
Nullstellensätze

Notes by Bernd Sturmfels
for the lecture on May 15, 2018, in the

IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Hilbert’s Nullstellensatz offers a characterization of the set of all polynomials that vanish on
a given variety. This classical result from 1890 works over any algebraically closed field K,
such as the complex numbers K = C. The first half of this lecture concerns this theorem
and its ramifications. In the second half we discuss the analogous statement over an ordered
field, such as the real numbers K = R. Here we focus on the real Nullstellensatz and the
Positivstellensatz, which concerns systems of polynomial equations and inequalities. It gen-
eralizes Linear Programming Duality and plays an important role in Convex Optimization.

Let K be an algebraically closed field and K[x] = K[x1, . . . , xn] the polynomial ring.
For an ideal I ⊂ K[x] we denote the associated variety in Kn by V(I). We begin with the
following weak version of the Nullstellensatz. This appears as Theorem 1 in [1, §4.1].

Theorem 1. If I is a proper ideal in K[x] then its variety V(I) in Kn is non-empty.

Proof. We use induction on n, following [1, §4.1]. For n = 1 our statement holds because
every non-constant polynomial in one variable has a zero in the algebraically closed field K.

Let now n ≥ 2. For a ∈ K, we write Ixn=a for the ideal in K[x1, . . . , xn−1] that is obtained
by setting xn = a in each element of I. One easily checks that this is indeed an ideal. We
claim that there exists a scalar a ∈ K such that 1 6∈ Ixn=a. By induction, there is a point
(a1, . . . , an−1) in V(Ixn=a). This implies that (a1, . . . , an−1, a) is a point in the variety V(I).

To prove the claim, we distinguish two cases. First suppose I∩K[xn] 6= {0}. Since 1 6∈ I,
the principal ideal I ∩K[xn] is generated by a nonconstant polynomial

f(xn) =
r∏
i=1

(xn − bi)mi .

Suppose that 1 ∈ Ixn=bi for i = 1, 2, . . . , r. If this is not the case then we are done. Hence
there exist B1, . . . , Br ∈ I such that Bi(x1, . . . , xn−1, bi) = 1 for all i. Note that Bi is
congruent to 1 modulo 〈xi−bi〉 in K[x]. This implies that the product

∏r
i=1B

mi
i is congruent

to 1 modulo 〈f〉. Since f ∈ I, we conclude that 1 ∈ I.
Next suppose I ∩ K[xn] = {0}. Let {g1, . . . , gt} be a Gröbner basis for I with respect

to the lexicographic order with x1 > · · · > xn. Write gi = ci(xn)xαi+ lower order terms,
where xαi is a monomial in x1, . . . , xn−1. Since K is infinite, we can choose a ∈ K such that
ci(a) 6= 0 for all i. The polynomials gi = gi(x1, . . . , xn−1, a) form a Gröbner basis for Ixn=a,
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for the lexicographic monomial order, with leading monomials xαi for i = 1, . . . , r. None of
these monomials is 1, since I∩K[xn] = {0}. This implies that 1 is not in the ideal Ixn=a.

Theorem 1 gives a certificate for the non-existence of solutions to polynomial equations.

Corollary 2. A collection of polynomials f1, . . . , fr ∈ K[x] either has a common zero in Kn

or there exists a certificate g1f1+· · ·+grfr = 1 with polynomial multipliers g1, . . . , gr ∈ K[x].

Proof. Let I = 〈f1, . . . , fr〉. The either V(I) 6= ∅ or V(I) = ∅. In the latter case, 1 ∈ I.

Example 3. Let n = 2 and consider the following three polynomials

f1 = (x+ y − 1)(x+ y − 2), f2 = (x− y + 3)(x+ 2y − 5), f3 = (2x− y)(3x+ y − 4).

These do not have a common zero. This is proved by the Nullstellensatz certificate

g1f1 + g2f2 + g3f3 = 1, (1)

where g1 = 895
756
x2 − 6263

2160
x− 2617

2520
y + 4327

1008
, g2 = 5191

3780
x2 + 358

945
xy − 6907

3024
x− 2123

15120
y + 3823

7560
,

and g3 = −179
420
x2 − 716

945
xy + 1453

1080
x− 716

945
y + 13771

7560
.

The reader is invited to verify the identity (1), or to find more friendly multipliers g1, g2, g3.

There are two possible methods for computing the multipliers (g1, . . . , gr) in Corollary 2.
The first is to use the Extended Buchberger Algorithm. This is analogous to the Extended
Euclidean Algorithm for integers or polynomials in one variable. For instance, given a
collection of relatively prime integers, this writes 1 as a Z-linear combination of these integers.

In the Extended Buchberger Algorithm one keeps track of the polynomial multipliers that
are used to generate new S-polynomials from current basis polynomials. In the end, each
element in the final Gröbner basis is written explicitly as a polynomial linear combination
of the input polynomials. If V(I) = ∅ then that final Gröbner basis is the singleton {1}.

The second method for computing Nullestellensatz certificates is to use degree bounds
plus linear algebra. Let d be any integer that exceeds the degree of each fi. Let gi be a
polynomial of degree d−deg(fi) with coefficients that are unknowns, for i = 1, 2, . . . , r. The
desired identity

∑r
i=1 gifi = 1 translates into a system of linear equations in all of these

unknowns. We solve this system. If a solution is found then this gives a certificate. If not
then there is no certificate in degree d, and we try a higher degree.

Recall that the radical of an ideal I in K[x] is the following (possibly larger) ideal
√
I =

{
f ∈ K[x] : fm ∈ I for some m ∈ N

}
.

This is a radical ideal, hence it is an intersection of prime ideals.

Example 4. Let n = 4 and consider the ideal I = 〈x1x3, x1x4 + x2x3, x2x4 〉. This is not
radical: the monomial f = x1x4 is not in I but f 2 is in I. The radical of I equals

√
I = 〈x1x3, x1x4, x2x3, x2x4 〉 = 〈x1, x2〉 ∩ 〈x3, x4〉.

How many associated primes does the ideal I have? Do Gröbner bases of I give any hints?
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Hilbert’s Nullstellensatz says that
√
I comprises all polynomials that vanish on V(I).

Theorem 5 (Hilbert’s Nullstellensatz). For any ideal in the polynomial ring K[x], we have

I
(
V(I)

)
=
√
I. (2)

Proof. The radical
√
I is contained in I

(
V(I)

)
, because fm(a) = 0 implies f(a = 0 for all a.

We must show the left hand side is a subset of the right hand side in (2). Let I = 〈f1, . . . , fr〉
and suppose that f is a polynomial that vanishes on V(I). Let y be a new variable and
consider the ideal J = 〈f1, . . . , fr, yf − 1〉 in polynomial ring K[x, y] = K[x1, . . . , xn, y].
The variety V(J) is empty because f = 0 on every zero of f1, . . . , fr and f 6= 0 on every zero
of yf − 1. By Theorem 1, there exist multipliers g1, . . . , gr, h in K[x, y] such that

r∑
i=1

gi(x, y) · fi(x) + h(x, y) · (yf(x)− 1) = 1.

We now substitute y = 1/f(x) into this identity. This yields an identify of rational functions:

r∑
i=1

gi
(
x,

1

f(x)

)
· fi(x) = 1.

The common denominator equals f(x)m for some m ∈ N. Multiplying both sides with this
common denominator, we obtain a polynomial identity of the form

r∑
i=1

pi(x) · fi(x) = f(x)m.

This shows that fm lies in I, and hence f lies in
√
I.

Example 6. Which polynomial functions vanish on all nilpotent 3 × 3-matrices? We set
n = 9 and take I to be ideal generated by the entries of X3, where X = (xij) is a 3×3-matrix
with variables as entries. These are nine homogeneous cubic polynomials in nine unknowns
xij. The radical of I is generated by the coefficients of the characteristic polynomial of X:

√
I =

〈
x11 + x22 + x33 , x11x22 + x11x33 − x12x21 − x13x31 + x22x33 − x23x32 , det(X)

〉
This reflects the familiar fact that a square matrix is nilpotent if and only if it has no
eigenvalues other than zero. Theorem 5 implies that every polynomial that vanishes on
nilpotent 3× 3-matrices is a polynomial linear combination of the three generators above.

The Nullstellensatz implies a one-to-one correspondence between ideals and radical ideals.

Corollary 7. The map V 7→ I(V ) defines a bijection between varieties in Kn and radical
ideals in K[x]. The inverse map that takes radical ideals to varieties is given by I 7→ V(I).

Proof. The Nullstellensatz tells us that V = V(I(V )) and I = I(V(I)). This shows that
both maps are one-to-one and onto, and that they are the inverses of each other.
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Corollary 8. The map V 7→ I(V ) defines a bijection between irreducible varieties in Kn

and prime ideals in K[x]. As before, the inverse map is given by I 7→ V(I).

Proof. A variety V is irreducible if and only if its associated radical ideal I(V ) is prime.

At this point, we wish to note that none of the results above are valid when K = R is
the field of real numbers. To see this, let n = 2 and consider varieties in the real plane R2.
For Theorem 1, we take I = 〈x2 + y2 + 1〉. This is proper ideal in R[x, y] but VR(I) = ∅. For
Theorem 5, we take I = 〈x2 + y2〉. This is a radical ideal, and we find that

I
(
VR(I)

)
= 〈x, y〉 strictly contains

√
I = I.

This raises the following two questions concerning ideals I in R[x] and their varieties in Rn:

• Is there an algebraic certificate for ensuring that the real variety VR(I) is empty?

• Is there an algebraic recipe for computing I
(
VR(I)

)
from generators of I ?

The answer to these questions is given by the real Nullstellensatz. Our point of departure
for this result is the observation that any polynomial in R[x] that is a sum of squares must be
nonnegative, i.e. the inequality f(u) ≥ 0 holds for all u ∈ Rn. A natural question is whether
the converse holds: can every nonnegative polynomial be written as a sum of squares?

Hilbert showed in 1893 that the answer is negative if one asks for squares of polynomials.
However, the answer is positive if one allows squares of rational functions. This was the 17th
problem in Hilbert’s famous list from 1900. It was solved by Emil Artin in 1927.

Theorem 9 (Artin’s Theorem). Let f be a polynomial in R[x] that is nonnegative on Rn.
Then there exist polynomials p1, p2, . . . , pr, q1, q2, . . . , qr ∈ R[x] such that(

p1
q1

)2

+

(
p2
q2

)2

+ · · · +

(
pr
qr

)2

.

Example 10 (Motzkin Polynomial). Let n = 2 and consider the following polynomial

M(x, y) = x4y2 + x2y4 + 1− 3x2y2 =
[x2 + y2 + 1 ] · x2y2(x2 + y2 − 2)2 + (x2 − y2)2

(x2 + y2)2
.

Distributing the three terms of the factor [x2+y2+1], we see that the right hand side is a sum
of four squares of rational functions. This shows that the polynomial M(x, y) is nonnegative.
However, M(x, y) is not a sum of squares in R[x, y]. If it were, then we could write

M(x, y) =
∑
i

(αix
2y + βixy

2 + γixy + δi)
2,

for some αi, βi, γi, δi ∈ R. The coefficient of x2y2 in the right hand side equals
∑

i γ
2
i ≥ 0.
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We shall view Artin’s Theorem 9 as a special case of the following more general statement,
which is the real number analogue to the weak form of the Nullstellensatz, seen in Theorem 1.

Theorem 11. Let I be an ideal in R[x] whose real variety VR(I) is empty. Then −1 is a
sum of squares of polynomials modulo I, i.e. there exist p1, p2, . . . , pr ∈ R[x] such that

1 + p21 + p22 + · · ·+ p2r ∈ I. (3)

For the proof of Theorem 11 we refer to the book of Murray Marshall [2, §2.3].

Derivation of Theorem 9 from Theorem 11. Let y be a new variable and consider the g =
f(x)y2 + 1 in R[x, y]. Since f is nonnegative, the real variety VR(g) is empty in Rn+1.
Theorem 11 says that there exists a polynomial identity of the form

1 + p1(x, y)2 + p2(x, y)2 + · · ·+ pr(x, y)2 + h(x, y)g(x, y) = 0. (4)

We substitute y = ± 1√
−f(x)

into (4), which makes the last term cancel in both substitutions.

Thereafter we multiply the two resulting expressions. The result no longer contains any
radicals. We obtain an identity

1 +
1

(−f(x))d
·
(
g1(x)2 + g2(x)2 + · · ·+ gr(x)2

)
= 0,

where g1, g2, . . . , gr are polynomials, and d is a positive integer, necessarily odd. We subtract
the constant 1 on both sides of this identity, and we multiply by −f(x) to obtain a repre-
sentation of f(x) as a sum of squares of rational functions. This gives Artin’s Theorem.

We next come to the Positivstellensatz, which concerns systems that have both equations
and inequalities. To motivate this, we briefly review the corresponding statements for linear
polynomials. This is known as Farkas’ Lemma, and it is at the heart of Linear Programming
Duality. Informally, Farkas’ Lemma states that a system of linear equations and inequalities
either has a solution in Rn, or it has a dual solution which certifies that the original system
has no solution. The precise statement can be stated in many equivalent versions. Here is
one of them, selected to make the extension to higher-degree polynomials more transparent.

Let f1, . . . , fr, g1, . . . , gs be polynomials of degree 1 in R[x], and consider the system

f1(u) = 0, . . . , fr(u) = 0, g1(u) ≥ 0, . . . , gs(u) ≥ 0. (5)

In the dual problem, we seek real numbers a1, . . . , ar, b1, . . . , bs ∈ R such that

a1 · f1 + · · · + ar · fr + b21 · g1 + · · · + b2s · fs = −1 in R[x]. (6)

It is clear that at most one of these two systems can have a solution. Indeed, since b21, . . . , b
2
s

are nonnegative, the left hand side of (6) is nonnegative for every vector x that solves (5).

Theorem 12 (Farkas’ Lemma). Given any choice of linear polynomials f1, . . . , fr and
g1, . . . , gs in R[x], exactly one of the following two statements is true:
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(P) There exists a point u ∈ Rn such that (5) holds.

(D) There exist real numbers a1, . . . , ar, b1, . . . , bs ∈ R such that (6) holds.

Let us now consider the system (5) where the fi and gj are allowed to be arbitrary
polynomials. In the dual problem, we now seek polynomials ai and bjν in R[x] such that

a1 · f1 + · · · + ar · fr +
∑

ν∈{0,1}s

(∑
j

bjν
)2 · gν11 · · · gνss = −1. (7)

In the double sum on the right, we see linear combinations of squarefree monomials in
g1, . . . , gs whose coefficients are sums of squares. The set of polynomials that admit such a
representation is the quadratic module generated by g1, . . . , gs. Quadratic modules associated
with inequality constraints are fundamental in the study of semi-algebraic sets [2, §2.1].

Theorem 13 (Positivstellensatz). Given any choice of polynomials f1, . . . , fr and g1, . . . , gs
in R[x], exactly one of the following two statements is true:

(P) There exists a point u ∈ Rn such that (5) holds.

(D) There exist polynomials ai and bjν in R[x] such that (7) holds.

Proof. See [2, §2.3].

The dual solution (D) in Theorem 13 is similar in nature to that in Farkas’ Lemma. The
one extra complication is that we now need products of the gi. The result be rephrased in
words as follows: if a system of polynomial equations and inequalities is infeasible then−1 lies
in the sum of the ideal of the equations and the quadratic module of the inequalities. There
is a more general version of the Positivstellensatz which also incorporates strict inequalities
h1 > 0, . . . , ht > 0. This is stated in [3, Theorem 7.5] and it is also proved in [2, §2.3].

The radical
√
I of a polynomial ideal I was the main player in the strong form of Hilbert’s

Nullstellensatz (Theorem 5). It offers an algebraic representation for polynomials that vanish
on a given complex variety. We now come to the analogous result over the real numbers.

Given any ideal I in R[x], we define its real radical to be the following set

R
√
I =

{
f ∈ R[x] : f 2m + g21 + · · ·+ g2s ∈ I for some m ∈ N and g1, . . . , gs ∈ R[x]

}
.

One checks that this is also an ideal in R[x]. We have the following analogue to Theorem 5.

Theorem 14 (Real Nullstellensatz). For any ideal in the polynomial ring R[x], we have

I
(
VR(I)

)
=

R
√
I. (8)

Proof. The argument is similar to that in the proof of Theorem 5. Again, it is clear that R
√
I

is contained in I
(
VR(I)

)
. We need to show the reverse inclusion. Suppose that f vanishes

on the real variety of I = 〈f1, . . . , fr〉 ⊂ R[x]. We introduce a new variable y and consider
ideal J = 〈f1, . . . , fr, yf − 1〉 in R[x, y]. It satisfies VR(J) = ∅. By Theorem 11, there exists
an identity of the form (3) for the ideal J . Substituting y = 1/f(x) into that identity and
clearing denominators, we find that some even power of f plus a sum of squares lies in I.
This means that the polynomial f is in the real radical R

√
I.
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Example 15. Fix the principal ideal generated by the Motzkin polynomial in Example 10:

I = 〈M(x, y) 〉 = 〈x4y2 + x2y4 + 1− 3x2y2 〉.

We wish to compute the real radical R
√
I. It must contain the numerators of the four sum-

mands in the sum of squares representation of M . This leads us to consider the ideal

J =
〈
xy(x2 + y2 − 2) , x2 − y2 〉.

This ideal is not radical. Its radical equals the Jacobian ideal of the Motzkin polynomial:

√
J =

〈
M,

∂M

∂x
,
∂M

∂y

〉
.

This radical ideal is precisely the real radical we were looking for:

R
√
I =

√
J = 〈x, y〉 ∩ 〈x− 1, y − 1〉 ∩ 〈x− 1, y + 1〉 ∩ 〈x+ 1, y − 1〉 ∩ 〈x+ 1, y + 1〉.

This means that the real variety VR(M) defined by the Motzkin polynomial consists of the
five points (1, 1), (1,−1), (−1, 1), (−1,−1) and (0, 0) in R2. Since M is nonnegative, these
zeros are neccessarily singular points of the complex curve V(M) ⊂ C2.

Exercises

1. Find univariate polynomials g1, g2, g3, g4 in Q[x] such that

g1(x− 2)(x− 3)(x− 4) + g2(x− 1)(x− 3)(x− 4)
+ g3(x− 1)(x− 2)(x− 4) + g4(x− 1)(x− 2)(x− 3) = 1.

2. Prove that an ideal I in C[x] contains a monomial if and only if all points in V(I) have
at least one zero coordinate. Describe an algorithm for testing whether this holds.

3. Let M be an ideal generated by monomials in K[x]. How to compute the radical
√
M?

4. For n = 4 let I be the ideal generated by the two cubics x21x2 − x23x4 and x1x
3
2 − x34.

Describe the projective variety V(I) in P3. Determine the radical ideal
√
I. How many

minimal generators does
√
I have and what are their degrees?

5. Let V be the variety of orthogonal Hankel matrices of format 4× 4. This lives in R7.
Can you describe the ideal I(V )? What are the irreducible components of V ?

6. For n = 3 let I be the ideal generated by the two quartics x41 − x21x22 and x42 − x43 in
R[x1, x2, x3]. Determine the radical

√
I and the real radical R

√
I. Write each of these

two radical ideals as an intersection of prime ideals.

7. Let f1, . . . , fr and f be polynomials in Q[x]. Explain how Gröbner bases can be used
to test whether f lies in the radical of the ideal I = 〈f1, . . . , fr〉.
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8. The circle defined by f = x2 + y2 − 4 does not intersect the hyperbola defined by
g = xy − 10 in the real plane R2. Find a real Nulllstellensatz certificate for this fact,
i.e. write −1 explicitly as a sum of squares modulo the ideal 〈f, g〉 in R[x, y].

9. For any positive integer d, exhibit a polynomial f and an ideal I in the ring K[x] such
that fd 6∈ I but fd+1 ∈ I. How small can the degrees of the generators of I be?

10. Let I be the ideal in R[x, y, z] generated by the Robinson polynomial

x6 + y6 + z6 + 3x2y2z2 − x4y2 − x4z2 − x2y4 − x2z4 − y4z2 − y2z4.

Determine the real radical R
√
I and the real variety VR(I) in the projective plane P2

R.

11. Show that Theorem 14 implies Theorem 9.

12. What is the Effective Nullstellensatz?

13. Find the radical and the real radical of the ideal I = 〈x7 − y7, x8 − z8〉 in R[x, y, z].
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