
Tensors

Notes by Mateusz Michalek and Bernd Sturmfels
for the lecture on June 5, 2018, in the

IMPRS Ringvorlesung Introduction to Nonlinear Algebra

This lecture is divided into two parts. The first part, presented by Bernd Sturmfels, gives an
introduction to the spectral theory of tensors. This will (definitely) be delivered in German.
The second part, presented by Mateusz Michalek, introduces the tensor notions of rank,
border rank, real rank and real border rank. This will (definitely) not be delivered in Polish.

1 Eigenvectors of Tensors

Let us begin by reviewing some basics of linear algebra, beginning with the study of sym-
metric matrices. Symmetric n×n matrices are important in statistics where they encode the
covariance structure of a joint distribution of n random variables. In an algebraic setting,
symmetric matrices are important because they uniquely represent quadratic forms.

For instance, consider the following quadratic form in three variables x, y and z:

Q = 2x2 + 7y2 + 23z2 + 6xy + 10xz + 22yz. (1)

This quadratic form is represented uniquely by a symmetric 3× 3-matrix, as follows:

Q =
(
x y z

)2 3 5
3 7 11
5 11 23

xy
z

 . (2)

The gradient of the quadratic form Q is a vector of linear forms. It defines a linear map from
R3 to itself. Up to multiplication by 2, this is the map one associates with a square matrix:

∇Q =

∂Q/∂x∂Q/∂y
∂Q/∂z

 = 2 ·

2 3 5
3 7 11
5 11 23

xy
z

 .

We call v ∈ Rn an eigenvector of Q if v is mapped to a scalar multiple of v by the gradient:

(∇Q)(v) = λ · v for some λ ∈ R.

Geometers often replace Rn with the projective space Pn−1. Two nonzero vectors are iden-
tified if they are parallel. From Q we obtain an induced self-map on projective space:

∇Q : Pn−1 99K Pn−1. (3)

We conclude our discussion with the following remark concerning the rational map in (3).
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Remark 1. The eigenvectors of Q are the fixed points v in Pn−1 of its gradient map ∇Q.

A real n× n-matrix usually has n independent eigenvectors, over the complex numbers.
When the matrix is symmetric, its eigenvectors have real coordinates and are orthogonal.
For a rectangular matrix, one considers pairs of singular vectors, one on the left and one on
the right. The number of these pairs is equal to the smaller of the two matrix dimensions.

Eigenvectors and singular vectors are familiar from linear algebra, where they are taught
in concert with eigenvalues and singular values. Linear algebra is the foundation of applied
mathematics and scientific computing. Specifically, the concept of eigenvectors and numerical
algorithms for computing them, became a key technology during the 20th century.

Singular vectors are associated to rectangular matrices. We review their definition
through the lens of Remark 1. Each rectangular matrix represents a bilinear form, e.g.

B = 2ux+ 3uy + 5uz + 3vx+ 7vy + 11vz =
(
u v

)(2 3 5
3 7 11

)xy
z

 (4)

The gradient of the bilinear form defines an endomorphism of the direct sum of the row
space and the column space. This fuses left multiplication and right multiplication by our
matrix into a single map. In the example, the gradient is the following vector of linear forms

∇B =

((∂B
∂u

,
∂B

∂v

)
,
(∂B
∂x

,
∂B

∂y
,
∂B

∂z

))
. (5)

The associated linear map ∇B : R3 ⊕ R2 → R2 ⊕ R3 takes
(
(x, y, z), (u, v)

)
to this vector.

More generally, let B be an m× n-matrix over R. We are interested in the equations

Bx = λy und Bty = λx, (6)

where λ is a scalar, x is a vector in Rn, and y is a vector in Rm. These are our unknowns.
Given a solution to (6), x is an eigenvector of BtB, y is an eigenvector of BBt, and λ2 is
a common eigenvalue of these two symmetric matrices. Its square root λ ≥ 0 is a singular
value of B. Associated to λ are the right singular vector x and the left singular vector y. In
analogy to Remark 1, the process of solving (6) has the following dynamical interpretation:

Remark 2. The singular vector pairs (x,y) of a rectangular matrix are the fixed points of
the gradient map, taken on a product of projective spaces, of the associated bilinear form:

∇B : Pn−1 × Pm−1 −→ Pm−1 × Pn−1(
x,y

)
7→
(( ∂B

∂x1
, . . . ,

∂B

∂xn

)
,
(∂B
∂y1

, . . .
∂B

∂ym

))
.

We summarize our review of some linear algebra concepts in the following bullet points:

• Symmetric matrices Q are important because they represent quadratic forms.

• Rectangular matrices B are important because they represent bilinear forms.
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• Their gradients define the linear maps one usually identifies with Q and B.

• Fixed points of these maps are called eigenvectors and singular vectors.

• These fixed points are computed via orthogonal decompositions of our matrices:

Q = O · diag ·Ot and B = O1 · diag ·O2.

These are known as the spectral decomposition and the singular value decomposition.

In the age of Big Data, the role of matrices is increasingly played by tensors, that is,
multidimensional arrays of numbers. Principal component analysis tells us that eigenvectors
of covariance matrices Q = BBt point to directions in which the data B is most spread. One
hopes to identify similar features in higher-dimensional data. This has encouraged engineers
and scientists to spice up their linear algebra tool box with a pinch of algebraic geometry.

The spectral theory of tensors is the theme of the following discussion. This theory was
pioneered around 2005 by Lek-Heng Lim and Liqun Qi. Our aim is to generalize familiar no-
tions, such as rank, eigenvectors and singular vectors, from matrices to tensors. Specifically,
we address the following questions. The answers are provided in Examples 7 and 12.

Question 3. How many eigenvectors does a 3× 3× 3-tensor have?

Question 4. How many triples of singular vectors does a 3×3×3-tensor have?

A tensor is a d-dimensional array T = (ti1i2···id). Tensors of format n1×n2× · · ·×nd form
a space of dimension n1n2 · · ·nd. For d = 1, 2 we get vectors and matrices. A tensor has
rank 1 if it is the outer product of d vectors, written T = u⊗v⊗· · ·⊗w, or, in coordinates,

ti1i2···id = ui1vi2 · · ·wid .

The problem of tensor decomposition concerns expressing T as a sum of rank 1 tensors, using
as few summands as possible. That minimal number of summands needed is the rank of T .

An n×n× · · ·×n-tensor T = (ti1i2···id) is symmetric if it is unchanged under permuting
the indices. The space Symd(Rn) of such symmetric tensors has dimension

(
n+d−1

d

)
. It is

identified with the space of homogeneous polynomials of degree d in n variables, written as

T =
n∑

i1,...,id=1

ti1i2···id · xi1xi2 · · ·xid .

Example 5. A tensor T of format 3×3×3 has 27 entries. If T is symmetric then it has ten
distinct entries, one for each coefficient of the associated cubic polynomial in three variables.
This polynomial defines a cubic curve in the projective plane P2, as indicated in Figure 1.

Symmetric tensor decomposition writes a polynomial as a sum of powers of linear forms:

T =
r∑
j=1

λjv
⊗d
j =

r∑
j=1

λj(v1jx1 + v2jx2 + · · ·+ vnjxn)d. (7)
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Figure 1: A symmetric 3×3×3 tensor represents a cubic curve in the projective plane.

The gradient of T defines a map ∇T : Rn → Rn. A vector v ∈ Rn is an eigenvector of T if

(∇T )(v) = λ · v for some λ ∈ R.

Eigenvectors of tensors arise naturally in optimization. Consider the problem of maximiz-
ing a polynomial function T over the unit sphere in Rn. If λ denotes a Lagrange multiplier,
then one sees that the eigenvectors of T are the critical points of this optimization problem.

Algebraic geometers find it convenient to replace the unit sphere in Rn by the projective
space Pn−1. The gradient map is then a rational map from this projective space to itself:

∇T : Pn−1 99K Pn−1.

The eigenvectors of T are fixed points (λ 6= 0) and base points (λ = 0) of ∇T . Thus the
spectral theory of tensors is closely related to the study of dynamical systems on Pn−1.

In the matrix case (d = 2), the linear map ∇T is the gradient of the quadratic form

T =
n∑
i=1

n∑
j=1

tijxixj.

By the Spectral Theorem, T has a real decomposition (7) with d = 2. Here r is the rank, the
λj are the eigenvalues of T , and the eigenvectors vj = (v1j, v2j, . . . , vnj) are orthonormal. We
can compute this by power iteration, namely, by applying ∇T until a fixed point is reached.

For d ≥ 3, one can still use the power iteration to compute eigenvectors of T . However,
the eigenvectors are usually not the vectors vi in the low rank decomposition (7). One
exception arises when the symmetric tensor is odeco, or orthogonally decomposable. This
means that T has the form (7), where r = n and {v1,v2, . . . ,vr} is an orthogonal basis of
Rn. These basis vectors are the attractors of the dynamical system ∇T , provided λj > 0.

Theorem 6. The number of complex eigenvectors of a general tensor T ∈ Symd(Rn) is

(d− 1)n − 1

d− 2
=

n−1∑
i=0

(d− 1)i.
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Example 7. Let n = d = 3. The Fermat cubic T = x3 + y3 + z3 is an odeco tensor. Its
gradient map squares each coordinate: ∇T : P2 99K P2, (x : y : z) 7→ (x2 : y2 : z2). This
dynamical system has seven fixed points, of which only the first three are attractors:

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 0), (1 : 0 : 1), (0 : 1 : 1), (1 : 1 : 1).

We conclude that T has 7 eigenvectors, and the same holds for 3× 3× 3-tensors in general.

07/11/15 09:59300px-Complete-quads.svg.png 300×127 pixels
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Figure 2: The polynomial T = xyz(x+ y + z) represents a symmetric 3×3×3×3 tensor.

It is known that all eigenvectors can be real for suitable tensors. This was proved in 2017
by Khazhgali Khozhasov, using the theory of harmonic polynomials. For n = 3, this can be
seen by the following simple argument, found earlier by Abo, Seigal and Sturmfels. Let T
be a product of linear forms in three unknowns, defining d lines in P2, then the

(
d
2

)
vertices

of the line arrangement are base points of ∇T , and each of the
(
d
2

)
+ 1 regions contain one

fixed point. This accounts for all 1 + (d−1) + (d−1)2 eigenvectors, which are therefore real.

Example 8. Let d = 4 and fix the product of linear forms T = xyz(x+ y + z). Its curve in
P2 is an arrangement of four lines, as shown in Figure 2. This quartic represents a symmetric
3×3×3×3 tensor. All 13 = 6 + 7 eigenvectors of this tensor are real. The 6 vertices of the
arrangement are the base points of ∇T . Each of the 7 regions contains one fixed point.

For special tensors T , two of the eigenvectors in Theorem 6 may coincide. This corre-
sponds to vanishing of the eigendiscriminant, which is a big polynomial in the ti1i2···id . In the
matrix case (d = 2), it is the discriminant of the characteristic polynomial of an n×n-matrix.
For 3×3×3 tensors, the eigendiscriminant has degree 24. In general we have the following:

Theorem 9 (Abo-Seigal-Sturmfels). The eigendiscriminant is an irreducible homogeneous
polynomial of degree n(n− 1)(d− 1)n−1 in the coefficients ti1i2···id of the tensor T .

Singular value decomposition is a central notion in linear algebra and its applications.
Consider a rectangular matrix T = (tij) of format n1×n2. The singular values σ of T satisfy

Tu = σv and T tv = σu,
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where u and v are the corresponding singular vectors. Just like with eigenvectors, we can
associate to this a dynamical system. Namely, we interpret the matrix as a bilinear form

T =

n1∑
i=1

n2∑
j=1

tijxiyj.

The gradient of T defines a rational self-map of a product of two projective spaces:

∇T : Pn1−1 × Pn2−1 99K Pn1−1 × Pn2−1

(u , v) 7→ (T tv , Tu )

The fixed points of this map are the pairs of singular vectors of T .
Consider now an arbitrary d-dimensional tensor T in Rn1×n2×···×nd . It corresponds to a

multilinear form. The singular vector tuples of T are the fixed points of the gradient map

∇T : Pn1−1× · · · × Pnd−1 99K Pn1−1× · · · × Pnd−1.

Example 10. The trilinear form T = x1y1z1 + x2y2z2 gives a 2×2×2 tensor. Its map ∇T is

P1 × P1 × P1 → P1 × P1 × P1,(
(x1 : x2), (y1 : y2), (z1 : z2)

)
7→

(
(y1z1 : y2z2), (x1z1 : x2z2), (x1y1 : x2y2)

)
.

This map has no base points, but it has six fixed points, namely
(
(1:0), (1:0), (1:0)

)
,(

(0:1), (0:1), (0:1)
)
,
(
(1:1), (1:1), (1:1)

)
,
(
(1:1), (1:−1), (1:−1)

)
,
(
(1:−1), (1:1), (1:−1)

)
, and(

(1:−1), (1:−1), (1:1)
)
. These are the triples of singular vectors of the given 2×2×2 tensor.

Here is an explicit formula for the expected number of singular vector tuples.

Theorem 11 (Friedland and Ottaviani). For a general n1×n2× · · ·×nd-tensor T , the num-
ber of singular vector tuples (over C) is the coefficient of zn1−1

1 · · · znd−1
d in the polynomial

d∏
i=1

(ẑi)
ni − zni

i

ẑi − zi
where ẑi = z1 + · · ·+ zi−1 + zi+1 + · · ·+ zd.

We conclude our excursion into the spectral theory of tensors by answering Question 2.

Example 12. Let d = 3 and n1=n2=n3=3. The generating function in Theorem 11 equals

(ẑ1
2+ẑ1z1+z

2
1)(ẑ2

2+ẑ2z2+z
2
2)(ẑ3

2+ẑ3z3+z
2
3) = · · · + 37z21z

2
2z

2
3 + · · ·

This means that a general 3×3×3-tensor has exactly 37 triples of singular vectors. Likewise,
a general 3×3×3×3-tensor, as illustrated in Figure 2, has 997 quadruples of singular vectors.
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2 The Many Ranks of a Tensor

There are several ways to define the rank of a matrix M ∈ Ka ×Kb. It is:

1. the smallest integer r such that all (r + 1)× (r + 1) minors vanish,

2. the dimension of the image of the induced linear map Ka → Kb,

3. the dimension of the image of the induced linear map Kb → Ka,

4. the smallest integer r, such that there exist vectors v1, . . . , vr ∈ Ka, w1, . . . , wr ∈ Kb

for which:

Mij =
r∑

k=1

(vk)i(wk)j.

The first point implies that matrices of rank at most r form a variety. The last point implies
that a matrix of rank r is a sum of r matrices of rank one. This is also true for symmetric
matrices: a symmetric matrix of rank r is a sum of r symmetric rank one matrices. Another
fact is that a real matrix of rank r has also rank r, when regarded as a complex matrix. This
seems obvious, but a priori, it is not clear why there is no shorter complex decomposition
into rank one matrices. Our aim is to find analogous statements for arbitrary tensors.

From the first part of the lecture we recall the definition of rank one tensor: it is the
outer product of d vectors, written T = u⊗ v ⊗ · · · ⊗w, i.e.

ti1i2···id = ui1vi2 · · ·wid .

Tensors of rank (at most) one form an algebraic variety. It is the affine cone over the
Segre product Pn1 × · · · ×Pnd . In fact, from Lecture 2 and Lecture 7 we know the equations
of this variety! These are binomial quadrics that can be identified with 2 × 2 minors. In
other words, a tensor T ∈ V1 ⊗ · · · ⊗ Vd ' Kn1×···×nd has rank one if and only if all the
induced linear maps/matrices, known as flattenings:

K
∏

i∈I di =
⊗
i∈I

V ∗i →
⊗
i∈[n]\I

Vi = K
∏

i∈[n]\I di

have rank one, for any subset I ⊂ [n].

Example 13. A tensor T = (tijk) ∈ V1 ⊗ V2 ⊗ V3 induces a linear map:

V ∗1 → V2 ⊗ V3,

given by:

e∗i → (tijk)j,k =
∑
j,k

tijkfj ⊗ gk,

where (ei), (fj), (gk) are respectively bases of V1, V2, V3.
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The conclusion is that rank one tensors behave in a very nice way. What is surprising,
arbitrary tensors exhibit very strange properties. Recall that the rank of a tensor T is the
minimal r such that T is the sum of rank one tensors.

Definition 14. The following tensor is known in quantum physics as a W -state:

W = e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0.

It plays an important role in quantum information theory. As we will see below it may be
defined as a tangent vector to the Segre product P1 × P1 × P1.

Clearly W has rank at most three. In fact, rkW = 3, as the reader is asked to prove in
Exercise 9. However, there exist rank two tensors arbitrary near W ! For any ε 6= 0 we have:

1

ε
((e0 + εe1)⊗ (e0 + εe1)⊗ (e0 + εe1)− e0 ⊗ e0 ⊗ e0) =

W + ε(e1 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e1) + ε2e1 ⊗ e1 ⊗ e1.

In particular,

lim
ε→0

1

ε
((e0 + εe1)⊗ (e0 + εe1)⊗ (e0 + εe1)− e0 ⊗ e0 ⊗ e0) = W,

i.e. rkW = 3, but W can be approximated with arbitrary precision by rank two tensors.

Definition 15. The border rank brT of the tensor T is the smallest r such that there exist
tensors of rank r in any neighbourhood of T .

We note that the notion of border rank requires a topology on the space of tensors. The
geometric locus of tensors of border rank at most r is the closure of the locus of tensors of
rank at most r. Over complex numbers, by Chevalley’s theorem from Lecture 2, it does not
matter if we take Zariski or Euclidean topology: the closures coincide. However, over the
real numbers the situation is different.

Example 16. Consider R2 ⊗ R2 ⊗ R2. In Exercise 10 the reader is asked to prove that the
Zariski closure of tensors of rank two is the whole space. However, the Euclidean closure
of the locus of rank two tensors is a proper semialgebraic subset. Passing to the projective
setting X = P1

R⊗P1
R⊗P1

R ⊂ P7
R, the union of the tangent spaces to X, known as the tangential

variety, is a hypersurface in P7
R. The sign of the defining equation of the tangential variety

determines if the tensor has (real) rank two or three.
Explicitly, given a tensor T we obtain the associated map:

R2 → R2 ⊗ R2.

For a general tensor T , the image of this map is a two dimensional linear space S of 2× 2
matrices. If T has rank two, i.e. T = u1 ⊗ v1 ⊗ w1 + u2 ⊗ v2 ⊗ w2 then S must contain two
rank one matrices: v1 ⊗w1 and v2 ⊗w2. Hence, we ask if S intersects the locus of rank one
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matrices in (at least) two points. In projective setting, rank one matrices are defined by the
quadric, i.e. the determinant, and coincide with the Segre surface that is the image:

P1 × P1 → P3.

The line P(S) must intersect this surface over the field of complex numbers, however, does
not have to over the field of real numbers.

Consider the tensor:

T := e1 ⊗ f1 ⊗ g1 − e1 ⊗ f2 ⊗ g2 − e2 ⊗ f1 ⊗ g2 − e2 ⊗ f2 ⊗ g1.

The space S is: (
a b
b −a

)
,

and clearly does not contain real rank one matrices. The argument remains correct in a
(Euclidean) neighbourhood of T . On the other hand we obtain two complex rank one matrices,
which give rise to the decomposition:

T =
1

2
((e1 + ie2)

⊗3 + (e1 − ie2)⊗3).

To conclude, contrary to the case of matrices or rank one tensors:

• tensors of rank at most r may not form a closed set,

• a real tensor may have different (smaller) rank, when regarded as a complex tensor,

• real tensors of bounded real border rank form semialgebraic sets.

We have described rank one tensors as the Segre product of projective spaces. It is natural
to ask for a geometric description of tensors of rank at most r.

Definition 17 (Secant Variety). Let X be a projective (resp. affine) algebraic variety. For a
set S let 〈S〉 be the smallest projective (resp. affine) subspace containing S. The k-th secant
variety of X is the closure of all k-secant planes:

σk(X) :=
⋃

p1,...,pk∈X

〈p1, . . . , pk〉.

In particular,
X = σ1(X) ⊂ σ2(X) ⊂ · · · ⊂ σdim〈X〉(X) = 〈X〉.

In fact, the containments must be strict, until σr = 〈X〉. If X is the Segre product, then⋃
p1,...,pk∈X〈p1, . . . , pk〉 is the locus of tensors of rank at most r. Hence, σr(X) coincides with

the locus of tensors of border rank at most r. It is a major open problem to describe the
ideal of σr(Pa1 × · · · × Pan), as this would provide an algebraic test for a tensor to be of
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border rank r. Let us describe the simplest equations. A tensor T ∈ V1⊗ . . . Vn and a subset
I ⊂ [n], induce the flattening map: ⊗

i∈I

V ∗i →
⊗
i∈[n]\I

Vi.

The rank of the flattening map is at most rkT . It follows that r+ 1 minors of the flattening
matrix provide (some) equations of σr(P(V1) × · · · × P(Vn)). These are of degree r + 1 and
in fact there are no polynomials in this ideal of strictly smaller degree.

An analogous notion of symmetric rank or Waring rank can be defined for symmetric
tensors. A symmetric tensor T has symmetric/Waring rank one if the following equivalent
conditions hold:

1. rkT = 1,

2. T = v ⊗ · · · ⊗ v for some vector v,

3. T represented as a polynomial is a power of a linear form.

The symmetric/Waring rank of a symmetric tensor T is the smallest r such that T is a linear
combination of r rank one symmetric tensors.

Remark 18. We do not write that a tensor is a sum of symmetric tensors, as over real
numbers, this may be not possible. For example, when T is represented by an even degree
polynomial, then sum of even powers of real linear forms always is a polynomial that is
nonnegative.

We also have a concept of symmetric/Waring border rank of a symmetric tensor T ; it
is the smallest integer r such that T can be approximated by symmetric tensors of sym-
metric/Waring rank r. Our previous discussion shows that W -state has symmetric rank
three and symmetric border rank two. Clearly, for any symmetric tensor its symmetric rank
(resp. symmetric border rank) is at least equal to its rank (resp. border rank).

Conjecture 19 (Comon’s Conjecture). For any symmetric tensor its symmetric rank equals
its symmetric border rank.

The conjecture was confirmed in many specific cases, however recently a counterexample
was presented by Yaroslav Shitov [2]. Unfortunately, the example is far to complicated to
be presented during the lecture. The border rank analogue of Comon’s conjecture remains
open.

Just as rank one tensors correspond to Segre products Pa1×· · ·×Pan , symmetric rank one

tensors correspond to Veronese reembeddings vd(Pn) ⊂ P(d+n
n )−1. Here, we interpret Pn as a

space of linear forms in n + 1 variables and P(d+n
n )−1 as the space of degree d homogeneous

polynomials. The map vd sends a linear form l to its d-th power ld. This is the same Veronese
map as discussed in Lecture 7, up to scaling the coordinates. Further, the locus of symmetric
tensors of Waring rank at most r is precisely σr(vd(Pn)).
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Remark 20. For each integer k there exists a minimal number r, such that for any n there
exist positive integers a1, . . . , ar such that

n =
r∑
i=1

aki .

Waring’s original problem is, to determine r as a function of k.
The problem for polynomials that we are facing is to represent a homogeneous polynomial

of degree d as a linear combination of powers of linear forms. Thus, by analogy, the min-
imal number of linear forms that is needed is called the Waring rank. By seminal work of
Alexander and Hirschowitz we know Waring ranks of general polynomials (of any degree in
any number of variables). In other words we know the maximal border rank that a homoge-
neous polynomial may have. For usual (nonsymmetric) tensors, the problem of determining
maximal border rank (or rank) in general remains open.

Although, it is easy to prove that general tensors have high rank and border rank it is
extremely hard to find explicit examples. Here, we do not want to dive into precise definition
of ’explicit’, let us just say one seeks a tensor with not too big integer entries. In particular,
it is not know how to provide examples of tensors T ∈ Cn ⊗ Cn ⊗ Cn of either:

• rank greater than 3n,

• border rank greater than 2n.

Still, by Exercise 12, a general tensor in this space has border rank quadratic in n.

Exercises

1. Fix the quadratic form Q in (1). Compute the maxima and minima of Q on the unit
2-sphere. Find all fixed points of the map ∇Q : P2 → P2. How are they related?

2. Compute all fixed points of the map ∇B : P2 × P1 → P2 × P1 given by B in (4).

3. Consider the 3 × 3 × 2 × 2 tensor defined by the multilinear form T = x1y1z1w1 +
x2y2z2w2 ? Determine all quadruples of singular vectors of T .

4. For d = 2, 3, 4, pick random symmetric tensors of formats d×d×d and d×d×d×d.
Compute all eigenvectors of your tensors.

5. Prove Theorem 6.

6. Write down an explicit 3×3×3×3 tensor with precisely 13 real eigenvectors.

7. What is the number of singular vector tuples of your tensors in Problem 4?
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8. Compute the eigendiscriminants for tensors of format 2×2 and 2×2×2 and 2×2×2×2.
Write them explicitly as homogeneous polynomials in these entries of an unknown
tensor.

9. By showing that a particular system of polynomial equations has no solutions, prove
that rkW = 3.

10. Prove that the Zariski closure of tensors of rank two in R2⊗R2⊗R2 is the whole space
(e.g. by computing the dimension of the locus of such tensors).

11. Find the equation of the tangential variety to P1 ⊗ P1 ⊗ P1 ⊂ P7.

12. Prove that in Cn ⊗ Cn ⊗ Cn:

(a) there exists a tensor of border rank at least 1
3
n2,

(b) every tensor has rank at most n2.
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