
Tropical Algebra

Notes by Bernd Sturmfels
for the lecture on May 22, 2018, in the

IMPRS Ringvorlesung Introduction to Nonlinear Algebra

The tropical semiring (R∪{∞},⊕,�) consists of the real numbers R, together with an extra
element ∞ called infinity. The arithmetic operations of addition and multiplication are

x ⊕ y := min(x, y) and x � y := x+ y.

The tropical sum of two numbers is their minimum, and the tropical product of two numbers
is their usual sum. Here are some examples of how to do arithmetic in the tropical world:

3 ⊕ 7 = 3 and 3 � 7 = 10.

Tropical addition and tropical multiplication are both commutative:

x ⊕ y = y ⊕ x and x � y = y � x.

These two arithmetic operations are also associative, and the times operator � takes prece-
dence when plus ⊕ and times � occur in the same expression. The distributive law holds:

x � (y ⊕ z) = x � y ⊕ x� z.

Here is a numerical example to show distributivity:

3 � (7 ⊕ 11) = 3� 7 = 10,

3 � 7 ⊕ 3 � 11 = 10 ⊕ 14 = 10.

Both arithmetic operations have an identity element. Infinity is the identity element for
addition and zero is the identity element for multiplication:

x ⊕ ∞ = x and x � 0 = x.

We also note the following identities involving the two identity elements:

x � ∞ = ∞ and x ⊕ 0 =

{
0 if x ≥ 0,

x if x < 0.
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There is no subtraction in tropical arithmetic. There is no real number x that we can
call “17 minus 8” because the equation 8 ⊕ x = 17 has no solution x. Tropical division is
defined to be classical subtraction, so (R∪{∞},⊕,�) satisfies all ring axioms except for the
existence of an additive inverse. Such algebraic structures are called semirings, whence the
name tropical semiring. It is essential to remember that “0” is the multiplicative identity
element. For instance, all coefficients in the Binomial Theorem are zero. Note the identity

(x⊕ y)3 = (x⊕ y)� (x⊕ y)� (x⊕ y)

= 0� x3 ⊕ 0� x2y ⊕ 0� xy2 ⊕ 0� y3.

Of course, the zero coefficients can here be dropped. The following holds for all x, y ∈ R:

(x⊕ y)3 = x3 ⊕ x2y ⊕ xy2 ⊕ y3 = x3 ⊕ y3.

The familiar algebra of vectors and matrices make sense over the tropical semiring. For
instance, the tropical scalar product in R3 of a row vector with a column vector is the scalar

(u1, u2, u3)� (v1, v2, v3)
T = u1 � v1 ⊕ u2 � v2 ⊕ u3 � v3

= min
{
u1 + v1, u2 + v2, u3 + v3

}
.

Here is the product of a column vector and a row vector of length three:

(u1, u2, u3)
T � (v1, v2, v3)

=



u1 � v1 u1 � v2 u1 � v3
u2 � v1 u2 � v2 u2 � v3
u3 � v1 u3 � v2 u3 � v3


 =



u1 + v1 u1 + v2 u1 + v3
u2 + v1 u2 + v2 u2 + v3
u3 + v1 u3 + v2 u3 + v3


. (1)

Any matrix which can be expressed as such a product has tropical rank one.
Given a d × n-matrix A, we might be interested in computing its image {A � x : x ∈

Rn}, and in solving the linear systems A � x = b for various right hand sides b. For an
introduction to tropical linear systems and their applications we recommend the books on
Max-linear Systems by Butkovič [1] and Essentials of Tropical Combinatorics by Joswig [2].

For a first application of tropical algebra, consider the problem of finding shortest paths
in a weighted directed graph. We fix a directed graph G with n nodes labeled 1, 2, . . . , n.
Every directed edge (i, j) in G has an associated length dij which is a non-negative real
number. If (i, j) is not an edge of G then we set dij = +∞. We represent G by its n × n
adjacency matrix DG =

(
dij
)

with zeros on the diagonal and whose off-diagonal entries are
the edge lengths dij. The matrix DG need not be symmetric; we allow dij 6= dji for some
i, j. However, if G is an undirected graph, then we represent G as a directed graph with two
directed edges (i, j) and (j, i) for each undirected edge {i, j}. In that special case, DG is a
symmetric matrix, and we think of dij = dji as the distance between node i and node j.

Consider the n×n-matrix with entries in R≥0 ∪ {∞} that results from tropically multi-
plying the given adjacency matrix DG with itself n− 1 times:

D
�(n−1)
G = DG �DG � · · · �DG. (2)
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Proposition 1. Let G be a weighted directed graph on n nodes with adjacency matrix DG.
The entry of the matrix D

�(n−1)
G in row i and column j equals the length of a shortest path

from node i to node j in the graph G.

Proof. Let d
(r)
ij denote the minimum length of any path from node i to node j which uses at

most r edges in G. We have d
(1)
ij = dij for any two nodes i and j. Since the edge weights dij

were assumed to be non-negative, a shortest path from node i to node j visits each node of
G at most once. In particular, any shortest path in the directed graph G uses at most n− 1
directed edges. Hence the length of a shortest path from i to j equals d

(n−1)
ij .

For r ≥ 2 we have a recursive formula for the length of a shortest path:

d
(r)
ij = min

{
d
(r−1)
ik + dkj : k = 1, 2, . . . , n

}
. (3)

Using tropical arithmetic, this formula can be rewritten as follows:

d
(r)
ij = d

(r−1)
i1 � d1j ⊕ d

(r−1)
i2 � d2j ⊕ · · · ⊕ d

(r−1)
in � dnj.

= (d
(r−1)
i1 , d

(r−1)
i2 , . . . , d

(r−1)
in )� (d1j, d2j, . . . , dnj)

T .

From this it follows, by induction on r, that d
(r)
ij equals the entry in row i and column

j of the n × n matrix D�rG . Indeed, the right hand side of the recursive formula is the

tropical product of row i of D
�(r−1)
G and column j of DG, which is the (i, j) entry of D�rG . In

particular, d
(n−1)
ij is the entry in row i and column j of D

�(n−1)
G . This proves the claim.

The above algorithm is an instance of what is known as Dynamic Programming in Com-
puter Science. For us, running that algorithm means performing the matrix multiplication

D�rG = D
�(r−1)
G �DG for r = 2, . . . , n− 1.

We next consider the notion of the tropical determinant. Fix an n× n matrix X = (xij).
As there is no negation in tropical arithmetic, we define this determinant as the tropical sum
over the tropical diagonal products obtained by taking all n! permutations π of {1, 2, . . . , n}:

tropdet(X) :=
⊕

π∈Sn

x1π(1) � x2π(2) � · · · � xnπ(n). (4)

Here Sn is the symmetric group of permutations of {1, 2, . . . , n}. Evaluating the tropical
determinant means solving the classical assignment problem of combinatorial optimization.
Imagine a company that has n jobs and n workers, and each job needs to be assigned to
exactly one of the workers. Let xij be the cost of assigning job i to worker j. The company
wishes to find the cheapest assignment π ∈ Sn. The optimal total cost equals

min
{
x1π(1) + x2π(2) + · · ·+ xnπ(n) : π ∈ Sn

}
. (5)

This minimum is precisely the tropical determinant (4) of the matrix X = (xij):

Proposition 2. The tropical determinant solves the assignment problem.
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In the assignment problem we seek the minimum over n! quantities. This appears to
require exponentially many operations. However, there is a polynomial-time algorithm. It
was developed by Harold Kuhn in 1955 who called it the Hungarian Assignment Method.
This algorithm maintains a price for each job and a partial assignment of workers and jobs.
At each iteration, an unassigned worker is chosen and a shortest augmenting path from this
person to the set of jobs is chosen. The total number of arithmetic operations is O(n3).

In classical arithmetic, the complexity of evaluating determinants and permanents differs
greatly. The determinant of an n × n matrix can be computed in O(n3) steps, namely by
Gaussian elimination, while computing the permanent of an n×n matrix is a hard problem.
Leslie Valiant proved that computing permanents is #P -complete. In tropical arithmetic,
computing the permanent is easier, thanks to the Hungarian Assignment Method. We can
think of the Hungarian Method as a certain tropicalization of Gaussian Elimination.

Eigenvectors and eigenvalues of square matrices are a central topic in linear algebra. Let
us now see their counterparts in tropical linear algebra. We fix an n × n-matrix A = (aij)
whose entries aij are in R = R ∪ {∞}. An eigenvalue of A is a real number λ such that

A� v = λ� v for some v ∈ Rn. (6)

We say that v is an eigenvector of the tropical matrix A. The arithmetic operations in the
equation (6) are tropical. For instance, for n = 2, the left hand side of (6) equals

(
a11 a12
a21 a22

)
�
(
v1
v2

)
=

(
a11 � v1 ⊕ a12 � v2
a21 � v1 ⊕ a22 � v2

)
=

(
min{a11 + v1, a12 + v2}
min{a21 + v1, a22 + v2}

)
.

The right hand side of (6) is equal to

λ�
(
v1
v2

)
=

(
λ� v1
λ� v2

)
=

(
λ+ v1
λ+ v2

)
.

Let G(A) denote the directed graph with adjacency matrix A. Its nodes are labeled by
[n] = {1, 2, . . . , n}. There is an edge from node i to node j if and only if aij < ∞, and the
edge has length aij. The normalized length of a directed path i0, i1, . . . , ik in G(A) is the
sum (in classical arithmetic) of the lengths of the edges divided by the length k of the path.
Thus the normalized length is (ai0i1 + ai1i2 + · · · + aik−1ik)/k. If ik = i0 then the path is a
directed cycle, and this quantity is the normalized length of the cycle. Recall that a directed
graph is strongly connected if there is a directed path from any node to any other node.

Theorem 3. Let A be an n × n-matrix such that G(A) is strongly connected. Then A has
precisely one eigenvalue λ(A). It equals the minimum normalized length of a directed cycle.

Proof. Let λ = λ(A) be the minimum of the normalized lengths over all directed cycles
in G(A). We first prove that λ(A) is the only possibility for an eigenvalue. Suppose that
z ∈ Rn is any eigenvector of A, and let γ be the corresponding eigenvalue. For any cycle
(i1, i2, . . . , ik, i1) in G(A) we have

ai1i2 + zi2 ≥ γ + zi1 , ai2i3 + zi3 ≥ γ + zi2 ,

ai3i4 + zi4 ≥ γ + zi3 , . . . , aiki1 + zi1 ≥ γ + zik .
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Adding the left-hand sides and the right-hand sides, we find that the normalized length of
the cycle is greater than or equal to γ. In particular, we have λ(A) ≥ γ. For the reverse
inequality, start with any index i1. Since z is an eigenvector with eigenvalue γ, there exists
i2 such that ai1i2 + zi2 = γ + zi1 . Likewise, there exists i3 such that ai2i3 + zi3 = γ + zi2 . We
continue in this manner until we reach an index il which was already in the sequence, say,
ik = il for k < l. By adding the equations along this cycle, we find that

(aikik+1
+ zik+1

) + (aik+1ik+2
+ zik+2

) + · · ·+ (ail−1il + zil)

= (γ + zik) + (γ + zik+1
) + · · · + (γ + zil−1

).

We conclude that the normalized length of the cycle (ik, ik+1, . . . , il = ik) in G(A) is equal
to γ. In particular, γ ≥ λ(A). This proves that γ = λ(A).

It remains to prove the existence of an eigenvector. Let B be the matrix obtained from A
by (classically) subtracting λ(A) from every entry in A. All cycles in G(B) have non-negative
length, and there exists a cycle of length zero. Using tropical matrix operations we define

B+ = B ⊕B2 ⊕B3 ⊕ · · · ⊕Bn.

This matrix is known as the Kleene plus of the matrix B. The entry B+
ij in row i and column

j of B+ is the length of a shortest path from node i to node j in the weighted directed graph
G(B). Since this graph is strongly connected, we have B+

ij <∞ for all i and j.
Fix any node j that lies on a zero length cycle of G(B). Let x = B+

·j denote the jth
column vector of the matrix B+. We have xj = B+

jj = 0, as there is a path from j to itself of
length zero, and there are no negative weight cycles. This implies B+ � x ≤ B+

·j = x. Next
note that (B � x)i = minl(Bil + xl) = minl(Bil + B+

lj ) ≥ B+
ij = xi, since lengths of shortest

paths obey the triangle inequality. In vector notation this states B � x ≥ x. Since tropical
linear maps preserve coordinatewise inequalities among vectors, we have B2 � x ≥ B � x,
and B3�x ≥ B2�x, etc. Therefore, B+�x = B�x⊕B2�x⊕· · ·⊕Bn�x = B�x. This
yields x ≤ B � x = B+ � x ≤ x. This means that B � x = x, so x is an eigenvector of B
with eigenvalue 0. We conclude that x is an eigenvector with eigenvalue λ of our matrix A:

A� x = (λ�B)� x = λ� (B � x) = λ� x.

This completes the proof of Theorem 3.

The eigenvalue λ of a tropical n×n-matrix can be computed efficiently. Given a matrix
A = (aij), one sets up the following linear program with n+1 decision variables v1, . . . , vn, λ:

Maximize γ subject to aij + vj ≥ γ + vi for all 1 ≤ i, j ≤ n. (7)

Proposition 4. The unique eigenvalue λ(A) of the given n× n-matrix A = (aij) coincides
with the optimal value γ∗ of the linear program (7).

Proof. See [3, Proposition 5.1.2].
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We next determine the eigenspace of the matrix A, which is the set

Eig(A) =
{
x ∈ Rn : A� x = λ(A)� x

}
.

The set Eig(A) is closed under tropical scalar multiplication: if x ∈ Eig(A) and c ∈ R then
c � x is also in Eig(A). We can thus identify Eig(A) with its image in the quotient space
Rn/R1 ' Rn−1. Here 1 = (1, 1, . . . , 1). This space is called the tropical projective torus;
cf. [2, Section 1.4]. We saw that every eigenvector of the matrix A is also an eigenvector of
the matrix B = (−λ(A))� A and vice versa. Hence the eigenspace Eig(A) is equal to

Eig(B) =
{
x ∈ Rn : B � x = x

}
.

Theorem 5. Let B+
0 be the submatrix of the Kleene plus B+ given by the columns whose

diagonal entry B+
jj is zero. The image of this matrix (with respect to tropical multiplication

of vectors on the right) is equal to the desired eigenspace:

Eig(A) = Eig(B) = Image(B+
0 ).

Proof. See [3, Theorem 5.1.3].

Example 6. We demonstrate the computation of eigenvalues and eigenvectors for n = 3.
In our first example, the minimal normalized cycle lengths are attained by the loops:

A =




3 4 4
4 3 4
4 4 3


 ⇒ λ(A) = 3 ⇒ B = B+ = B+

0 =




0 1 1
1 0 1
1 1 0


 .

The eigenspace is the tropical linear span in R3 of the column vectors of B. Its image in
R3/R1 is the hexagon with vertices (0, 1, 1), (0, 0, 1), (1, 0, 1), (1, 0, 0), (1, 1, 0) and (0, 1, 0).
In our second example, the shortest normalized cycle is the loop between nodes 1 and 2:

A =




3 1 4
1 3 2
4 4 3


 ⇒ λ(A) = 1 ⇒ B =




2 0 3
0 2 1
3 3 2


 ⇒ B+ =




0 0 1
0 0 1
3 3 2


 .

The eigenspace of A is the tropical linear space spanned by the first column of B+:

Eig(A) = Eig(B) =
{
c� (0, 0, 3)T : c ∈ R

}
=
{

(c, c, c+ 3)T : c ∈ R
}

So, here Eig(A) is just a single point in the tropical projective 2-torus R3/R1. ♦

We computed the eigenspace of a square matrix as the image of another matrix. This
motivates the study of images of tropical linear maps Rm → Rn. Such images are not tropical
linear spaces. They are known as tropical polytopes. Indeed, one defines tropical convexity
in Rn/R1 by taking tropical linear combinations. Tropical convexity is a rich and beautiful
theory with many applications. For textbook introductions see [2, Chapter 5] and [3, §5.2].
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We give a brief illustration in the case m = n = 3. The image of a 3 × 3-matrix X is
the set of all tropical linear combinations of three vectors in R3. We represent this set by its
image in the plane R3/R1. That image is a tropical triangle, because it is the tropical convex
hull of three points in the plane. It is possible that this triangle degenerates because three
points are tropically collinear in R3/R1. This happens when the minimum in the tropical
determinant (4) is attained twice. In that case, the matrix X is called tropically singular.

Example 7. Let T = image(A) be the tropical triangle defined by either of the matrices

A =




0 0 2
0 3 1
1 0 0


 or A′ =



−1 0 2
−1 3 1

0 0 0


 .

Each point in the quotient R3/R1 can be represented uniquely by a vector (u, v, 0)T with
last coordinate zero. The tropical triangle T consists of the segment between (−1,−1, 0)T

and (0, 0, 0)T , the segment between (0, 0, 3)T and (0, 1, 0)T , the segment between (2, 1, 0)T

and (1, 1, 0)T , and the classical triangle with vertices (0, 0, 0)T , (0, 1, 0)T and (1, 1, 0)T . ♦.

There are five distinct combinatorial types of tropical triangles in the plane. Similarly,
there are 35 types of tropical quadrilaterals in the plane. They are shown in [3, Figure 5.2.4].

Up to this point, this section has explored the tropical counterparts of concepts from
linear algebra. In what follows we move on to nonlinear algebra, and we discuss the tropical
counterparts of algebraic varieties. This will also show how the tropical semiring arises
naturally from the familiar arithmetic operations over a field K.

We fix an algebraically closed field with a valuation, for instance the field of Puiseux
series in a variable t with complex coefficients. This field is denoted K = C{{t}}. It contains
the field C(t) of rational functions and its algebraic closure C(t). Indeed, every algebraic
function can be expanded into a Puiseux series with integer exponents. The valuation of a
scalar c in K is the exponent val(a) ∈ Q of the smallest term cat

a that appears with nonzero
coefficient in the expansion of c. Here two examples of scalars in K and their valuations:

c =
1

t2 + 2t3 + t5
= t−2−2t−1+4−9t+20t2−44t3+97t4−214t5+472t6−· · · has val(c) = −2.

c′ = t2/7
√

1− t2/3 = t2/7 − 1

2
t20/21 − 1

8
t34/21 − 1

16
t16/7 − 5

128
t62/21 − · · · has val(c′) =

2

7
.

Every polynomial of degree d in K[x] has d distinct roots, counting multiplicities.

Example 8 (Puiseux series). Every cubic polynomial in K[x] has three roots, easily found
using computer algebra. For instance, the three roots of f(x) = tx3 − x2 + 3tx− 2t5 are

t−1 − 3t− 9t3 − 54t5 + 2t6 − 405t7 + 18t8 − 3402t9 + 180t10 − 30618t11 + 1890t12 + · · ·
3t+ 9t3 − 2

3
t4 + 54t5 − 2t6 + 10931

27
t7 − 18t8 + 3402t9 − 43756

243
t10 + 30618t11 + · · ·

2
3
t4 + 4

27
t7 + 16

243
t10 − 8

81
t12 + 80

2187
t13 − 80

729
t15 + 448

19683
t16 − 224

2187
t18 + · · ·

(8)

The valuations of the three roots are −1, 1 and 4. These valuations characterize the asymp-
totic behavior of the roots when the parameter t is a real number very close to zero.
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Consider any polynomial in n variables with coefficients in the Puiseux series field K:

f = c1x
a1 + c2x

a2 + · · · + csx
as . (9)

The tropicalization of f is the following expression in tropical arithmetic:

trop(f) = val(c1)� x�a1 ⊕ val(c2)� x�a2 ⊕ · · · ⊕ val(cs)� x�as .

To evaluate this tropical polynomial at a point u = (u1, . . . , un), we take the minimum of

val(ci)�u�ai = val(ci)�u�ai11 �· · ·�u�ainn = ci+ai1u1 + · · ·+ainun over i ∈ {1, . . . , s}.

If this minimum is attained at least twice then we say that u is a tropical zero of trop(f).

Proposition 9. If z = (z1, . . . , zn) ∈ Kn is a zero of a polynomial f in K[x] then its
coordinatewise valuation val(z) =

(
val(z1), . . . , val(zn)

)
∈ Qn is a tropical zero of trop(f).

Proof. Note that the valuation of the Puiseux series ciz
a
i equals val(ci)� u�ai . The sum of

these r Puiseux series is zero in K, so the terms of lowest valuation must cancel. This implies
that the minimum valuation is attained by two or more of the expressions val(ci) � u�ai .
By definition, this means that the vector u ∈ Qn is a tropical zero of trop(f).

A celebrated result due to Kapranov states that the converse holds as well. Namely, if
f ∈ K[x] and u ∈ Qn is a tropical zero of trop(f) then there exists a point z ∈ Kn such that
f(z) = 0 and val(z) = u. We refer to [3, Theorem 3.1.3] the proof and further details.

Example 10 (n = 1). If f is the cubic polynomial in Example 8 then its tropicalization is

trop(f) = 1� x�3 ⊕ 0� x�2 ⊕ 1� x ⊕ 5.

The tropical zeros are the rational numbers x such that the minimum of 1+3x, 0+2x, 1+x
and 5 is attained twice. There are three solutions: x = −1, x = 1 and x = 4. Each of these
is the valuation of an element in K that is a zero of f . These solutions are listed in (8). ♦

The extra element +∞ arises naturally from the arithmetic in a field K with valuation
because val(0) =∞. Sometimes it is preferable to restrict tropical algebra to R, or to Q, thus
excluding +∞. This is accomplished by disallowing zero coordinates among the solutions of
a polynomial equation. To be precise, we set K∗ = K\{0} and we introduce the algebraic
torus (K∗)n. The ring of polynomial functions on (K∗)n is the Laurent polynomial ring

K[x±] := K[x±11 , x±12 , . . . , x±1n ].

Its elements are polynomials as in (9) but we now allow negative integers among the coor-
dinates of the exponent vectors ai. For every u ∈ Rn, the initial form inu(f) is the subsum
of terms cix

ai in (9) for which val(ci)� u�ai is minimal. Here ci is the term of lowest order
in the Puiseux series ci. For instance, if c is the scalar in the middle line in (8) then c = 3t.
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Lemma 11. For a Laurent polynomial f ∈ K[x±] and u ∈ Rn, the following are equivalent:

inu(f) is a unit in K[x±] ⇔ inu(f) is a not monomial ⇔ u is a tropical zero of trop(f).

Fix any ideal I in K[x±] and let V(I) be its variety in the algebraic torus (K∗)n. We
define the tropical variety associated with the ideal I to be the following subset of Rn:

trop(V(I)) =
{
u ∈ Rn : u is a tropical zero of trop(f) for all f ∈ I

}
.

We also refer to this set as the tropicalization of the variety V(I).
The study of tropical varieties is the subject of tropical algebraic geometry. Two impor-

tant results are the Fundamental Theorem ([3, Theorem 3.2.3]) and the Structure Theorem
([3, Theorem 3.3.5]). The former extends the theorem of Kapranov mentioned above. It
states that the set of rational points in trop(V(I)) is the image of the classical variety
V(I) ⊂ (K∗)n under the coordinatewise valuation map. The latter states that trop(V(I))
is a balanced polyhedral complex, whose dimension agrees that the dimension of V(I). Nu-
merous concrete examples of such polyhedral complexes are found in the books [2] and [3].

Example 12. Fix n = 9 and let x = (xij) be a 3× 3-matrix whose entries are unknowns.
Let I be the ideal generated by the nine 2×2-minors of x. Then V(I) is the 5-dimensional

variety of 3× 3-matrices of rank 1 in (K∗)3×3. The tropical variety trop(V(I)) is the set of
3× 3-matrices in (1), that is, the matrices of tropical rank one. This is the linear subspace
of dimension 5 in R3×3 defined by the tropical 2× 2-determinants uij � ukl ⊕ uik � ukj. Of
course, this minimum is attained twice if and only if uij + ukl− uik − ukj = 0. Every matrix
u = (uij) that satisfies these linear equations, and has its entries in Q, arises as the valuation
u = val(z) of a rank one matrix z = (zij) with entries in K∗. We can just take z = (tuij).

The situation becomes more interesting when we pass from rank 1 to rank 2. Let J be the
principal ideal generated by the determinant of x. The V(J) is a hypersurface of degree three
in (K∗)3×3. The tropical hypersurface trop(V(J)) is defined by the tropical determinant

tropdet(u) = u11 � u22 � u33 ⊕ u11 � u23 � u32 ⊕ · · · ⊕ u13 � u22 � u31. (10)

Thus trop(V(J)) is set of all 3 × 3-matrices u = (uij) such that this minimum is attained
twice. For such a matrix, there is more than one optimal assignment of the three workers
to the three jobs in (4). The set trop(V(J)) is a polyhedral fan of dimension 8. It is a cone
with apex trop(V(I)) ' R5 over the 2-dimensional polyhedral complex shown in Figure 1.

The six triangles represent matrices u where the minimum in (10) is attained by two
permutations in S3 that have the same sign. The nine squares on the right in Figure 1 are
glued to form a torus. These represent matrices u′ where the minimum in (10) is attained
by two permutations in S3 that have opposite signs. Concrete examples for the two cases are

u =




0 0 1
1 0 0
0 1 0


 and u′ =




0 0 1
0 0 1
1 1 0


 .
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Fig. 3.5. The tropical 3 × 3 determinant.

basis from given generators of an ideal I and computing the polyhedra that

make up its tropical variety is an active topic of research in tropical geometry.

Example 3.40 We consider the tropicalization of DiaNA’s model in Example

1.16. The 3 × 3-minors of a 4 × 4-matrix of unknowns form a tropical basis

for the ideal they generate. This follows from results in [Develin et al., 2003].

The tropical variety T (I) consists of all 4×4-matrices of tropical rank at most

two. The positive tropical variety T +(I) is discussed in Example 3.43.

Let f : Cd → Cm be a polynomial map with coordinates f1, . . . , fm ∈
Q[θ1, . . . , θd]. We say that the map f is positive if each coefficient of each

polynomial fi is a positive real number. If this holds then f maps positive

vectors in Rd to positive vectors in Rm. We say that the map f is surjectively

positive if f is positive and, in addition, f maps the positive orthant surjectively

onto the positive points in the image; in symbols:

f
(
Rd

>0

)
= image(f) ∩ Rm

>0. (3.36)

Example 3.41 Let d = 1,m = 2 and f : R1 %→ R2, θ %→ ( θ + 2, 2θ + 1 ). The

map f is positive. But f is not surjectively positive: for instance, the point

(7/4, 1/2) is in image(f) ∩ R2
>0 but not in f(R1

>0).

On the other hand, if we take f ′ : R1 %→ R2, θ %→ ( 1
2θ + 3

2 , θ ) then f ′ is

surjectively positive. Both maps have the same image, namely, image(f) =

image(f ′) is the line V (If ) ⊂ R2 which is specified by the ideal

If = If ′ = ⟨ 2p1 − p2 − 3 ⟩.

The tropical variety T (If ) is the curve defined by the tropical linear form

trop(2p1 − p2 − 3) = q1 ⊕ q2 ⊕ 0.

Figure 1: Combinatorics of the hypersurface defined by the tropical 3× 3-determinant.

Here are classical matrices of rank 1 that map to u and u′ under tropicalization:

z =



t+ 1 −1 + t 2t
t 1 1 + t
1 t 1 + t


 and z′ =




1 2 t
2 4 5
3t 6t 7




The supports of the matrices u = trop(z) match the labels of the corresponding 2-cells in
Figure 1. The matrix u has support 13, 21, 32, which labels the bottom triangle on the left.
The matrix u has support 13, 23, 31, 32, which labels the middle left square on the right. ♦

We close with a remark on lifting Proposition 1 from tropical algebra to algebra over
the field K. Given a directed graph G with rational edge weights dij, we now define a new
adjacency matrix AG. The entry of AG in row i and column j equals tij if (i, j) is an edge of
G, and 0 otherwise. By construction, the valuation of the matrix AG is the earlier adjacency
matrix DG. Moreover, the matrix in (2) is the valuation of the classical matrix power of AG:

D
�(n−1)
G = (val(AG))�(n−1) = val

(
An−1G

)
. (11)

Indeed, the (i, j) entry of An−1G is the generating function for all paths. To be precise, it is
the Puiseux polynomial

∑
` c`t

`, where c` is the number of paths from i to j having length `.

Exercises

1. Let u, v, w be real numbers and let x, y, z be variables. What are the coefficients in the
expansion of the expression (u� x ⊕ v � y ⊕ w � z)�n in tropical arithmetic?

2. Prove that the tropical multiplication of square matrices is an associative operation.
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3. Draw the graph of the function R→ R, x 7→ 1 ⊕ 2�x ⊕ 3�x�2 ⊕ 6�x�3 ⊕ 10�x�4.
What are the tropical zeros of this tropical polynomial?

4. How would you define the tropical characteristic polynomial of a square matrix? Com-
pute your characteristic polynomial for the 3× 3-matrices in Example 6.

5. Draw the graph of the function R2 → R, (x, y) 7→ 1⊕ 2�x⊕ 3�y⊕ 6�xy⊕ 10�xy�2.
What are the tropical zeros of this tropical polynomial?

6. Let G be the directed graph on n nodes with edge weights dij = i · j for i, j ∈
{1, 2, . . . , n}. Compute the tropical powers D�iG of the matrix DG for i = 1, 2, . . . , n−1.
What are their tropical ranks? Interpret the entries of these matrices in terms of paths.

7. Take G from above with n = 5. Compute the powers AiG of the matrix AG for i < n.
What are their ranks? Interpret the entries in terms of paths. Verify equation (11).

8. Take G from above with n = 3. Find the eigenvalues and eigenspaces of AG. Find the
tropical eigenvalue and the tropical eigenspace of DG. Do you see a relationship?

9. Take G from above with n = 10. Compute the determinant of AG and the tropical
determinant of DG. Do you see a relationship? Can you generalize to arbitrary n?

10. Take G from above. The matrix DG defines a tropical linear map from Rn to itself.
Determine the image of this map for n = 2, 3, 4. Draw pictures in Rn/R1 ' Rn−1.

11. Consider the quartic polynomial f(x) = t+t2x+t3x2+t6x3+t10x4 in K[x]. Identity its
four roots. Write the first 10 terms of these Puiseux series. What are their valuations?

12. Let J be the ideal generated by the determinant of a symmetric 3×3-matrix. This lives
in a Laurent polynomial ring with six variables. Determine the tropical hypersurface
trop(V(J)). Write a discussion analogous to Example 12. Draw the analog to Figure 1.

13. Analyze the complexity of the algorithm described in Proposition 1. How would you
improve the computation of D

�(n−1)
G ? What happens if some weights of the edges of

G are negative? What happens if the graph contains cycles of negative total weight?
How would you detect if such a cycle exists?
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