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Toric varieties form one of the most accessible classes of algebraic varieties. They appear
often in both theoretical mathematics and in applications. We start directly with a definition.
Recall that nonnegative integer vectors b = (b1, . . . , bn) are identified with monomials

xb := xb11 x
b2
2 · · · xbnn

In the following definition we allow b ∈ Zn to have negative entries. This means that xb is
a Laurent monomial, i.e. a monomial with possibly negative exponents.

Definition 1 (Toric variety). An affine toric variety is the closed image of a monomial map

(K∗)n → KN , x 7→
(
xa1 ,xa2 . . . ,xaN

)
,

where ai ∈ Zn and K∗ = K\{0}. In the same way we define a projective toric variety as the
closed image of the same monomial map into projective space PN−1.

Example 2. 1. The affine and projective spaces are toric varieties.

2. The cuspidal curve x3 − y2 is a toric variety, as it is the image of z → (z2, z3).

3. Veronese reembeddings and Segre products of projective spaces are toric varieties.

The name toric variety comes from the fact that (K∗)n = SpecK[x±11 , . . . , x±1n ] is known
as the algebraic torus. It is an algebraic group with the action given by coordinatewise
multiplication. If n = 2 and K = C then the algebraic torus (C∗)2 ' (R+ × S1)2 coincides
with the usual topological torus S1×S1 up to multiplication with the contractible factor R2

+.

Definition 3 (Character of a torus). A character of a torus T = (K∗)n is an algebraic map
T → K∗ that is also a group morphism.

In Exercise 1 the reader is asked to prove that all characters are given by Laurent mono-
mials. The characters of T are hence the elements of Zn. Hence, to specify a toric variety,
we need to specify N characters of a torus, equivalently N integer points in Zn. Characters
of a torus T can be identified with Zn not only as a set but also as a group (Zn,+) with the
action given by:

(χ1 + χ2)(t) := χ1(t)χ2(t).
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A group isomorphic to Zn is called a lattice. The lattice of characters of T will be denoted by
MT or simply M . Toric geometry relates the geometric properties of a toric variety X with
combinatorics of a finite set of lattice points defining X. As a subgroup of a free abelian
group is free, the characters defining X generate a sublattice M̃ ⊂M .

Proposition 4. Fix characters a1, . . . , aN ∈ MT generating a sublattice M̃ . The image of
T in (K∗)N by the map x→ (xa1 , . . . , xaN ) is also a torus T̃ with the character lattice equal
to M̃ . In particular, the dimension of the associated toric variety equals the rank of M̃ .

Proof. Consider the map of rings associated with the monomial map f : T 7→ (K∗)N , i.e.

f ∗ : K[y±11 , . . . , y±1N ] → K[x±11 , . . . , x±1n ] , yi 7→ xai .

The spectrum of the image of the ring map f ∗ is the image T̃ we are interested in. Note that
imf ∗ equals the group algebra K[M̃ ]. By definition, this is the vector space over K with
basis given by elements of M̃ and multiplication induced from addition in MT . The lattice
M̃ is isomorphic to the group Zd for some d ∈ N. We have T̃ = SpecK[M̃ ] = (K∗)d. The
associated toric variety in KN is the Zariski closure of T̃ . As the Zariski closure does not
change the dimension, the toric variety is also of dimension d.

We see that we may equivalently define toric varieties as closures of a subtorus of the torus
(K∗)N ⊂ KN . Further, in analogy to the proof of Proposition 4 we see that the toric variety
equals SpecK[S], where S is the monoid in MT generated by the distinguished characters,
i.e. the smallest set containing 0, the chosen characters and closed under addition.

Example 5. 1. The cuspidal curve defined by the equation x3− y2 equals SpecK[z2, z3].
Here, the associated monoid equals {0, 2, 3, 4, . . . }.

2. The affine line is the closure of the image of the map

K∗ 3 x→ x ∈ K.

Here the character lattice is M = Z, the distinguished character corresponds to 1 ∈M
and the monoid equals {0, 1, 2, . . . }.

There is a fundamental difference between the example of the cuspidal curve and affine
line. When we look at the monoid for the cuspidal curve, there is a ’hole’ in it: the character
corresponding to 1.

Definition 6. A submonoid S in a lattice M is called saturated if and only if for any x ∈M
and k ∈ Z+ the following implication holds:

kx ∈ S ⇒ x ∈ S.

Affine toric varieties for which S is saturated (in the lattice M̃ that it generates) are
called normal. For the algebraic definition of normal varieties we refer to [1, Chapter 5].
Nonnormal varieties are always singular and for curves the two notions coincide. Hence,
Example 5 shows one nonnormal (equivalently singular) curve - as seen in Figure 1 - and
one normal (equivalently smooth) curve.
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Figure 1: The cuspidal curve

Further, we can find the generators of the ideal of the variety X from the characters
that define it. In general, given a variety defined as a Zariski closure of the image of a map,
finding the defining equations is a hard problem, known as implicitization. We discussed this
in Lecture 3. The implicitization problem greatly simplifies when the variety is toric. Recall
that a binomial is a polynomial that is a difference of two monomials.

Lemma 7. Let X be a toric variety defined by characters a1, . . . , aN ∈ Zn. Then:

1. any relation
∑

i biai =
∑

j cjaj, with positive integral coefficients bi, cj ∈ Z+ provides a

binomial
∏
ybii −

∏
y
cj
j in the prime ideal IX of X;

2. every binomial in the ideal IX is of the form described in point 1;

3. the ideal IX is generated by binomials.

Sketch of the proof: Properties 1 and 2 follow from the fact that a polynomial vanishes on
the toric variety X if and only if we obtain zero after substituting yi by xai . However, such
a substitution turns monomials (in variables y) to monomials (in variables x). The fact that
the monomials in x cancel is precisely encoded by the integral relations in point 1. Property
3 follows similarly, by induction on the support of a polynomial in the ideal of X.

Example 8. Let n = 3, N = 7 and take a1, . . . , a7 to be the column vectors of the matrix

A =

2 2 1 0 0 1 1
1 0 0 1 2 2 1
0 1 2 2 1 0 1


The associated toric variety X is a threefold in K7. Its ideal IX is the binomial ideal

〈y1y3−y2y7, y1y4−y27, y1y5−y6y7, y2y4−y3y7, y2y5−y27, y2y6−y1y7, y3y5−y4y7, y3y6−y27, y4y6−y5y7〉

Since these binomials are homogeneous, the variety is a cone in K7. It can thus also be
regarded as projective toric variety in in P6. That variety is a smooth surface of degree six.

Theorem 9. A prime ideal generated by binomials defines a toric variety.

3



Proof. This follows from the fact that binomials may be translated to Laurent monomials
on (K∗)N , where they have to define a torus. For details see [2, Proposition 1.1.11].

Definition 10. A convex polyhedral cone in a real vector space V is a subset of elements of
the form λ1v1 + · · ·+ λkvk for some fixed integer k, v1, . . . , vk ∈ V and λ1, . . . , λk ∈ R≥0. If
we identify V with Rd we call a convex polyhedral cone rational if all the vi’s can be chosen
as rational vectors.

We will refer to rational convex polyhedral cones simply as cones.

In Exercise 4 the reader is asked to show that a finitely generated, saturated monoid in
a lattice Zn is the same as the set of integral points in a cone in the corresponding Rn.

Definition 11. A face of a cone C ⊂ V is a subset F ⊂ C defined by:

F = {c ∈ C : f(c) = 0},

where f is such a linear function f ∈ V ∗ that for any p ∈ C we have f(c) ≥ 0. If dimC =
dimV = dimF + 1, then f is uniquely determined, up to scalar. In such a case F is called
a facet and the hyperplane defined by f is called a supporting hyperplane of C.

We point out that if f = 0 we obtain F = C. Further, any face of a cone is also a cone.

Example 12. Consider C equal to the positive quadrant in R2. It has one two dimensional
face - the whole cone, two one dimensional facets and one zero dimensional face {0} ⊂ C.

By Proposition 4 a toric variety X is a closure of a torus T ⊂ X ⊂ CN , where

T = {t ∈ X : all coordinates of t are nonzero}.

As T is a group that acts both on itself and Cn, it must also act on X = T . Our next aim
is to provide a combinatorial and geometric description of the orbits of this action.

Let us make the following assumptions. The toric variety X is defined by characters A
that generate a saturated monoid. Let C be the corresponding cone and T ⊂ X the torus
dense in X.

Theorem 13. Using the above notation, the T -orbits in X are in bijection with the faces of
the cone C. The orbit corresponding to a face F consists exactly of those points x ∈ X that
have a nonzero coordinate corresponding to a character a ∈ A if and only if a ∈ F .

Further, the closure of the orbit corresponding to F is the toric variety SpecC[F ∩ A],
where formally F ∩A represents the monoid generated by F ∩A. In particular, the dimension
of F equals the dimension of the orbit. Moreover, an orbit corresponding to face F1 belongs
to the closure of the orbit corresponding to face F2 if and only if F1 ⊂ F2.

Example 14. Consider the toric variety associated to characters (1, 0, 0), (1, 0, 1),
(1, 1, 0), (1, 1, 1). It is the affine cone over the quadric xt − yz. The four two dimensional
facets of the cone correspond to four two dimensional tori contained in it. For example the
face generated by (1, 0, 0), (1, 0, 1) corresponds to the set of points of the type (∗, ∗, 0, 0), where
∗ are nonzero.

The four one dimensional faces correspond to coordinate axis (minus {0}). Note that
the intersection of faces in the cone and intersection of the corresponding closures of orbits
agree.
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As we can see one can ’read off’ the geometry of X from the cone C representing it.
Let us now pass to projective toric varieties. We note that given a set A of N monomials,

we obtain the same projective variety if we multiply every monomial by a new variable x0.
In many aspects such a description is better, as it also parameterizes the affine cone over the
projective variety. Thus, instead of working in lattice Zn, we will be working in the lattice
Zn+1 = Z × Zn assuming that the defining set of characters/monomials A is contained in
{1} × Zn.

Definition 15. A polytope in a vector space V is a convex hull of a finite set of vectors. A
polytope is called a lattice polytope if it is a convex hull of points of a lattice M ⊂ V .

If we want A to generate a saturated monoid a necessary condition is that A = conv(A)∩
M̃ where M̃ is the lattice generated by A. In other words, A is the set of integral points of
an integral polytope. However, in general this is not enough.

Definition 16. A lattice polytope P (in a lattice M) is called normal if and only if for any
integer k and any point p ∈ kP ∩M there exist p1, . . . , pk ∈ P ∩M such that p =

∑k
i=1 pi.

In Exercise 5 the reader can find an example of a nonnormal polytope. In Exercise 6 the
reader is asked to prove that a lattice polytope P is normal if and only if ({1} × P ) ∩M
generates a saturated monoid. The orbit cone correspondence from Theorem 13 in a trivial
way generalizes to projective toric varieties and polytopes. As we will see below there is
another way to explain why the geometry of the polytope coincides with the geometry of
the toric variety. Our aim is to define a map, called the moment map, that takes the toric
variety X onto the associated polytope P .

Let X ⊂ P(CN) be a toric variety defined by a set of characters A ⊂ Zn. In particular,
|A| = N and the coordinates of CN correspond to elements of A. For a point y ∈ CN

and a ∈ A we denote by a(y) ∈ C the coordinate of y corresponding to a. In other words
y = (ya)a∈A.

Definition 17. The algebraic moment map µA : X → Rn is defined by:

µA(x) =

∑
a∈A |a(x)|a∑
a∈A |a(x)|

.

Here, as x ∈ P(CN), the value a(x) is defined only up to a scalar. However, as µA(x) is a
fraction it does not depend on the choice of the scalar.

The numerator in the above definition is a nonnegative combination of integral points
A defining X. The denominator assures that µA(x) ∈ conv(A). Consider a torus fixed
point x0 ∈ X. By Theorem 13 it must have all coordinates equal to zero, apart from one,
corresponding to a vertex a0 ∈ A of convA. In particular, µA(x0) = a0. Our aim is to
present a vast generalization of the above fact, which explains why the geometry of X is
related to the geometry of convA. We start with a definition.

Definition 18. For a set of characters A we define the nonnegative (resp. positive) part of
a related toric variety X ⊂ C|A| as X≥0 := X ∩ (R≥0)|A| (resp. X>0 := X ∩ (R>0)

|A|).
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Let T → C|A| be the map defining X. By Proposition 4 T maps surjectively to a torus T̃
that can be identified with those points of X that have all coordinates nonzero. Further, T>0

maps surjectively to X>0 = T̃>0. This is especially useful in statistics, where our defining
map can be interpreted as a statistical model and coordinates as probabilities - cf. Lecture
2 and many more examples in [5, Chapter 5, Chapter 14]. More generally, we have a map
X → X≥0 given by r : (x1, . . . , x|A|) → (|x1|, . . . , |x|A||). Note that T̃ = (C∗)d contains
a topological torus Sd, by taking points with coordinates of module one. Further, Sd is a
subgroup of T̃ that acts transitivly on each fiber of r. Thus r may be regarded as a quotient
map X → X/(Sd) = X≥0. Hence r : X → X≥0 has fibers that are real tori, with dimension
equal to the dimension of the orbit of T̃ they belong to. A formal statement and a proof
can be found for example in [2, Proposition 12.2.3]. We have now related the geometry of
X with the geometry of X≥0. We note that we can make the same definitions when X is
projective, where a point is positive if and only if it has a positive representative.

Theorem 19. Let A be the set of lattice points in a lattice polytope P ⊂ Rn and let X be
the associated toric variety. The moment map: µA : X≥0 → Rn is a homeomorphism onto
P .

The proof, along with many more interesting facts, can be found in [4, Theorem 8.4].

Example 20. Let us continue the statistically motivated Example 3 from Lecture 2, in the
case n = 2. We obtain the Segre embedding:

P1 × P1 → P3,

where our toric variety is represented as a unit square and is defined as a quadric xt − yz.
If we consider the affine set R3 ⊂ P3 defined by x + y + z + t = 1, then the moment map,
restricted to X≥0, becomes simply a linear projection µ : R3 → R2:

[x : y : z : t]→ x(0, 0) + y(1, 0) + z(0, 1) + t(1, 1) = (y + t, z + t).

Below we present the picture of X≥0 in coordinates y, z, t. The red line shows the direction
of the projection of the moment map:

.
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If we rotate the picture so that the red line becomes (nearly) a point, we see that the projection
is indeed a square:

.

Example 21. Suppose we throw two (possibly biased) coins 1024 times (each time two coins
at once) and observe:

• 128 times both heads,

• 128 times the first coin gives heads, the second tails,

• 384 times both tails,

• 384 times the first coin gives tails, the second heads.

This can be translated to:

• 1/8 times (0, 0),

• 1/8 times (0, 1),

• 3/8 times (1, 1),

• 3/8 times (1, 0).

The data can be represented as a point in the square:

p := 1/8(0, 0) + 1/8(0, 1) + 3/8(1, 1) + 3/8(1, 0) = (3/4, 1/2).

The unique preimage of the point p by the moment map, as in Example 20, has coordinates
(y, z, t) = (1/8, 3/8, 3/8) and translates to (x, y, z, t) = (1/8, 1/8, 3/8, 3/8). Looking at the
associated toric map:

(a, b)× (c, d)→ (ac, ad, bc, bd),

under the assumption a + b = c + d = 1, we obtain a = 1/4, b = 3/4, c = d = 1/2. This is
the correct estimate of the probability distribution for the coins: the first coin is biased (with
probability of tails 3/4 and heads 1/4) and the second one is fair.
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The previous example is a very special case of a general theorem in algebraic statistics.
Toric varieties correspond to discrete statistical models. The inverse image of any point p
in the polytope, by the moment map, is known as the Birch point or Maximum Likelihood
Estimator. For further reading on toric models see [3, Section 1.2.2].

For a more theoretical application of toric varieties notice that:

• Pn has a representation as a(n n-dimensional) simplex,

• the product Pa1 × · · · × Pan has a representation as a product of simplices,

• more generally a product of projective toric varieties represented by polytopes is a
projective toric variety represented by the product of the polytopes.

As an application of toric geometry we see that a product of projective spaces is a projective
variety, naturally embedded in another projective space. Hence, if we are given (possibly
nontoric) projective algebraic varieties X ⊂ Pa, Y ⊂ Pb, we see that the product X × Y ⊂
Pa × Pb is also a projective variety. Notice however, that the natural embedding is not in
Pa+b, as one could expect from the affine case. In fact Pa × Pb ⊂ Pab+a+b.

Exercises

1. Prove that every character (C∗)n → C∗ is given by x→ xa for some a ∈ Zn.

2. Prove that every polynomial in the ideal of an affine toric variety is a linear combination
of binomials - cf. point 3. in Lemma 7.

3. Describe the ideals of the Segre product Pa1×· · ·×Pan and of the (aribtrary) Veronese
reembeding of Pa.

4. Prove that for a fixed lattice Zd ⊂ Rd there is a natural bijection between (convex,
rational, polyhedral) cones (in Rd) and finitely generated saturated monoids (in Zd).

5. Prove that the convex hull of points (0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 2), (1, 1, 3) is not a
normal polytope (in the lattice Z3).

6. Prove that a lattice polytope P is normal if and only if ({1} × P ) ∩M generates a
saturated monoid.

7. (a) An f -vector (f0, . . . , fm) ∈ Zm+1 for an m-dimensional polytope P is a sequence of
positive integers, where fi equals the number of i dimensional faces of P . Compute
the number of points of a projective toric variety X defined by lattice points of a
polytope P over a finite field, in terms of the f -vector.

(b) * Assuming X is smooth, use Weil conjectures (now proved due to work of
Grothendieck and Deligne), to give a formula for Betti numbers of X, again
in terms of the f -vector.

8. Prove that for any lattice polytope P of dimension d, the polytope (d− 1)P is normal.
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9. Prove a theorem of Mumford, in the case of toric varieties; Let X be a projective toric
variety. For r large enough the r-th Veronese reembeding vr(X) of X is defined by
quadratic equations.
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