4) given by the rows of the following
matrix: [

1 0 0 0
1 2 3 4

]
.

The orbit is parameterized as follows:

(t1, t2, t3, t4)→ (2t1t2, 3t1t3, 4t1t4, 0, 0, 0).

The polytope representing the toric variety has the following vertices:

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1).

It is isomorphic to a two dimensional simplex, hence the closure of the orbit is a P2,
as can be seen directly from the parameterization.

Which monomials are thus left? Exactly those for which the corresponding minor of Np

was not zero.
Let us consider the representable matroid Mp of n points in Ck, defined by the columns

of the matrix Np. Clearly a set of points is a basis of Mp if and only if the corresponding
minor of Np is nonzero. We have proved the following proposition.

Proposition 13. The closure of the T -orbit of any point p = [v1∧· · ·∧vk] in a Grassmannian
G(k, n) is the toric variety represented by the matroid base polytope, for the representable
matroid defined by columns of the k × n matrix Np with i-th row equal to vi.

The results of Lecture 7 combined with Proposition 7 show the following.

Proposition 14. Any torus orbit closure in any Grassmannian is projectively normal.

We now turn to the interpretation of basis exchange properties in terms of algebraic
geometry. Consider a matroid with basis polytope P . We recall that:

• the ideal of the associated toric variety is generated by binomials,

• every binomial in the ideal corresponds to an integral relation among lattice points of
P .

How do these statements specialize in the case of matroids? A lattice point of P is the
characteristic function of a basis. A sum of lattice points is the sum of these characteristic
functions. This corresponds to taking a sum of basis as multisets.

Example 15. Consider the rank two uniform matroid on four elements {p1, p2, p3, p4}. An
integral relation among the lattice points of the basis polytope is:

(1, 1, 0, 0) + (0, 0, 1, 1) = (1, 0, 1, 0) + (0, 1, 0, 1).

As a sum of basis elements this corresponds to:

{p1, p2} ∪ {p3, p4} = {p1, p3} ∪ {p2, p4}.

It is a degree two binomial in the ideal of the associated toric variety.
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Hence, we say that two multisets of basis are compatible if their union (as multisets) is
the same. Equivalently, every element of the base set belongs to the same number of basis
in the first and second multiset of basis. Thus, the binomials in the ideal of the toric variety
represented by matroid base polytope are in bijection with pairs of compatible multisets of
basis.

What are the quadrics in such an ideal? Equivalently, when {B1, B2} is equivalent to
{B3, B4}? This is if and only if B1 ∪B2 = B3 ∪B4. In other words, this is if and only if we
change:

• B1 by subtracting from it a set A1 ⊂ B1 \B2 and adding to it A2 ⊂ B2 \B1 and

• B2 by adding to it A1 and subtracting A2.

We see that quadrics in the ideal correspond to multiple symmetric exchanges. It follows that
symmetric basis exchanges form a distinguished set of quadrics in the ideal. The following
four conjectures are due to White.

Conjecture 16. • Representable case: The ideal of any torus orbit closure in any Grass-
mannian is:

1. generated by quadrics,

2. generated by quadrics corresponding to symmetric basis exchanges.

• General case: For any matroid M any two finite multisets of basis (Bi), (Bj) such that⋃
Bi =

⋃
Bj can be transformed to one another in a finite number of such steps that:

1. we replace two basis B,B′ in one multiset, by two basis B̃, B̃′ obtained by multiple
symmetric exchange (i.e. B ∪B′ = B̃ ∪ B̃′),

2. we replace two basis B,B′ in one multiset, by two basis B̃, B̃′ obtained by a sym-
metric exchange (i.e. B = B̃ ∪ {b1} \ {b2} and B′ = B̃′ ∪ {b2} \ {b1}).

It is an easy exercise to show that the general case implies the representable case.

Exercises

1. Show that Example 3 presents matroids.

2. a) Fix a family of independent sets I for a matroid M . Prove that the inclusion
maximal elements in I satisfy the axiom for the basis of a matroid.

b) Fix a nonempty set B ⊂ 2E satisfying the axiom for basis of a matroid. Prove
that I := {I ⊂ E : ∃B∈B : I ⊂ B} satisfies the axioms for the independent sets.

3. Prove that all basis in a matroid have the same cardinality.

4. Prove that the points pB in Definition 5 are vertices of the polytope PM . Prove that
these are the only lattice points of PM .
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5. • Let B ⊂ 2E be a set of basis of a matroid M . Let B∗ := {B ⊂ E : E \ B ∈ B}.
Prove that B∗ is a set of basis of a matroid M∗. The matroid M∗ is known as
the dual matroid (of M).

• Prove that a dual of a representable matroid is repesentable.

6. Prove that for any matroid the rank function is submodular.

7. Prove that any function 2E → Z satisfying the three axioms of the rank function is
indeed a rank function of some matroid.

8. How many distinct torus orbit closures are there in G(2, 4)? How many up to isomor-
phism (of algebraic varieties)?

9. Prove White’s conjectures for uniform matroids.
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