
Representation Theory

Notes by Mateusz Micha lek
for the lecture on June 12, 2018, in the

IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Symmetry is the key to many applications and computations in algebra. Symmetry is
expressed via the action of a group acting on a space. Some of the most important groups are

• GL(V ) = GL(dimV ) - the group of linear isomorphisms of a finite-dimensional vector
space V , with the structure of the algebraic variety given by Exercise 8 in Lecture 2;

• SL(V ) = SL(dimV ) - the group of volume and orientation preserving linear automor-
phisms of V , with the structure of an algebraic variety given by the equation detA = 1;

• Sn - the group of permutations of a set with n elements; this is an algebraic variety
consisting of n! distinct points in GL(n), namely the n× n permutation matrices.

The groups that we consider have two structures: of an abstract group and of an alge-
braic variety. We note that basic group operations, like inverse or group action, are in fact
morphisms of algebraic varieties. We call such groups algebraic. In our lecture we restrict
our attention to algebraic groups and morphisms between them that are both group mor-
phisms and morphisms of algebraic varieties. We work over an algebraically closed field K
of characteristic zero.

In general, the following strategy to study an object can be very powerful:

• consider all maps from (resp. to) this object into (resp. from) another basic object.

This very general approach could be seen as motivation to study homotopy, homology or the
theory of embeddings. For groups, we obtain the following central definition.

Definition 1. A representation of a group G is a morphism G→ GL(V ).

Given a representation ρ : G → GL(V ), every element of g induces a linear map ρ(g) :
V → V . It is useful to think about a representation as a map G×V → V with the notation

gv := ρ(g)(v) ∈ V.

Here, we have the natural compatibilities

(g1g2)v = g1(g2v) and g(λv1 + v2) = λgv1 + gv2,

where λ ∈ K, v, v1, v2 ∈ V and g, g1, g2 ∈ G. We say that the group G acts on the vector
space V . If the action follows from the context then we call V a representation of G.
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Example 2. The groups GL(n) and SL(n) act (by linear change of coordinates) on the space

V = K[x1, . . . , xn]k ' K(n+k−1
k ) of homogeneous polynomials of degree k in n variables. Using

the monomial basis on V , the representation ρ maps a small matrix, of size n×n, to a large
matrix, with rows and columns indexed by monomials of degree k. The entries in that
large matrix are homogeneous polynomials of degree k in the entries of the small matrix.
We recommend working this out for n = k = 2. This representation ρ of GL(n) plays an
important role in classical Invariant Theory, the topic to be studied in the next lecture.

The representations of a fixed group G are the objects of a category. In this category, a
morphism f between representations ρ1 : G→ GL(V1) and ρ2 : G→ GL(V2) is a linear map
f : V1 → V2 that is compatible with the group action:

f(ρ1(g)(v)) = ρ2(g)(f(v)) for all g ∈ G and v ∈ V1.

This can also be written as f(gv) = gf(v). The category of representations of a group G is
an abelian category. This means in particular that kernels and cokernels exist - cf. Exercise 2.

Our first aim is to describe the basic building blocks of representations.

Definition 3. A subrepresentation of a representation V of a group G is a linear subspace
W ⊂ V such that the action of G restricts to W , i.e.

gw ∈ W for all w ∈ W and g ∈ G.

Equivalently, a subrepresentation is an injective map in the category of representations.

Note that for any representation V , the subspaces 0 and V are always subrepresentations.

Definition 4. A representation V is called irreducible if and only if 0 and V are its only sub-
representations. We next show that there are no nonzero morphisms between nonisomorphic
irreducible representations.

Lemma 5 (Schur’s Lemma). Let V1 and V2 be irreducible representations of a group G. If
f : V1 → V2 is a morphism of representations then either f is an isomorphism or f = 0.
Further, any two isomorphisms between V1 and V2 differ by a scalar multiple.

Proof. Both the kernel ker f and the image im f are representations. As V1 is irreducible,
either ker f = V1 or f is injective. In the latter case, im f ' V1 is a nontrivial subrepresen-
tation of V2, hence f is also surjective, i.e. it is a linear isomorphism. The inverse of f , as a
linear map, is also the inverse as morphism of representations.

For the last part, consider two isomorphisms f1 and f2. We may assume that f1 is the
identity on V1. Let v be the eigenvector of f2 with eigenvalue λ ∈ K. We have:

f2(v) = λv = λf1(v).

Consider the morphism of representations f := f2 − λf1. Clearly, v ∈ ker f . Hence, by the
first part, f2 − λf1 is the zero map, and hence f2 = λf1.
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Theorem 6 (Maschke’s theorem). Let V be a finite-dimensional representation of a finite
group G. There exists a direct sum decomposition

V =
⊕

Vi,

where each Vi is an irreducible representation of G.

Proof. By induction on the dimension, it is enough to prove the following statement: if W is
a subrepresentation of V , then there exists a subrepresentation W ′ such that V = W ⊕W ′.

Let π : V → W be any (surjective) projection. Let π̃ : V → W be defined by:

π̃(v) =
1

|G|
∑
g∈G

ρ(g)|W ◦ π ◦ ρ(g)−1.

We note that π̃ is a morphism of representations and V = W ⊕ ker π̃.

Remark 7. The existence of decomposition into irreducible components holds not only for
finite groups. It also holds for GL(n) and SL(n). One possible proof is similar to the one
above and is known as the unitarian trick. It was introduced by Hurwitz and generalized by
Weyl. A representation that allows such a decomposition is called semi-simple or completely
reducible. If all representations of G have this property then the group G is called reductive.

The decomposition of into irreducible representations in Maschke’s Theorem is not
unique. The following example makes this clear.

Example 8. Any group G acts on any vector space V trivially by gv = v. Any subspace
of V is a subrepresentation. The irreducible subrepresentations are the 1-dimensional sub-
spaces of V . Hence, any decomposition into 1-dimensional subspaces V =

⊕dimV
i=1 K1 is a

decomposition into irreducible representations, but there is no distinguished one.

As we will see, the reason for nonuniquness, is the fact that distinct Vi’s appearing in the
decomposition may be isomorphic. Let us group the isomorphic Vi’s together obtaining:

V =
⊕

V
×aj
j , (1)

where Vj0 ' Vj1 if and only if j0 = j1. The subrepresentations V
×aj
j are called isotypic

components. The number aj is the multiplicity of the irreducible representation Vj in V .

Corollary 9 (to Schur’s Lemma). The isotypic components and multiplicities of a semi-
simple representation V are well defined, i.e. do not depend on the choice of the decomposition
into irreducible representations.

Proof. Consider two decompositions:

V =
⊕
j

V
×aj
j =

⊕
k

V ×bkk .
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Allowing aj, bk to be equal to zero, we may assume that all irreducible representations occur
and that the indexing in both sums

⊕
is the same. First we prove that for a given irreducible

representation Vi we have ai = bi. The restriction of identity gives us an injective map:

m : V ×aii →
⊕
k

V ×bkk .

By Schur’s Lemma, the composition of m with the projection

πs :
⊕
k

V ×bkk → V ×bss

equals zero, unless s = i. Hence, imm ⊂ V ×bii . In particular, by dimension count, ai ≤ bi.
Analogously bi ≤ ai, i.e. the multiplicities do not depend on the decomposition. Further, the
composition πs◦m is an isomorphism if s = i and is zero if s 6= i. It follows that imm = V ×bii .
Thus, the identity maps isotypic components to (the same) isotypic components.

Our next aim is to understand the irreducible representations of a given group G. The
following definition provides us with the most important tool.

Definition 10 (Character). Let ρ : G → GL(V ) be a representation of G. The character
χρ = χV of ρ is the function G→ K obtained by composing ρ with the trace function Tr:

χρ(g) = Tr(ρ(g)).

The properties of the trace of a square matrix imply the following facts about characters:

• If V =
⊕

Vi then χV =
∑
χVi .

• If g1 and g2 are conjugate elements of G, then χ(g1) = χ(g2) for any character χ.

• If V1, V2 are representations with characters χ1, χ2 then their tensor product V1⊗ V2 is
also a representation, and its character is the product χ1χ2.

• We have χV (e) = dimV , where e ∈ G is the neutral element.

For a finite group G, we fix the following scalar product on the space of functions G→ C:

〈χ1, χ2〉 :=
1

|G|
∑
g∈G

χ1(g)χ2(g). (2)

It turns out that characters of all irreducible representations of G are orthonormal with
respect to this scalar product. For details we refer to Serre’s book [2, Chapter 2]. In
particular, the characters are linearly independent elements in CG. Hence, we can find the
multiplicities aj in the isotypic decomposition V =

⊕
j V

aj
j by decomposing the character:

χV =
∑
j

ajχj.
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For any finite group G there are finitely many irreducible representations - the sum of
squares of their dimensions equals the order of the group [2, Chapter 2.5, Corollary 2]. A
class function if a function G→ K that is constant on conjugacy classes. Characters in fact
form a basis of the space of class functions. Often (all) characters are represented in a table,
which makes the decomposition very easy, if we know the character of a representation.

Example 11. We present the character table for the symmetric group S3 on three letters:

Trivial representation Sign representation 2-dimensional repr.
1 identity 1 1 2

2 cycles (ijk) 1 1 −1
3 transpositions (ij) 1 −1 0

.

There are three conjugacy classes, hence there are three irreducible representations. The
first is the trivial representation gv = v, the second is the sign representation gv = (sgn g)v,
and the third is the two-dimensional representation, given by the symmetries of a regular
triangle. Each column in the table represents a function S3 → C. Make sure to check these
functions are orthonormal with respect to the inner product (2). In fact, one builds the
character table of a finite group by exploiting the orthonormality of the columns. In this
manner, one obtains the 5× 5 character table for S4 and the 7× 7 character table for S5.

These ideas generalize to GL(n) and SL(n). However, we cannot represent their charac-
ters by tables. However, we can represent each character χ by its values on the Zariski dense
subset of diagonalizable matrices. Hence, we fix a torus T = (K∗)n ⊂ GL(n) and restrict
the character to T . As χ is constant on conjugacy class and any diagonalizable matrix is
conjugate to an element of T , the function χ|T characterizes χ. Therefore, given any rep-
resentation W of GL(n), we restrict the group and regard W as a representation of T . By
Exercise 1 and Corollary 9 we know that, as a representation of T , the space W decomposes:

W =
⊕
b∈Zn

W ab
b , (3)

where t = (t1, . . . , tn) takes w to tbw for w ∈ Wb. The isotypic components W ab
b for the

T -action are called weight spaces. The characters b of T for which ab 6= 0 are called weights.

Remark 12. Let T be the torus of diagonal matrices t = diag(t1, . . . , tn) in GL(n). If χ is
a character of GL(n) then its restriction to T is the function χ|T : T → K, t 7→ Tr(ρ(t)).
Here Tr denotes the trace of a (large) square matrix. The restricted character χ|T equals

χ|T (t) =
∑
b∈Zn

abtb.

This is a Laurent polynomial in t1, . . . , tn that is invariant under permuting these n unknowns

Example 13. Following Example 2, we consider the action of GL(n) on homogeneous poly-
nomials of degree k. Let χ be its character. Then χ|T is the complete symmetric polynomial
of degree k, i.e., χ|T (t) is the sum of all monomials ta where a ∈ Nn and |a| = k.
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Example 14. The group GL(n) acts naturally on the kth exterior power V = ∧kKn. Write

ρ for this representation and χ for its character. We identify V with K(nk) by fixing the
standard basis

{
ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ n

}
. The image ρ(g) of an n× n-matrix

g = (gij) is the kth compound matrix or kth exterior power, whose entries are the (suitably

signed) k × k minors of g. We note that the determinant of ρ(g) equals det(g)(
n−1
k−1). The

restricted character χ|T (t) is the kth elementary symmetric polynomial in t1, . . . , tn.
For a concrete example, let k = 2. Then ρ(g) is the

(
n
2

)
×
(
n
2

)
matrix whose rows and

columns are labeled by ordered pairs from {1, 2, . . . , n}, and whose entry in row (i < j) and
column (k < l) equals gikgjl − gilgjk. We have det(ρ(g)) = det(g)n−1 and χ|T (t) =

∑
i<j titj.

For k = 1 we have ρ(g) = g, so χT (t) = t1 + t2 + · · · + tn. For k = n, we get the one
dimensional representation where ρ(g) is the 1 × 1-matrix with entry det(g), so we have
χT (t) = t1t2 · · · tn. The latter gives the trivial representation when restricted to SL(n).

Let ρ be any representation of GL(n). We fix the lexicographic order on the set of
weights b that occur in ρ. Of particular importance is the highest weight. The corresponding
eigenvectors w ∈ Wb in (3) are called highest weight vectors. They span the highest weight
space. In Example 13, the highest weight is (d, 0, . . . , 0) ∈ Zn, and a highest weight vector
is the monomial xd1. In Example , the highest weight is (1, . . . , 1, 0, . . . , 0), and a highest
weight vector is e1 ∧ · · · ∧ ek. In both cases, the highest weight space is 1-dimensional.

Example 15 (Adjoint representation). The space V = Kn×n of n× n matrices M forms a
representation of GL(n) under the action by conjugation, where ρ(g)(M) := gMg−1. This
is the adjoint representation. The weights, known as roots in this case, are ti/tj with highest
weight (1, 0, . . . , 0,−1). If we restrict it to SL(V ) we have t−1n =

∏n−1
i=1 ti and the highest

weight becomes (2, 1, . . . , 1) ∈ Zn−1. Again, the highest weight space is 1-dimensional.

The following proposition provides a characterization of irreducible representations.

Proposition 16. Every irreducible representation of SL(V ) is determined (up to isomor-
phism) by its highest weight, and the highest weight space is 1-dimensional. A weight
(a1, . . . , an−1) ∈ Zn−1 is the highest weight for some irreducible representation if and only if
a1 ≥ a2 ≥ · · · ≥ an−1 ≥ 0.

Proof. For the proof we refer to [1, Chapter 15].

Here is a combinatorial tool for building rreducible representations from highest weights:

Definition 17. A Young diagram with k-rows is a nonincreasing sequence of k positive
integers. It is usually presented in the following graphical form, e.g. for a sequence (2, 1, 1):

.

This particular Young diagram encodes the adjoint representation of SL(4).
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Proposition 16 tells us that the irreducible representations of SL(n) are in bijection with
the Young diagrams with at most n−1 rows. Representations of GL(n) are not very different:
first, every irreducible representation V of GL(n) it is also an irreducible representation
of SL(n), so it has a corresponding Young diagram λ. However, different representations
of GL(n) give the same representation of SL(n) if the differ a power of the determinant.
Precisely, consider a representation ρ : SL(n) → GL(V ) with associated Young diagram λ.
We have the following representations of GL(n) for any a ∈ Z:

ρa(g) := (det g)a · ρ
( 1

n
√

det g
· g
)
.

Here, the argument of ρ is in SL(n). The 1-dimensional representation g 7→ det(g) of
GL(n) corresponds to a Young diagram with one column and n rows. Thus for a ≥ 0 the
representation ρa corresponds to Young diagram λ extended by a columns of height n. The
representation of GL(U) corresponding to a Young diagram λ is denoted by Sλ(U).

Given a Young diagram λ, we write χλ for character of the irreducible representation
Sλ(U). This is a symmetric polynomial in t = (t1, . . . , tn), known as the Schur polynomial
of λ. Schur polynomials include the complete symmetric polynomials in Example 13, for
λ = (n), and the elementary symmetric polynomials in Example 14, for λ = (1, 1, . . . , 1).

Here is an explicit formula for the Schur polynomials, where we set λk = 0 for k � 0.

Proposition 18. The Schur polynomial for λ is the following ratio of n× n determinants:

χλ(t) =
det
(
t
λj+n−j
i

)
1≤i,j≤n

det
(
tn−ji

)
1≤i,j≤n

.

We can find the decomposition (1) of a representation V into irreducibles by writing the
character χV as linear combination of Schur functions χλ with nonnegative integer coefficients
aj. These coefficients are the multiplicities. This expression is unique because the Schur
polynomials form a Z-linear basis for the ring of symmetric polynomials in n variables.

Example 19. Let n = 3. The Schur polynomial for λ = (λ1, λ2, λ3) is the ternary form

χλ(t) =
1

(t1 − t2)(t1 − t3)(t2 − t3)
· det

tλ1+2
1 tλ2+1

1 tλ31
tλ1+2
2 tλ2+1

2 tλ32
tλ1+2
3 tλ2+1

3 tλ33

 .

From this, we compute the three Schur polynomials of degree |λ| = 3 as follows:

χ(3,0,0) = t31 + t21t2 + t1t
2
2 + t32 + t21t3 + t1t2t3 + t22t3 + t1t

2
3 + t2t

2
3 + t33

χ(2,1,0) = (t1 + t2)(t1 + t3)(t2 + t3)
χ(1,1,1) = t1t2t3

The action of GL(3) on U = K3 induces an action on the 27-dimensional space U⊗3 of
3×3×3-tensors. As characters are multiplicative under tensor product, its character equals

χU⊗3 = (t1 + t2 + t3)
3 = χ(3,0,0) + 2 · χ(2,1,0) + χ(1,1,1).
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From this decomposition into Schur polynomials, we conclude the irreducible decomposition

U⊗3 = S(3)(U) ⊕
(
S(21)(U) ⊕ S(21)(U)

)
⊕ S(111)(U). (4)

The first summand is the symmetric tensors, the last summand is the antisymmetric tensors,
and the middle summand consists of two copies of the adjoint representation (Example 15).

The irreducible representations Sλ(U) of SL(U) come together with nice algebraic vari-
eties. The group SL(U) acts also on the projective space P(Sλ(U)). The letter action has
unique closed orbit, namely the orbit of the highest weight vector. Particular examples are:

1. The orbit of [e1 · · · e1] ∈ P(Sk(U)). This is the k-th Veronese embedding of P(U).

2. The orbit of [e1 ∧ · · · ∧ ek] ∈ P(∧k(U)) is the Grassmannian G(k, U) in its Plücker
embedding. Here λ = (1, . . . , 1) as in Example 14.

This result provides us with a unified approach to homogeneous varieties. It could be
also used to build some of the representations. Fix a Young diagram λ and let kλ be a Young
diagram where each row is scaled by k. Given the homogeneous variety X in P(Sλ(U)) we
can take the k-th Veronese map vk of this projective space and the linear span of vk(X) is
Skλ(V ). A special case of this construction is point 1 above where X = P(U).

We shall end this lecture with a beautiful connection between finite groups - Sn and
Lie groups - SL(n) or GL(n). This is the Schur-Weyl duality. Our reference for this is
[1, Chapter 4]. Before stating it let us go back to irreducible representations of Sn. Their
characters form a basis of class functions. Hence the number of irreducible representations
equals the number of conjugacy classes. Each conjugacy class can be encoded by lengths of
cycles in a decomposition of a permutation into cycles. These can be further represented by a
Young diagram with n boxes: the first row represents the length of the longest cycle, the last
of the shortest. Thus, the number of irreducible representations of Sn equals the number of
Young diagrams with n boxes. We shall exhibit a natural bijection between Young diagrams
with n boxes and irreducible representations of Sn. Before, we see how to construct it, let
us assume that to each such Young diagram λ we can associate a representation Sλ of Sn.

Fix a vector space U and consider the n-fold tensor product U⊗n. There are two groups
acting on it: GL(U) - on each factor - and Sn - by permuting factors. Schur-Weyl duality
provides a simultaneous decomposition of the space of tensors with respect to both groups.

Theorem 20 (Schur-Weyl duality). Let U be a vector space of dimension at least n. Then

U⊗n =
∑
|λ|=n

Sλ ⊗ Sλ(U), (5)

where the sum is over all Young diagrams with precisely n boxes.

When n = 2 we obtain U⊗2 = S2(U) ⊕
∧2 U , as there are only two irreducible repre-

sentations of S2, both 1-dimensional. This recovers the fact every n× n matrix is uniquely
the sum of a symmetric matrix and a skew-symmetric matrix. The S2 action on the matrix
space U⊗ is transposition, which acts trivially on S2(U) and changes the sign on

∧2 U .
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The case n = 3 is the first interesting one. The three irreducible representations Sλ of
S3 in Example 11 correspond to the three outer summands in (4). Note that dim(Sλ) = 2
for λ = (2, 1). The middle summand in (4) is the 16-dimensional space S(21) ⊗ S(21)(U).

By Schur-Weyl duality, the multiplicity of Sλ(U) in U⊗n equals the dimension of Sλ. This
provides us with a method for defining Sλ. Consider the decomposition of U⊗n as an GL(U)
representation, into isotypic components. Here the aλ can be found using Schur functions:

U⊗n = ⊕λ(Sλ(U))aλ .

For each isotypic component (Sλ(U))aλ consider the highest weight space, i.e. eigenvectors
of the torus action with weight λ. The permutation group Sn acts on the highest weight
space. This representation of Sn is irreducible, and we find that it is precisely Sλ.

Coming back to the example of matrices (n = 2), the highest weight vectors are as follows:

• The highest weight vector e1e1 = e1 ⊗ e1 of S2(U) is invariant with respect to trans-
position, i.e. it provides the trivial representation of the two-element group S2.

• The highest weight vector e1 ∧ e2 = 1
2
(e1 ⊗ e2 − e2 ⊗ e1) of ∧2(U) changes sign when

transposed, i.e. it provides the sign representation of the two-element group S2.

Example 21 (n = 3). Let λ = (2, 1). The isotypic component (S(21)(U))2 in the middle
of (4) has a 2-dimensional subspace Sλ of highest weight vectors. One possible basis of this
space consists of the tensors e112 + e211− e121 and e121 + e211− e112, where eijk := ei⊗ ej⊗ ek.

Remark 22. We stress the fact that we worked under the assumption that the field is alge-
braically closed and of characteristic zero, which makes representation theory much better
behaved. Representation theory in finite characteristic is considerably more complicated.

Exercises

1. (a) Prove that, over an algebraically closed field, every irreducible representation of
an abelian group is 1-dimensional.

(b) Explain the correspondence between the characters of a torus T = (C∗)n, as
defined in Lecture 7, and the irreducible representations of T .

2. Derive the character table of the symmetric group S4. Hint: 12+12+22+32+32 = 24.
What is the geometric meaning of the 3-dimensional irreducible representations?

3. Let f : V1 → V2 be a morphism between two representations of a group G.

• Prove that the kernel, image and cokernel of f are also representations.

• Prove that morphisms of two representations are closed under taking scalar mul-
tiples and sums, i.e. they form a vector space.

4. Derive the character table of the symmetric group S5. Hint: 12+12+42+42+52+52+62

= 120. Can you write matrices ρ(g) for the 6-dimensional irreducible representation?

9



5. Let V1 and V2 be two representations of a group G.

(a) Prove that linear morphisms Hom(V1, V2) have also a structure of a representation.
How can you characterize morphisms of representations inside Hom(V1, V2)?

(b) In terms of multiplicities of isotypic components of V1 and V2, what is the dimen-
sion of the space of morphisms among these two representations?

(c) Conclude that the multiplicity of an irreducible representation W in V1 equals the
dimension of morphisms of representations W → V1 (or equivalently of V1 → W ).

6. Let V be a representation of GL(n). Its character χV is a Laurent polynomial in
t1, . . . , tn. Argue that the vector spaces S2(V ) and

∧2 V are also representations of
GL(V ), and compute the characters χS2(V ) and χ∧2 V in terms of χV .

7. Describe the 2-dimensional irreducible representation from Example 11 explicitly, by
assigning a 2× 2 matrix to each of the six permutations of the set {1, 2, 3}.

8. Consider the representation ρ of GL(3) action on
∧3K6? What is the highest weight?

What is the associated Young diagram? Find the entries of the 20× 20-matrix ρ(g).

9. Is every 2× 2× 2 tensor the sum of a symmetric and a skew-symmetric tensor?

10. If U = Kn, what is the dimension of S (U)? Give a formula in terms of n.

11. What is the dimensions of the vector space S3(S3(K3))? Find a weight basis. Write the
character of this GL(3) representation. Can you decompose it into Schur polynomials?

12. What are the orbits of the adjoint representation? Are they closed? What is the
dimension of a general orbit? What is the vanishing ideal such an orbit, e.g. for n = 3?
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