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Abstract. In this note an R-bounded H∞-calculus for linear operators associ-
ated to cylindrical boundary value problems is proved. The obtained results are
based on an abstract result on operator-valued functional calculus by N. Kalton
and L. Weis, cf. [26]. Cylindrical in this context means that both domain and
differential operator possess a certain cylindrical structure. In comparison to
standard methods (e.g. localization procedures), our approach looks rather ele-
gant and provides short proofs. Besides, we are even able to deal with some classes
of equations on rough domains. For instance, we can extend the well-known (and
in general sharp) range for p such that the (weak) Dirichlet Laplacian admits an
H∞-calculus on Lp(Ω), from (3 + ε)′ < p < 3 + ε to (4 + ε)′ < p < 4 + ε for
three dimensional bounded or unbounded Lipschitz cylinders Ω. Our approach
even admits mixed Dirichlet Neumann boundary conditions in this situation.

1. Introduction

Consider the boundary value problem

λu+A(x,D)u = f in Ω,
Bj(x,D)u = 0 on ∂Ω (j = 1, ...,m), (1.1)

of order 2m. Many situations in mathematics and in applied sciences naturally lead
to problems of type (1.1) in cylindrical domains. In the simplest case Ω might be
a rectangle, a cube, or a cylinder. Hence Ω is of the form Ω = V1 × V2 with V1 an
interval in R and V2 an interval, a rectangle, or a circle in R2. We refer, e.g., to the
textbook [7] and [8] for a demonstration of the significance of problems on such Ω.
More generally, in this note Vi will always assumed to be a standard domain, i.e.
Rn, Rn

+, or a domain with compact boundary in Rn for n ≥ 1. Furthermore, our
approach is not restricted to products of just two domains. In fact, we will consider
domains of the form

Ω =
k∏
i=1

Vi

for k ∈ N and standard domains Vi ⊂ Rni , ni ∈ N, i = 1, . . . , k. To take full
advantage of the cylindrical shape of Ω, also the corresponding differential operators
are required to possess cylindrical structure. Roughly speaking, we assume that
A(x,D) (and in fact also Bj(x,D)) resolves into k parts

A = A1 +A2 + · · ·+Ak
1
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such that Ai merely acts on Vi, i = 1, . . . , k. Note that many standard systems,
such as the heat equation with Dirichlet or Neumann boundary conditions, are of
this form.

Of course, several cases, e.g. infinite cylinders Ω = V × Rn, could be handled
via standard localization procedures employing an infinite partition of the unity.
However, such procedures are generally extensive and take quite some pages of ex-
haustive calculations and estimations. This is not the strategy we pursue here. In
fact, we essentially take advantage of the cylindrical structure of domain and op-
erator and employ operator-valued functional calculus. Roughly speaking, by this
method the treatment of (1.1) in Ω is reduced to corresponding results on the cross-
sections Vi, for which they are well-known (see e.g. [11], [10]). This approach reveals
a much shorter and more elegant way to prove properties such as an R-bounded
H∞-calculus for linear operators associated to cylindrical boundary value problems.
Note that in the regarded situation an R-bounded H∞-calculus implies the im-
portant maximal regularity, a rather useful tool for the treatment of related semi-
and quasilinear problems, cf. [11]. We refer to Section 4 for precise definitions and
the obtained results on general cylindrical boundary value problems (on sufficiently
smooth domains). Our main result in this direction is Theorem 4.6.

The idea to apply operator-valued theory for the treatment of boundary value
problems in infinite cylinders to our knowledge first appeared in [19] and [20], see also
[31]. The results in these papers are based on operator-valued multiplier theorems in
Besov spaces obtained in [5] and are therefore restricted to infinite cylinders of the
form Ω = V ×Rn and to operators with constant coefficients on Rn. It is interesting
to note that, although it is more abstract, the approach based on functional calculus
presented here yields not only results of the same quality, but we can also deal with
finite cylinders and general operators on the cross-sections. Hence, this method
admits a much larger class of boundary value problems. In [19] and [20] also a
couple of further applications are discussed. For example, a generalized form of
fundamental solutions for operator-valued problems is derived. The results in [20]
also demonstrate that the approach to cylindrical problems based on operator-valued
theory is by no means restricted to elliptic or parabolic equations.

Note that X-valued parabolic boundary value problems in standard domains were
extensively studied in [11]. There a bounded H∞-calculus and hence maximal reg-
ularity for the operator of the associated Cauchy problem is proved in the situation
when X is of class HT . The results obtained in the paper at hand also extend the
maximal regularity results proved in [11] to a class of domains with non-compact
boundary. For classical papers on scalar-valued boundary value problems we refer
to [15], [1], [2], and [34] in the elliptic case and to [3], [4], and [29] in the parameter-
elliptic and parabolic case. (For a more comprehensive list see also [11].) For an
approach to a class of elliptic differential operators with Dirichlet-boundary con-
ditions in uniform C2-domains we refer to [27]. We want to remark that all cited
results above are based on standard localization procedures for the domain, contrary
to the approach presented in this paper.



H∞-CALCULUS FOR CYLINDRICAL BOUNDARY VALUE PROBLEMS 3

The development of the approach just described, specifically working for cylin-
drical boundary value problems, might already be justified by the significance and
the frequent appearance of cylindrical problems. On the other hand, this approach
reveals a couple of further advantages. In fact, we will be able to handle also some
classes of boundary value problems on rough domains or with degenerate coeffi-
cients. More precisely, in Section 5 the cross-sections Vi are allowed to be bounded
(graph) Lipschitz domains. This relies on the fact that the abstract results we ap-
ply ’only’ require an H∞-calculus for the operators on the cross-sections, no matter
how domain or operator look in detail. An H∞-calculus can be derived e.g. for
the Dirichlet- or the Neumann-Laplacian on bounded Lipschitz domains. Our main
results on domains with Lipschitz cross-sections, giving an R-bounded H∞-calculus
for the Laplacian, are Theorem 5.2 and Theorem 5.5. With regard on existing litera-
ture, it is interesting to note that here large classes of unbounded Lipschitz domains
and (simultaneously) of mixed Dirichlet Neumann type boundary conditions are in-
cluded. We refer to [22], [23], and to the literature cited therein for more information
on problems with mixed boundary conditions in Lipschitz domains.

As a further interesting outcome (see Theorem 5.5, also Corollary 5.7), we can
easily extend the range for p such that the weak Dirichlet Laplacian (see (5.3),
(5.4) for the definition; also Remark 5.3c)) admits this property on Lp(Ω), from
(3+ε)′ < p < 3+ε to (4+ε)′ < p < 4+ε for three (or higher) dimensional Lipschitz
cylinders Ω. Recall that for general three (or higher) dimensional Lipschitz domains
the smaller range is sharp, in the sense that for every ε > 0 there exists a Lipschitz
domain Ω such that the Dirichlet problem in Lp(Ω) is ill-posed, cf. [25]. In R2,
however, it is known that the 3 in the range condition can be replaced by 4, see [25].
Hence, our technique preserves the larger range, provided every cross-section admits
this range for p. Another interesting outcome is that we obtain highest possible
regularity in the directions of smooth cross-sections (see Remark 5.3). This is also
known to fail for general bounded Lipschitz domains. For literature on general
bounded Lipschitz domains we refer to [25], [38] for the Dirichlet problem and to
[17], [38] for the Neumann problem and to the references therein.

The proofs of the results in Sections 4 and 5 are based on an abstract result on
operator-valued functional calculus obtained by N. Kalton and L. Weis in [26] and
its generalization given in [28]. An R-bounded H∞-calculus is a very strong tool
in the theory of linear an nonlinear PDE’s. Particularly, for the treatment of free
boundary value problems the result of Kalton and Weis turned out to be of crucial
importance, see e.g. [16], [32]. The principle symbols arising in the treatment of
such problems are in general of intricate non-homogeneous structure and cannot be
handled by classical methods. We refer to [12] for more information on that. In
Section 2 we recall basic notions related to an R-bounded H∞-calculus and give a
precise statement of the Kalton-Weis theorem. From this general result we derive
specific versions on sums and products of operators suitable for our purposes.

An essential assumption for the results in Sections 4 and 5 is that the opera-
tors on the cross-sections are resolvent commuting. In Section 6, however, we will
demonstrate that our approach is not restricted to this situation. There we allow
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for disturbances of the cylindrical structure of the form

A(x,D) = A1(x1, Dx1) + r(x1)A2(x2, Dx2).

Our main results in this context are represented by Theorem 6.1 and Theorem 6.2.
Even some sorts of degenerate coefficients r are admitted. Their proofs are based
on a non-commutative version of the Kalton-Weis theorem, see [35] and [33].

2. Sectorial operators and R-boundedness

We employ standard notation throughout this article. The symbols X,Y,E, and
F stand for Banach spaces. Given a closed operator A, we denote by D(A), ker(A),
and R(A) domain of definition, kernel, and range, respectively. Furthermore, by
ρ(A) and σ(A) we denote resolvent set and spectrum of A. The symbol L(X,Y )
stands for the Banach space of all bounded linear operators from X to Y equipped
with operator norm ‖ · ‖L(X,Y ). As an abbreviation we set L(X) := L(X,X).

For p ∈ [1,∞) and a domain G ⊂ Rn, Lp(G,F ) denotes the F -valued Lebesgue
space of all p-Bochner-integrable functions with norm

‖f‖Lp(G,F ) :=

∫
G

‖f(x)‖pFdx

 1
p

.

We also write L∞(G,F ) for the space consisting of all functions f satisfying ‖f‖∞ :=
ess supx∈G ‖f(x)‖F < ∞. The F -valued Sobolev space of order m ∈ N0 := N ∪ {0}
is denoted by Wm,p(G,F ) and its norm is given by

‖f‖Wm,p(G,F ) :=

 ∑
|α|≤m

‖Dαf‖pLp(G,F )

 1
p

,

where α ∈ Nn
0 is a multiindex. We write ‖ · ‖p := ‖ · ‖Lp(G,F ) and ‖ · ‖p,m :=

‖·‖Wm,p(G,F ) for short. Finally, for m ∈ N0∪{∞}, Cm(G,F ) denotes the space of all
m times continuously differentiable functions and Cγ(G,F ) the intermediate space
of Hölder continuous functions for γ ∈ (0,∞). By C∞c (G,F ) we denote the subspace
of compactly supported functions in C∞(G,F ). Finally, the symbol BUC(G,F ) is
used for the space of bounded uniformly continuous functions and BUCm(G,F ) and
BUCγ(G,F ) are defined accordingly.

In order to avoid confusion with different definitions for the notion of sectoriality
occurring in the literature, next we precisely clarify what we mean by a sectorial
operator.

Definition 2.1. A closed linear operator A in a Banach space X is called sectorial,
if

(1) D(A) = X, ker(A) = {0}, R(A) = X,
(2) (−∞, 0) ⊂ ρ(A) and there is some C > 0 such that ‖t(t + A)−1‖L(X) ≤ C

for all t > 0.
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In this case it is well-known, see e.g. [11], that there exists a φ ∈ [0, π) such that the
uniform estimate in (2) extends to all

λ ∈ Σπ−φ := {z ∈ C\{0}; | arg(z)| < π − φ}.

The number

φA := inf{φ : ρ(−A) ⊃ Σπ−φ, sup
λ∈Σπ−φ

‖λ(λ+A)−1‖L(X) <∞}

is called spectral angle of A. The class of sectorial operators is denoted by S(X).

Observe that σ(A) ⊂ ΣφA . As is well-known, in case that φA < π
2 , −A generates

a bounded analytic C0-semigroup on X. For a suitable treatment of quasilinear
problems, however, this property might not be enough. Then maximal regularity is
required, which implies that the solution of the related Cauchy problem{

u′ +Au = f in R+,
u(0) = 0,

satisfies the estimate

‖u′‖Lp(R+,X) + ‖Au‖Lp(R+,X) ≤ C‖f‖Lp(R+,X) (2.1)

with a C > 0 independent of f ∈ Lp(R+, X). We denote this class of operators by
MR(X).

Boundedness and analyticity of the generated semigroup in general are not enough
to guarantee (2.1) (except if X is a Hilbert space). Therefore other sufficient criteria
implying maximal regularity have been successfully established in recent years. For
instance, if the Banach space X is of class HT in [36, Theorem 4.2] it is shown that
the property of maximal regularity is equivalent to the R-sectoriality of an operator
A. This notion is based on the concept of R-bounded operator families introduced
below. Also recall that a Banach space X is of class HT or, equivalently, a UMD
space, if there exists a q ∈ (1,∞) such that the Hilbert transformation f 7→ Hf :=
1
πPV

(
1
t

)
∗ f acts as a bounded operator on Lq(R, X). Typical examples of spaces

of class HT are given by Hilbert spaces and reflexive Lp(G)-spaces. Also, Lp(G,X)
is of class HT provided X is of class HT and 1 < p <∞. We refer to [11] and [28]
for a comprehensive introduction to the notion of R-bounded operator families and
its relation to maximal regularity and to other functional analytic properties.

Definition 2.2. A family T ⊂ L(X,Y ) is called R-bounded, if there exist a C > 0
and a p ∈ [1,∞) such that for all N ∈ N, Tj ∈ T , xj ∈ X, and all independent
symmetric {−1, 1}-valued random variables εj on a probability space (G,M, P ) for
j = 1, ..., N we have that

‖
N∑
j=1

εjTjxj‖Lp(G,Y ) ≤ C‖
N∑
j=1

εjxj‖Lp(G,X). (2.2)

The smallest C > 0 such that (2.2) is satisfied is called R-bound of T and denoted
by R(T ).
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Definition 2.3. A closed operator A in X satisfying condition (1) of Definition 2.1
is called R-sectorial, if there exist an angle φ ∈ [0, π) and a constant Cφ > 0 such
that

R({λ(λ+A)−1 : λ ∈ Σπ−φ}) ≤ Cφ. (2.3)

The class of R-sectorial operators is denoted by RS(X) and we call φRSA given as
the infimum over all angles φ such that (2.3) holds the R-angle of A.

Note that R-boundedness implies uniform boundedness. This yields RS(X) ⊂
S(X) and φA ≤ φRSA . However, the converse in general is false, except for Hilbert
spaces.

Since we will use it frequently in the sequel, we recall the following two properties
of R-bounded families. The first one shows that R-bounds behave like uniform
bounds and will be used without any further notice. It is an easy consequence of
the definition. The second one is known as the contraction principle of Kahane. A
proof can be found in [28] or [11].

Lemma 2.4. a) Let X,Y , and Z be Banach spaces and let T ,S ⊂ L(X,Y ) as
well as U ⊂ L(Y, Z) be R-bounded. Then T + S ⊂ L(X,Y ) and UT ⊂ L(X,Z) are
R-bounded as well and we have

R(T + S) ≤ R(S) +R(T ), R(UT ) ≤ R(U)R(T ).

b) Let p ∈ [1,∞). Then for all N ∈ N, xj ∈ X, εj as in Definition 2.2, and for all
aj , bj ∈ C with |aj | ≤ |bj | for j = 1, . . . , N , we have

‖
N∑
j=1

ajεjxj‖Lp(G,X) ≤ 2‖
N∑
j=1

bjεjxj‖Lp(G,X). (2.4)

3. Functional calculus and sums of closed operators

Next we introduce an operator-valued holomorphic functional calculus for sectorial
operators. This will lead to the notion of an H∞-calculus and of an R-bounded
H∞-calculus, which represent two further important subclasses of RS(X). For a
comprehensive introduction to this concept we refer to [9], [26], [11], [28], and [14].

Let A ⊂ L(X) denote the subalgebra of bounded operators on X which com-
mute with the resolvent (µ − A)−1. For σ ∈ (0, π] we denote by H∞(Σσ,A) the
commutative algebra of bounded, A-valued, holomorphic functions on Σσ, that is,

H∞(Σσ,A) := {f : Σσ → A; f is holomorphic, |f |σ∞ <∞}

where
|f |σ∞ := sup{‖f(z)‖L(X); z ∈ Σσ}.

Using ρ(z) := z
(1+z)2

we define the subalgebra

H0(Σσ,A) := {f ∈ H∞(Σσ,A) : there are C, ε > 0 such that

‖f(z)‖L(X) ≤ C|ρ(z)|ε for all z ∈ Σσ}.
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Let A be a sectorial operator in X with spectral angle φA. Pick σ ∈ (φA, π] and
ψ ∈ (φA, σ). The path Γ := (∞, 0]eiψ∪[0,∞)e−iψ oriented counterclockwise, i.e. the
positive real axis R+ lies to the left, stays with the only possible exception at zero
in the resolvent set of A. Hence, by Cauchy’s integral formula and the sectoriality
of A, the Bochner integral

f(A) :=
1

2πi

∫
Γ
f(µ)(µ−A)−1dµ

represents a well-defined element in L(X) for every f ∈ H0(Σσ,A). As f is supposed
to take values in A the above formula defines an algebra homomorphism

ΦA : H0(Σσ,A) → L(X), f 7→ f(A), (3.1)

known as Dunford calculus. For arbitrary f ∈ H∞(Σσ,A) we set

f(A) := ρ(A)−1(ρf)(A).

This definition gives rise to a closed, densely defined operator in X. Moreover, by
Cauchy’s theorem it is consistent with the former one for f ∈ H0(Σσ,A). Note that
in the scalar valued case we have A = C. Then we write H∞(Σσ) and H0(Σσ). For
the purposes in this note, it will be sufficient to introduce an H∞-calculus for this
situation.

Definition 3.1. a) Let A = C. The operator A ∈ S(X) is said to admit a bounded
H∞-calculus on X, if there exists σ > φA such that ΦA given in (3.1) is bounded
(w.r.t. the topologies on H∞(Σσ) and L(X)). We denote the class of operators
admitting a bounded H∞-calculus on X by H∞(X). The bound for ΦA in general
depends on σ. The infimum over all σ > φA such that this bound remains finite is
called H∞-angle of A and is denoted by φ∞A .
b) Accordingly, A ∈ S(X) is said to admit an R-bounded H∞-calculus on X, if
there exist a σ > φA and a constant Cσ > 0 such that

R({f(A); f ∈ H∞(Σσ), |f |σ∞ ≤ 1}) ≤ Cσ. (3.2)

This class is denoted by RH∞(X) and the corresponding RH∞-angle by φR,∞A .

The following result is known as convergence lemma (see e.g. [9, Lemma 2.1], [21],
[14, Theorem 4.7]).

Lemma 3.2. Let f ∈ H∞(Σσ,A) and may ρn ∈ H0(Σσ) be defined by ρn(z) :=
n2z/(1+nz)(n+ z). Then, f(A) ∈ L(X) if and only if supn∈N ‖(ρnf)(A)‖ <∞. In
this case f(A)x = lim

n→∞
(ρnf)(A)x for all x ∈ X.

Thanks to the convergence lemma it is easy to see that, in case that A ∈ H∞(X),
ΦA extends boundedly from H0(Σσ) to H∞(Σσ).

Given an operator admitting a bounded or an R-bounded H∞-calculus, naturally
the question arises, whether ΦA can be extended to some class of A-valued functions.
By combining the notion of R-boundedness with operator-valued functional calculus
an affirmative answer to this question is given by N. Kalton and L. Weis in [26]. For
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the precise formulation of this result we need the following property from Banach
space geometry.

Definition 3.3. A Banach space X is said to have property (α), if there exists a
C > 0 such that for all n ∈ N, all αij ∈ C with |αij | ≤ 1, all xij ∈ X, and all
independent symmetric {−1, 1}-valued random variables ε1i on a probability space
(G1,M1, P1) and ε2j on a probability space (G2,M2, P2) for i, j = 1, ..., N , we have
that∫

G1

∫
G2

‖
N∑

i,j=1

ε1i (u)ε
2
j (v)αijxij‖Xdudv ≤ C

∫
G1

∫
G2

‖
N∑

i,j=1

ε1i (u)ε
2
j (v)xij‖Xdudv.

Again standard spaces such as Hilbert spaces and reflexive Lp(G)-spaces enjoy prop-
erty (α). Moreover, the spaces Lp(G,X) enjoy property (α) for 1 ≤ p < ∞, if X
does so (cf. [28]). Note that for Banach spaces X of class HT we have the relations

S(X) ⊃ RS(X) ⊃ H∞(X) ⊃ RH∞(X)

between the single classes. For sectorial A on X we also have

φA ≤ φRSA ≤ φ∞A ≤ φR,∞A

for the corresponding angles, cf. [11]. In [26, Theorem 5.3] it is proved that
RH∞(X) = H∞(X) and φ∞A = φR,∞A , provided that X has additionally property
(α).

The mentioned result of Kalton and Weis reads as follows (see [26, Corollary 5.4]).

Proposition 3.4. Let X be a Banach space having property (α) and A ∈ S(X).
Given an R-bounded subset τ ⊂ L(X), we put

H∞(Σσ, τ) := {f ∈ H∞(Σσ,A); f(z) ∈ τ (z ∈ Σσ)}.
If A admits a bounded H∞-calculus, then for σ > φ∞A we have

R({f(A); f ∈ H∞(Σσ, τ)}) <∞.

For a long time it remained an open question, under what circumstances in a
Banach space X the sum of two closed operators is closed again. A first suitable
answer was given by the celebrated result of Dore and Venni in [13] stating that
if both A and B have bounded imaginary powers with sum of power angles less
than π and if X is of class HT , then A + B is closed and invertible. Another
answer to this question is also contained in Proposition 3.4 as a special case. In
fact this result yields the same assertion if one of the operators is R-sectorial and
if the other one admits a bounded H∞-calculus, see [26, Theorem 6.3]. This is in
particular important for the situation of Cauchy problems (i.e. B = ∂t), since then
the assumption for A of having bounded imaginary powers is reduced to the weaker
property of R-sectoriality. In view of our applications, in this note we want sums
A + B or products AB not only to be closed again, but even to admit an H∞-
calculus. This leads to the following result, which is also obtained as a consequence
of Proposition 3.4.
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Proposition 3.5. Let X be a Banach space of class HT having property (α). Let
A,B ∈ H∞(X) with φ∞A + φ∞B < π be two resolvent commuting operators.

(a) Then A+B admits an R-bounded H∞-calculus and for the RH∞-angle we
have φR,∞A+B ≤ max {φ∞A , φ∞B }.

(b) Let further 0 ∈ ρ(A). Then AB admits an R-bounded H∞-calculus with
φR,∞AB ≤ φ∞A + φ∞B .

Remark 3.6. By iteration it readily follows that the assertions remain true for finite
sums (resp. finite products) as long as in each step the condition for the H∞-angles
and commutativity of the resolvents is satisfied.

Proof. We give a detailed proof of part (b) and omit the very similar proof of part
(a). Let φ ∈ (φ∞B , π − φ∞A ), σ ∈ (φ∞A , π − φ), and fix z ∈ Σσ. We set gz(λ) := zλ for
λ ∈ Σφ. Let θ ∈ (σ + φ, π) and f ∈ H0(Σθ) with |f |θ∞ ≤ 1. Then f ◦ gz ∈ H∞(Σφ).
By the fact that X has property (α) we also have B ∈ RH∞(X) and φR,∞B = φ∞B .
Hence

R({f ◦ gz(B); z ∈ Σσ, |f |θ∞ ≤ 1}) <∞ (3.3)

follows. By permanence properties for sectorial operators we also have that gz(B) =
zB is sectorial with φzB ≤ arg z + φB < θ. Thus f(gz(B)) is well-defined and a
straight forward calculation shows that

f ◦ gz(B) = f(gz(B)) = f(zB) (z ∈ Σσ)

(see also [28, Proposition 15.11]). Relation (3.3) therefore implies that zB admits
an R-bounded H∞-calculus uniformly in z ∈ Σσ, i.e.

R({f(zB); z ∈ Σσ, |f |θ∞ ≤ 1}) <∞.

In particular, we have φR,∞zB ≤ σ + φ.

Now let ψ ∈ (σ + φ, θ) and Γψ := (−∞, 0]eiψ ∪ [0,∞)e−iψ. We set Rλ(z) :=
(λ− zB)−1 for λ ∈ C \ Σσ+φ and z ∈ Σσ and define

Hf (z) := f(zB) =
1

2πi

∫
Γψ

f(λ)Rλ(z)dλ.

Observe that λ ∈ C \ Σσ+φ implies that z 7→ (λ − zB)−1 is holomorphic on Σσ.
Lebesgue’s dominated convergence theorem therefore yields continuity of Hf . Fur-
thermore, for any simple closed curve γ ⊂ Σσ Fubini’s theorem and Cauchy’s theo-
rem give us ∫

γ
Hf (z)dz =

1
2πi

∫
Γψ

∫
γ
f(λ)Rλ(z)dzdλ = 0.

Thanks to Morera’s theorem holomorphy of Hf on Σσ follows. By assumption Rλ(z)
commutes with the resolvent of A for all λ ∈ R(Γψ) \ {0} and z ∈ Σσ. Continuity
of the resolvent therefore implies the same to be true for Hf (z) (z ∈ Σσ). From
Proposition 3.4 we infer that the family {Hf (A); |f |θ∞ ≤ 1} is R-bounded.



10 TOBIAS NAU AND JÜRGEN SAAL

It remains to show that

Hf (A) =
1

2πi

∫
Γψ

f(λ)(λ−AB)−1dλ. (3.4)

We only show Rλ(A) = (λ−AB)−1 for λ ∈ C\Σσ+φ by an approximation argument.
If this is proved, (3.4) follows easily by the same arguments. Let κ ∈ (φ∞A , σ) and
define the path Γκ := (−∞, 0]eiκ∪[0,∞)e−iκ so that R(Γκ)\{0} ⊂ ρ(A). Employing
the Dunford approximation sequence ρn from Lemma 3.2 and the identity

(λ− zB)−1(z −A)−1(λ−AB) =
(
(z −A)−1 +B(λ− zB)−1

)
,

we deduce for x ∈ D(AB) that

(ρnRλ)(A)(λ−AB)x =
1

2πi

∫
Γκ

ρn(z)(λ− zB)−1(z −A)−1(λ−AB)xdz

=
1

2πi

∫
Γκ

ρn(z)(z −A)−1xdz +
1

2πi

∫
Γκ

ρn(z)B(λ− zB)−1xdz.

Again λ ∈ C \Σσ+φ implies that z 7→ B(λ− zB)−1 is holomorphic on Σσ ⊃ R(Γκ) \
{0}. Hence, the second integral vanishes by Cauchy’s theorem and we arrive at

(ρnRλ)(A)(λ−AB)x = ρn(A)x→ x (n→∞).

This proves Rλ(A) to be a left inverse to (λ − AB). Since (λ − AB) is closed, the
same approximation argument shows that Rλ(A) is a right inverse as well. The
proof is now complete. �

In Section 6 we will demonstrate that our approach is not restricted to the resol-
vent commuting situation. For this purpose, we employ a corresponding result to
Proposition 3.5(a) for the non-commuting case, cf. [33]. Indeed, the same assertion
holds, if the following so-called Labbas-Terreni condition is satisfied.

Let 0 ∈ ρ(A) and let there exist constants c > 0, 0 ≤ α < β < 1,
ψA > φA, ψB > φB, ψA + ψB < π,

such that for all λ ∈ Σπ−ψA , µ ∈ Σπ−ψB it holds that

‖A(λ+A)−1[A−1, (µ+B)−1]‖ ≤ c/(1 + |λ|)1−α|µ|1+β .

 (3.5)

Here [S, T ] = ST − TS. The result given in [33] then reads as follows.

Proposition 3.7. Let X be a Banach space of class HT with property (α), let
A,B ∈ H∞(X) and suppose that (3.5) holds for some angles ψA > φ∞A , ψB > φ∞B
with ψA + ψB < π. Then there exists δ ≥ 0 such that A + B + δ is invertible and
such that A + B + δ ∈ RH∞(X) with φ∞A+B+δ ≤ max{ψA, ψB}. In case that the
resolvents commute or if c in (3.5) is small enough, we can take δ = 0.

Remark 3.8. Again iteration is possible, provided the angle and commutator con-
ditions are satisfied in every step.
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Remark 3.9. Both Proposition 3.5 and Proposition 3.7 exist in slightly different
versions if X is an arbitrary Banach space, cf. [26], [33]. In our applications in the
subsequent sections, however, the assumptions ‘of class HT ’ and ‘of property (α)’
are always satisfied.

4. Cylindrical parameter-elliptic boundary value problems

First let us recall the notion of parameter-ellipticity from [11]. Let F be a Banach
space, G ⊂ Rn be a domain, and

A(x,D) :=
∑

|α|≤2m

aα(x)Dα, (4.1)

where m ∈ N, α ∈ Nn
0 , and aα : G→ L(F ). For λ ∈ C and boundary operators

Bj(x,D)u :=
∑
|β|≤mj

bj,β(x)(Dβu)|∂G, (4.2)

where mj < 2m, β ∈ Nn
0 , and bj,β : ∂G → L(F ) for j = 1, ...,m, we consider the

boundary value problem

λu+A(x,D)u = f in G,
Bj(x,D)u = 0 on ∂G (j = 1, ...,m). (4.3)

Definition 4.1. In the setting introduced above the L(F )-valued homogeneous
polynomial

a(ξ) :=
∑

|α|=2m

aαξ
α (ξ ∈ Rn)

is called L(F )-valued parameter-elliptic, if there exists an angle φ ∈ [0, π) such that
the spectrum σ(a(ξ)) of a(ξ) in L(F ) satisfies

σ(a(ξ)) ⊂ Σφ (ξ ∈ Rn, |ξ| = 1). (4.4)

Then
ϕ := inf{φ : (4.4) holds}

is called angle of ellipticity of a. A differential operator A(x,D) :=
∑
|α|≤2m aα(x)Dα

with coefficients aα : G → L(F ) is called L(F )-valued parameter-elliptic in G of
angle of ellipticity ϕ, if the principal part of its symbol

a#(x, ξ) :=
∑

|α|=2m

aα(x)ξα

for every x ∈ G is L(F )-valued parameter-elliptic of this angle of ellipticity.

Definition 4.2. Let F be a Banach space, G ⊂ Rn be a C1-domain, and let A(x,D),
Bj(x,D) be as given in (4.1), (4.2). We set B#

j (x,D)u :=
∑
|β|=mj bβ,j(x)(D

βu)|∂G,
A#(x,D) :=

∑
|α|=2m aα(x)Dα, and assume that A(x,D) is L(F )-valued parameter-

elliptic in G of angle of ellipticity ϕ ∈ [0, π). For each x0 ∈ ∂G we write the boundary



12 TOBIAS NAU AND JÜRGEN SAAL

value problem in local coordinates corresponding to x0. The boundary value problem
(4.3) is said to satisfy the Lopatinskii-Shapiro condition, if for every φ > ϕ the ODE

(λ+A#(x0, ξ
′, Dxn))v(xn) = 0, xn > 0,

B#
j (x0, ξ

′, Dxn)v(0) = hj , j = 1, ...,m,

v(xn) → 0, xn →∞,

has a unique solution v ∈ C((0,∞), F ) for each (h1, ..., hm)T ∈ Fm and for each
λ ∈ Σπ−φ and ξ′ ∈ Rn−1 with |ξ′|+ |λ| 6= 0.

We refer to [37] for an introduction to the Lopatinskii-Shapiro condition for scalar
valued boundary value problems and to [11] for an extensive treatment of the F -
valued case. Parameter-ellipticity of a boundary value problem now reads as follows.

Definition 4.3. We set

(A,B) := (A(·, D), B1(·, D), ..., Bm(·, D)).

The boundary value problem (A,B) given through (4.3) is called L(F )-valued
parameter-elliptic in G of angle ϕ ∈ [0, π), if A(·, D) is L(F )-valued parameter-
elliptic in G of angle ϕ ∈ [0, π) and if the Lopatinskii-Shapiro condition holds. To
indicate that ϕ is the angle of ellipticity of the boundary value problem (A,B) we
use the subscript notation ϕ(A,B).

Next, consider a domain Ω ⊂ Rn given as product of finitely many domains
Vi ⊂ Rni with ni ∈ N and

∑k
i=1 ni = n, that is Ω =

∏k
i=1 Vi. For x ∈ Ω we write

x = (x1, ..., xk) with xi ∈ Vi for x ∈ Ω and i = 1, ..., k, whenever we want to refer
to the cylindrical geometry of Ω. Accordingly, we write α = (α1, ..., αk) ∈

∏k
i=1 Nni

0

for a multiindex α ∈ Nn. Finally we set

∂Vi := V1 × . . .× Vi−1 × ∂Vi × Vi+1 × . . .× Vk (4.5)

and ∂Ω :=
k⋃
i=1

∂Vi. As ∂Vi ∩ ∂Vj = ∅ for i 6= j, all points belonging to the Lebesgue

null set of edges of Ω (with respect to the Lebesgue measure on the boundary of Ω)
are neglected in this definition of ∂Ω.

In this section we particularly deal with the L(F )-valued boundary value problems

λu+A(x,D)u = f in Ω,
Bj(x,D)u = 0 on ∂Ω (j = 1, ...,m), (4.6)

with operators A(x,D) and Bj(x,D) of the following form.

Definition 4.4. Let mi ∈ N for i = 1, ..., k and set m := max{mi : i = 1, ..., k} and
Bi,j(·, D) = 0 for j > mi. The boundary value problem (4.6) is called cylindrical if Ω
is a cylindrical domain as introduced above and if the operator A(·, D) is represented
as

A(x,D) =
k∑
i=1

Ai(xi, D) =
k∑
i=1

∑
|αi|≤2mi

aiαi(x
i)D(0,...,0,αi,0,...0)
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and the boundary operator on ∂Ω is given as

Bj(x,D)u =
k∑
i=1

χ∂Vi(x)Bi,j(x
i, D)u

=
k∑
i=1

χ∂Vi(x)
∑

|βi|≤mi,j

bij,βi(x
i)(D(0,..,0,βi,0,...,0)u)|∂Ω

for mi,j < mi and j = 1, ...,m, where χ∂Vi denotes the characteristic function of
the set ∂Vi. In other words, the differential operators A(x,D) and Bj(x,D) resolve
completely into k parts Ai(xi, D) and Bi,j(xi, D) of which each one acts merely on
Vi.

For 1 < p < ∞ the Lp(Ω, F )-realization of the boundary value problem (A,B)
given through (4.6) is defined by

D(A) :=
{
u ∈ Lp(Ω); Dαu ∈ Lp(Ω) for

k∑
i=1

|αi|
2mi

≤ 1

and Bj(·, D)u = 0 (j = 1, ...,m)
}

Au :=A(·, D)u, u ∈ D(A).

In case that mi = m for all i = 1, ..., k, we obviously have

D(A) := {u ∈W 2m,p(Ω, F ); Bj(·, D)u = 0 (j = 1, ...,m)}.

For i = 1, ..., k we consider the boundary value problems

(Ai, Bi) := (Ai(·, D), Bi,1(·, D), ..., Bi,mi(·, D))

given as

λu+Ai(x,D)u = f in Vi,
Bi,j(x,D)u = 0 on ∂Vi (j = 1, ...,mi),

(4.7)

which arise naturally by cylindrical decomposition of (A,B). For the cross-sections
Vi, we will admit the following types of domains.

Definition 4.5. Let m,n ∈ N. The domain G ⊂ Rn is called a standard domain in
Rn, if it is given as the whole space Rn, the half space Rn

+ or as a domain in Rn with
compact boundary, that is, a bounded or an exterior domain. If a standard domain
G is of class Cm, it is called a Cm standard domain.

From now on we assume every Vi ⊂ Rni to be given as a C2mi standard domain.
Furthermore, for some γi ∈ (0, 1), i = 1, ..., k, the following smoothness assumptions
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on the coefficients of (Ai, Bi) may hold:

aiαi ∈ BUCγi(Vi,L(F )) for |αi| = 2mi aiαi(∞) := lim
|xi|→∞, xi∈Vi

aiαi(x
i)

exists and ‖aiαi(x
i)− aiαi(∞)‖ ≤ C|xi|−γi (xi ∈ Vi, |xi| ≥ 1)),

aiαi ∈ [L∞ + Lrν ](Vi,L(F )) for |αi| = ν < 2mi,

where rν ≥ p,
2mi − ν

ni
>

1
rν
,

bij,βi ∈ C2mi−mi,j (∂Vi,L(F )) (j = 1, ...,mi; |βi| ≤ mi,j).


(4.8)

Our main theorem of this section reads as follows.

Theorem 4.6. Let 1 < p < ∞ and let F be a Banach space of class HT enjoying
property (α). Let Ω :=

∏k
i=1 Vi,

∑k
i=1 ni = n, and let every Vi be a C2mi standard

domain in Rni, ni ∈ N, i = 1, . . . , k. Furthermore, we assume that

(i) the boundary value problem (A,B) is cylindrical,
(ii) the coefficients of (Ai, Bi) satisfy (4.8),
(iii) (Ai, Bi) is L(F )-valued parameter-elliptic of angle ϕi := ϕ(Ai,Bi) ∈ [0, π) in

Vi, respectively in Vi ∪ {∞} in the sense of (4.8), line 1 in case of Vi being
unbounded,

(iv) ϕi + ϕj < π for i, j = 1, ..., k, i 6= j,
(v) ai

αi
(xi)aj

αj
(xj) = aj

αj
(xj)ai

αi
(xi) in L(F ) for i, j = 1, ..., k, i 6= j and a.e.

x ∈ Ω.

Then for every φ > max
i=1,...,k

{ϕi}, there exists δ = δ(φ) > 0 such that A + δ ∈

RH∞(Lp(Ω, F )) and φR,∞A+δ ≤ φ. Moreover we have

R({λ1−
∑k
i=1

|αi|
2miDα(λ+A+ δ)−1; λ ∈ Σπ−φ, 0 ≤

k∑
i=1

|αi|
2mi

≤ 1}) <∞. (4.9)

Remark 4.7. a) Note that no continuity of the boundary conditions at the edges
of Ω has to be assumed.
b) It is worthwhile to mention that another advantage of our approach lies in the
fact that it easily generalizes to the case of different p-integrability in the single
cross-sections Vi. In fact, if p = (p1, . . . , pk) ∈ (1,∞)k we set

Lp(Ω, F ) := Lp1(V1, L
p2(V2, . . . L

pk(Vk, F ) . . .)).

In the third line of the smoothness assumptions (4.8) then we have to replace p by
pi. The remaining definitions, such as the domain of A, remain exactly the same.
Also the statement of Theorem 4.6 holds without any change. Observe that step IIa)
of the proof implies that A1 and A2 are resolvent commuting on C∞c (Ω). Since this
space is dense in Lp(Ω) for p = (p1, . . . , pk), A1 and A2 are resolvent commuting in
the case of different pi as well. The remaining parts of the proof then copy verbatim.

We remark that according extensions to different p in each cross-section are valid
also for the results obtained in the subsequent sections.
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Proof. Step I: cylindrical decomposition.
We define Lp(Vi, F )-realizations of the boundary value problems (Ai, Bi) by

D(Ai) := {u ∈W 2mi,p(Vi, F ); Bi,j(·, D)u = 0 (j = 1, ...,mi)}
Aiu := Ai(·, D)u, u ∈ D(Ai).

As F is Banach space of class HT assumptions (ii), (iii) and [10, Theorem 2.3] show
that for every φ > ϕi there exists δi = δi(φ) ≥ 0 such that Ai + δi ∈ H∞(Lp(Vi, F ))
and φ∞Ai+δi ≤ φ. Moreover, it is proved in [11, Theorem 8.2] that

R({λ1− |α|
2miDα(λ+Ai + δi)−1; λ ∈ Σπ−φ, 0 ≤ |α| ≤ 2mi}) <∞. (4.10)

These statements remain true for the canonical extension of Ai to Lp(Ω, F ) which,
for simplicity, we will denote by Ai again. Note that the domain of Ai in Lp(Ω, F )
reads as

D(Ai) :=
{
u ∈ Lp

(
V1 × · · · × Vi−1,W

2mi,p(Vi, Lp(Vi+1 × · · · × Vk, F ))
)
;

Bi,j(·, D)u = 0 (j = 1, ...,mi)
} (4.11)

Step II: case k = 2.
a) We first show that resolvents of the extensions A1 and A2 commute. To this
end, we will frequently make use of the following observation. If T ∈ L(E1, E2) and
u ∈W k,p(G,E1) for Banach spaces E1, E2, and G ⊂ R open, then

DαTu = TDαu (|α| ≤ k) (4.12)

in Lp(G,E2). This follows easily by the fact that a derivative ∂xju represents the
limit of a convergent sequence in Lp(G,E1) and by the continuity of T . For the
following argumentation it will be convenient to introduce the notation

D(A1, X) := {u ∈W 2m1,p(V1, X); B1,j(·, D)u = 0, j = 1, . . . ,m1}
for the domain of A1 in the X-valued space Lp(V1, X). Here we are particularly
interested in the case X = D(A2, F ). According to step I,

λ+A1 : D(A1, D(A2, F )) → Lp(V1, D(A2, F ))

is an isomorphism for λ ∈ ρ(−A1). Fubini’s theorem yields

D(A1, D(A2, F )) ↪→W 2m1,p(V1,W
2m2,p(V2, F )) ∼= W 2m2,p(V2,W

2m1,p(V1, F )).

First we set E1 := W 2m1,p(V1, F ), E2 := W 1−1/p,p(∂V1, F ), and T = B1. Then
relation (4.12) implies

Dα2B1u = B1D
α2u (u ∈W 2m2,p(V2, E1), |α2| ≤ 2m2).

This shows that

D(A1, D(A2, F )) ↪→W 2m2,p(V2, D(A1, F )).

Since B2u = 0 for u ∈ D(A1, D(A2, F )), we even have

D(A1, D(A2, F )) ↪→ D(A2, D(A1, F )).
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Interchanging the roles of A1 and A2 we obtain the converse embedding. Hence we
have

D(A1, D(A2, F )) ∼= D(A2, D(A1, F ))

with equivalent norms. The above arguments also include that

Lp(V1, D(A2, F )) ∼= D(A2, L
p(V1, F )).

From this we conclude that

λ+A1 : D(A2, D(A1, F )) → D(A2, L
p(V1, F )) (4.13)

is isomorphic. Setting E1 = D(A1, F ), E2 = Lp(V1, F ), and T = λ + A1, relation
(4.12) gives us

Dα2(λ+A1)u = (λ+A1)Dα2u (u ∈ D(A2, D(A1, F ))).

Setting E1 = E2 = F and T = a1
α1 , in view of (4.12) we also see that Dα2 and the

coefficients a1
α1 commute. By our assumption (v) on the coefficients this yields

(µ+A2)(λ+A1)u = (µ+A1)(λ+A2)u (u ∈ D(A2, D(A1, F ))). (4.14)

Now pick f ∈ Lp(V2, L
p(V1, F )) and µ ∈ ρ(−A2). Then we have (µ + A2)−1f ∈

D(A2, L
p(V1, F )). Since (4.13) is isomorphic, we obtain

(λ+A1)−1(µ+A2)−1f ∈ D(A2, D(A1, F )).

Hence the application of (λ + A1)(µ + A2) on this expression makes sense and we
obtain by virtue of (4.14) that

(λ+A1)−1(µ+A2)−1f = (λ+A2)−1(µ+A1)−1f.

b) Let φ > max{ϕ1, ϕ2}. Thanks to assumption (iv) and part I) of the proof, for
i = 1, 2 there exist φ > φi > ϕi with φ1 + φ2 < π and δi = δi(φi) ≥ 0 such
that Ai + δi ∈ H∞(Lp(Ω, F )), φ∞Ai+δi < φi, and φ∞A1+δ1

+ φ∞A2+δ2
< π. Setting

δ := δ1 + δ2, D(Ã) := D(A1) ∩D(A2) and Ã := A1 +A2 + δ, Proposition 3.5 yields
Ã ∈ RH∞(Lp(Ω, F )) with φR,∞

Ã
< max{φ1, φ2} < φ.

c) It remains to show D(Ã) ⊂ D(A) and the R-boundedness statement (4.9). As F
has property (α), A2+δ2 ∈ RH∞(Lp(V2, F )) by [26, Theorem 5.3]. For |α1|

2m1
+ |α2|

2m2
≤

1 we consider the family of operators

{λ1−(
|α1|
2m1

+
|α2|
2m2

)
D(α1,α2)(λ+ Ã)−1; λ ∈ Σπ−φ}.

By the fact that A1 + δ1 ∈ H∞(Lp(Ω, F )) has bounded imaginary powers, we
obtain D(Aν1) = [Lp(Ω, F ), D(A1)]ν for ν ∈ [0, 1] (see [11, Theorem 2.5]), where
[Lp(Ω, F ), D(A1)]ν denotes the complex interpolation space between Lp(Ω, F ) and
D(A1) of order ν. From this we deduce

D(Aν1) = [Lp(Ω, F ), D(A1)]ν ↪→W 2m1ν,p(V1, L
p(V2, F )).
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Choosing δ1 suitably large this shows that D(α1,0)(A1 + δ1)
− |α1|

2m1 is bounded for
|α1| ≤ 2m1. Thus, thanks to Lemma 2.4a), it suffices to show that the family

{λ1−(
|α1|
2m1

+
|α2|
2m2

)(A1 + δ1)
|α1|
2m1D(0,α2)(λ+ Ã)−1; λ ∈ Σπ−φ,

|α1|
2m1

+
|α2|
2m2

≤ 1}

is R-bounded. To this end, pick σ ∈ (φ1,min{φ, π − φ2}). For any λ ∈ Σπ−φ we
define the holomorphic function

Gλ(z) := λ
1−(

|α1|
2m1

+
|α2|
2m2

)
z
|α1|
2m1D(0,α2)(λ+ z +A2 + δ2)−1 (z ∈ Σσ).

A homogeneity argument yields the existence of C = C(φ, σ) > 0 such that

|λ1−(
|α1|
2m1

+
|α2|
2m2

)
z
|α1|
2m1 | ≤ C|λ+ z|1−

|α2|
2m2 .

By virtue of Lemma 2.4b) and relation (4.10) we conclude

R({Gλ(z); z ∈ Σσ, λ ∈ Σπ−φ}) <∞.

From step II b) we also know that

D(0,α2)(λ+ z +A2 + δ2)−1(µ−A1)−1

= (µ−A1)−1D(0,α2)(λ+ z +A2 + δ2)−1.

Hence we may apply Theorem 3.4 to the result that

R({Gλ(A1); λ ∈ Σπ−φ}) <∞.

By an approximation argument very similar to the final part of the proof of Propo-
sition 3.5 we therefore see that

Gλ(A1) = λ
1−(

|α1|
2m1

+
|α2|
2m2

)(A1 + δ1)
|α1|
2m1D(0,α2)(λ+ Ã)−1.

Consequently, relation (4.9) follows. This, in turn, yields D(Ã) ⊂ D(A), hence
A = Ã.

Step III: case k > 2.
Given f ∈ Lp(Ω, F ), Lemma 3.2 and part IIa) of the proof imply

(ζ −Al)−1(λ− (Ai +Aj))−1f

= lim
n→∞

1
2πi

∫
Γ
ρn(µ)(ζ −Al)−1(λ− µ−Ai)−1(µ−Aj)−1dµ f

= lim
n→∞

1
2πi

∫
Γ
ρn(µ)(λ− µ−Ai)−1(µ−Aj)−1(ζ −Al)−1dµ f

= (λ− (Ai +Aj))−1(ζ −Al)−1f.

Hence the resolvent of an extension commutes with the resolvent of finite sums of
extensions. As the bounded H∞-calculus as well as relation (4.9) are preserved in
each iteration step, the claim for arbitrary k follows by induction. �



18 TOBIAS NAU AND JÜRGEN SAAL

5. The Laplacian on cylindrical Lipschitz domains with mixed
boundary conditions

In this section we still consider Ω :=
∏k
i=1 Vi, however, with the difference that

Vi ⊂ Rni now each may be a bounded Lipschitz domain of the following class.

Definition 5.1. A domain G ⊂ Rn is called a bounded Lipschitz domain, if it is
bounded and if there exists an M > 0 so that every point x = (x1, . . . , xn) ∈ ∂G
has a neighborhood U such that, eventually after an affine change of coordinates,
∂G ∩ U is described by the equation xn = ϕ(x1, . . . , xn−1), where ϕ is a Lipschitz
continuous function with Lipschitz constant bounded by M and where G∩U = {x ∈
U : xn > ϕ(x1, . . . , nn−1)}.

This definition is also used in [25], for instance. Domains G of the above type
are usually termed graph Lipschitz domains or strongly Lipschitz or domains with
Lipschitz boundary. Recall that on such domains standard function space theory,
trace results, definition of an outer unit normal, etc., are still available, c.f. [18], [25].
For more general classes of Lipschitz domains, see also [18] and [23].

On Lipschitz domains given by Definition 5.1 we consider the resolvent problem
for the Laplacian with mixed Dirichlet Neumann boundary conditions

λu−∆u = f in Ω,
u = 0 on Γ0,

∂νu = 0 on Γ1,
(5.1)

where ∂νu denotes the outer normal derivative of u, Γ0 :=
∏
i∈N0

Vi and Γ1 :=∏
i∈N1

Vi with N0 ∪N1 = {1, . . . , k}, N0 ∩N1 = ∅, and Vi as in (4.5). The boundary
value problem (5.1) decomposes into

λu−∆u = f in Vi,
Biu = 0 on ∂Vi,

(5.2)

where Biu := u for i ∈ N0 and Biu := ∂νu for i ∈ N1.
Given a Banach space E, the Lp-realizations are defined as

D(∆p,i, E) := {u ∈W 1,p
0 (Vi, E); ∆u ∈ Lp(Vi, E)}

∆p,iu := ∆u
(5.3)

for the E-valued Dirichlet-Laplacian on Vi, i.e. in case i ∈ N0, and

D(∆p,i, E) := {u ∈W 1,p(Vi, E); ∃v ∈ Lp(Vi, E) ∀ϕ ∈W 1,p′(Vi) :

−
∫
Vi

∇u∇ϕ =
∫
Vi

vϕ}

∆p,iu := v

for the E-valued Neumann-Laplacian on Vi, i.e. in case i ∈ N1. If E = C, we
just write D(∆p,i). Note that the above realizations are occasionally termed weak
Dirichlet-Laplacian and weak Neumann-Laplacian respectively, cf. [38]. To empha-
size that we mean the Dirichlet-Laplacian or the Neumann-Laplacian we also use
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occasionally the notation ∆D
p,i or ∆N

p,i, respectively. Recall that for smooth u in view
of Green’s formula ∂νu = 0 on ∂G if and only if∫

G
∆uϕ = −

∫
G
∇u∇ϕ (ϕ ∈W 1,p′(G)).

As before, we use the same symbol for the canonical extensions of ∆p,i to Lp(Ω).
We define the (scalar-valued) Lp-realization of the Laplacian with mixed boundary
conditions on Ω by

D(∆p) :=
k⋂
i=1

D(∆p,i)

∆pu :=
k∑
i=1

∆p,iu. (u ∈ D(∆p)).

(5.4)

Theorem 5.2. For i = 1, . . . , k let Vi be a C2 standard domain in Rni, ni ∈ N, (see
Definition 4.5), or a bounded Lipschitz domain in Rni, ni ≥ 2. On two-dimensional
Lipschitz cross-sections Vi we assume ∆p,i to be the Dirichlet-Laplacian. Set Ω :=∏k
i=1 Vi. Then there exists ε > 0 depending only on the Lipschitz character of

the different Vi such that for all (3 + ε)′ < p < 3 + ε and all δ > 0 we have
−∆p + δ ∈ RH∞(Lp(Ω)) and φR,∞−∆p+δ

< π
2 .

Remark 5.3. a) There are some situations in which the assertion remains true for
δ = 0 and where we have φR,∞−∆p

= 0. In fact, the shift δ > 0 is only required to
overcome the lack of injectivity in ’Neumann cross-sections’. Thus, if we assume,
e.g., pure Dirichlet boundary conditions, the assertion remains true for δ = 0, since
then every −∆D

p,i as defined in (5.3) is injective. For bounded Lipschitz domains Vi
the semigroup generated by ∆D

p,i satisfies an appropriate Gaussian estimate, cf. [6,
Theorem 5.7]. Thanks to results derived in [28, Chapter 11], we therefore even have
φR,∞−∆D

p,i
= 0. Combining this with the first part of step I of the proof below yields

also φR,∞−∆p
= 0 in case of pure Dirichlet conditions.

Furthermore, if at least one Vi, say Vi0 , is bounded and the operator on Vi0 is the
Dirichlet-Laplacian −∆D

p,i0
, we obtain 0 ∈ ρ(−∆p) (i.e. in particular δ = 0) for the

full Laplacian with mixed Dirichlet Neumann boundary conditions −∆p on Ω. This
follows thanks to σ(−∆D

p,i0
) ⊂ (c,∞) for some c > 0 and by the fact that we may

choose the shifts for the Neumann cross-sections arbitrarily small.

b) Compared to existing literature, it is worthwhile to highlight two facts con-
cerning the outcome of Theorem 5.2: the result includes (simultaneously) classes of
unbounded Lipschitz domains and of mixed boundary conditions.

c) Note that for every bounded Lipschitz-domain G we have the usual relation
W 1,p

0 (G) = {u ∈ W 1,p(G); γ∂Gu = 0}, cf. [30]. For Ω and −∆p as in the theorem
this implies

D(∆D
p ) ⊂ {u ∈W 1,p

0 (Ω); ∆u ∈ Lp(Ω)} (5.5)
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in case we have pure Dirichlet boundary conditions. Fubini’s theorem further implies
that

D(∆N
p )

⊂ {u ∈W 1,p(Ω); ∃v ∈ Lp(Ω) ∀ϕ ∈W 1,p′(Ω) : −
∫

Ω
∇u∇ϕ =

∫
Ω
vϕ} (5.6)

in case of pure Neumann conditions. Hence, ∆D
p and ∆N

p coincide with the usual
weak Dirichlet- and Neumann-Laplacian respectively, defined on Lipschitz domains,
cf. [25], [38].

d) It is interesting to remark that Theorem 5.2 yields more regularity for u ∈ D(∆p)
than indicated by the right hand sides of (5.5) and (5.6), if at least one cross-section
Vi is smooth. In fact, in each smooth cross-section u belongs to W 2,p, thanks to
(4.10). Thus, for the special situation of cylindrical domains this improves previous
results in the literature, since for bounded Lipschitz domains second order derivatives
in general are not expected to belong to Lp(Ω), cf. [25].

e) Finally we note that Remark 4.7b) applies also to the situation in Theorem 5.2.

Proof. Step I: cylindrical decomposition.
If Vi is a C2 standard domain, it is well known that the boundary value problems
(5.2) are parameter-elliptic with ϕ(A,B) = 0. As noted in the first step of the
proof of Theorem 4.6, there exist δi ≥ 0 such that −∆p,i + δi ∈ H∞(Lp(Vi)) with
φ∞−∆p,i+δi

= 0. It is also well known that in the case of Dirichlet boundary conditions
we may choose δi = 0 and in the case of Neumann boundary conditions this result
holds for every δi > 0.

Observe that the assumptions imposed on the Laplacian with Dirichlet or with
Neumann conditions on Lipschitz cross-sections Vi in Rni are exactly those which
allow for an application of the results obtained in [38]. Based on [25] and [17],
in [38] for all those cases it is shown that there exists ε > 0 depending only on
the Lipschitz character of Vi such that for all (3 + ε)′ < p < 3 + ε we have that
∆p,i generates a positive C0-semigroup of contractions. According to a result of
Duong, cf. [24, Corollary 1], for δ > 0 this implies −∆p,i + δ ∈ H∞(Lp(Vi)) with
φ∞−∆p,i+δ

< π
2 . Note again that the shift δ is inserted to assure injectivity in case

of Neumann boundary conditions. By the fact that Lp(Vi) has property (α) this
yields −∆p,i + δ ∈ RH∞(Lp(Vi)) and φR,∞−∆p,i+δ

< π
2 . Again this remains true for the

canonical extensions of the operators to Lp(Ω).

Step II: case k = 2.
Unlike in the proof of Theorem 4.6 we have −∆p,i + δi ∈ RH∞(Lp(Vi, E)) a priori
only for E := C instead of general UMD spaces E. Moreover, D(∆p,i, E) in general
is no longer a subset of W 2,p(Vi, E). By these facts we first have to show that

λ−∆p,1 : D(∆p,1, D(∆p,2)) → Lp(V1, D(∆p,2)) (5.7)

is isomorphic, which before was guaranteed by known results (see step 2 of the proof
of Theorem 4.6).
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Let ∆p,1 be arbitrary, that is, ∆p,1 is either the Dirichlet- or the Neumann-
Laplacian in Lp(V1) and let λ ∈ ρ(∆p,1). By Fubini’s theorem, we see that

−∆p,1 + δ ∈ RH∞(Lp(V1,W
k,p(V2))), φR,∞−∆p,1+δ <

π

2
, (5.8)

for k = 0, 1. In particular, λ −∆p,1 + δ : D(∆p,1,W
1,p(V2)) → Lp(V1,W

1,p(V2)) is
isomorphic. For the sake of readability, in what follows we assume the shift δ ≥ 0
to be included in λ. In order to show that (5.7) is isomorphic as well, it remains
to prove surjectivity. To this end, pick f ∈ Lp(V1, D(∆p,2)). In view of (5.8) there
exists u ∈ D(∆p,1,W

1,p(V2)) such that (λ−∆p,1)u = f .
First assume ∆p,2 to be given as a Neumann-Laplacian. Then there exists v ∈

Lp(V1, L
p(V2)) such that for all ϕ ∈W 1,p′(V2) it holds that

−
∫
V2

∇2(λ−∆p,1)u∇2ϕ = −
∫
V2

∇2f∇2ϕ =
∫
V2

vϕ.

Set w := (λ − ∆p,1)−1v ∈ D(∆p,1, L
p(V2)). Since (λ − ∆p,1)−1 is bounded on

Lp(V1, L
p(V2)), we deduce

−
∫
V2

∇2u∇2ϕ = −(λ−∆p,1)−1

∫
V2

∇2(λ−∆p,1)u∇2ϕ

= (λ−∆p,1)−1

∫
V2

vϕ =
∫
V2

(λ−∆p,1)−1vϕ =
∫
V2

wϕ.

Observe that here (λ − ∆p,1)−1 can be replaced by the terms ∇1(λ − ∆p,1)−1

or ∆p,1(λ − ∆p,1)−1 and u by ∇1u or ∆p,1u, respectively. Hence, we obtain
u ∈ D(∆p,1, D(∆p,2)). In a very similar way surjectivity of (5.7) can be proved,
if both ∆p,1 and ∆p,1 are given as Dirichlet-Laplacians.

Now we continue as in step IIa) of the proof of Theorem 4.6. Indeed, Fubini’s
theorem yields

D(∆p,1, D(∆p,2)) ↪→W 1,p(V1,W
1,p(V2)) ∼= W 1,p(V2,W

1,p(V1))

and by very similar calculations as above we obtain

u,∇2u,∆p,2u ∈ Lp(V2, D(∆p,1))

for u ∈ D(∆p,1, D(∆p,2)). Thus, we arrive at

D(∆p,1, D(∆p,2)) ∼= D(∆p,2, D(∆p,1)).

Now we are in the same situation as in step IIa) of the proof of Theorem 4.6. The
same arguments therefore show that ∆p,1 and ∆p,2 are resolvent commuting. Exactly
as in step IIb), Proposition 3.5(a) now proves the claim for k = 2.

Step III: case k > 2.
W.l.o.g. we can rearrange the different sets Vi such that Γ0 =

∏l
i=1 Vi and Γ1 =∏k

i=l+1 Vi with some 0 < l < k. Set Ω0 :=
∏l
i=1 Vi and Ω1 :=

∏k
i=l+1 Vi and let

∆D
p,0 and ∆N

p,1 denote the extended Lp(Ω)-realizations of the Dirichlet problem on Ω0

and of the Neumann problem on Ω1, respectively. Then according to the first part
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of the proof, by iteration we see that −∆D
p,0 and −∆N

p,1 + δ for every δ > 0 admit
a bounded RH∞-calculus with angle less than π

2 . Moreover, the argumentation
on commutativity of resolvents performed in step II) applies to ∆D

p,0 and ∆N
p,1. As

∆p = ∆D
p,0 + ∆N

p,1, Proposition 3.5(a) gives the result. The proof is now complete.
�

Problems handled by the above result might arise in concrete technological appli-
cations as the following example demonstrates.

Example 5.4. The time-dependend problem corresponding to equation (5.1) rep-
resents the heat-equation in a cylindrical domain with mixed Dirichlet Neumann
boundary conditions. This equation serves, for instance, as a model for the cooling
of cylindrical electronic components. For such devices the cooling system is often
located on opposite sides (with respect to one space dimension). The cooling of a
graphic board with heatpipes placed on bottom and top or the cooling of a processor
represent typical practical examples.

Given a bounded Lipschitz domain V ⊂ R2, the range for p such that −∆D
p ∈

RH∞(Lp(V )) extends to (4 + ε)′ < p < 4 + ε. This activates the natural question,
whether this range is preserved for a higher dimensional domain provided the rough-
ness of the boundary is of two dimensional character. By our technique we can give
a positive respond to this question with a relatively short proof for the case of higher
dimensional Lipschitz cylinders.

Theorem 5.5. Let Vi be a C2 standard domain in Rni, ni ∈ N, or a bounded
Lipschitz domain in R2. Set Ω :=

∏k
i=1 Vi and assume that ∆p,i is the Dirichlet-

Laplacian on Lipschitz cross-sections Vi. Then there exists ε > 0 depending only on
the Lipschitz character of the different Vi such that for all (4 + ε)′ < p < 4 + ε and
for every δ > 0 we have −∆p+ δ ∈ RH∞(Lp(Ω)) and φR,∞−∆p+δ

< π/2, and where ∆p

is defined as in (5.4).

Remark 5.6. Observe that for the regarded cylindrical Lipschitz domains we cannot
only extend the range for p, but all observations given in Remark 5.3 apply also here.

Proof. If Vi is a bounded Lipschitz domain in R2, it is shown in [38] that there exists
ε > 0 depending only on the Lipschitz character of Vi such that for all (4 + ε)′ <
p < 4 + ε we have that ∆p,i generates a positive C0-semigroup of contractions. Now
we can go on as in proof of Theorem 5.2. �

We close this section by giving a simple example in a Lipschitz cylinder in R3. It
is an immediate consequence of Theorem 5.5 and Remarks 5.6 and 5.3a).

Corollary 5.7. Let V be a bounded Lipschitz domain in R2 and −∞ ≤ a < b ≤ ∞.
Then the negative Dirichlet-Laplacian −∆D

p as given in (5.4) admits an R-bounded
H∞-calculus on Lp(V × (a, b)) with φR,∞−∆D

p
= 0, provided (4 + ε)′ < p < 4 + ε for a

certain ε > 0 depending only on the Lipschitz character of V .
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Remark 5.8. The assertion of Corollary 5.7 remains true, if we assume Dirichlet
conditions on the barrel and Neumann conditions on top and bottom of the cylinder.
Note that by Theorem 5.5 we a priori only know φR,∞−∆p

< π/2. However, in one
dimension an explicit solution formula for the Neumann-Laplacian can be derived
from which φR,∞−∆p

= 0 can be read off.

6. A non-commuting example

In this section we consider a situation where operators on cross-sections do not
necessarily commute. We emphasize that we do not aim for the greatest generality.
The purpose of this section is just to demonstrate that our approach is not restricted
to the commuting situation. Improvements and generalizations in one or the other
direction are certainly possible. In particular, we restrict ourselves to the case of
two domains and of two operators. So, let Ω = V1 × V2 and differential operators
A1(x1, D) and A2(x2, D) such as in Theorem 4.6 be given. Then, for φi > ϕi there
exist δi ≥ 0 such that the canonical extensions fullfill Ai+ δi ∈ RH∞(Lp(Ω, F )) and
φR,∞Ai+δi

≤ φi. For the sake of simplicity we will assume δi = 0 and the operators Ai
to be subject to Dirichlet boundary conditions for i = 1, 2.

We assume the cylindrical structure to be disturbed in the following way: given
a function r on V1, we consider the differential operator

A1(x1, D) + r(x1)A2(x2, D)

in Ω subject to Dirichlet boundary conditions. Associated to r we define an operator
of pointwise multiplication in Lp(Ω, F ) as

D(Mr) := {u ∈ Lp(Ω, F ); ru ∈ Lp(Ω, F )}
Mru := ru (u ∈ D(Mr)).

As before we will investigate the operator

D(Ar) := D(A1) ∩D(MrA2)

Ar := A1 +MrA2 (u ∈ D(Ar)).

The main difference to previous boundary value problems is that the operators A1

and MrA2 are no longer resolvent commuting on Lp(Ω, F ). Therefore we have to
impose conditions on r that allow for an application of Proposition 3.7.

Theorem 6.1. Let 1 < p < ∞ and let F , V1, V2, as well as A1 and A2 fullfill the
assumptions of Theorem 4.6 subject to Dirichlet boundary conditions. Let ϑ > 0
with ϕ1 + ϕ2 + ϑ < π and assume that

(i) r ∈ [W 2m1,p +W 2m1,∞](V1) if 2m1p > n1 and r ∈W 2m1,∞(V1) else,
(ii) r(x1) ∈ Σϑ for all x1 ∈ V1, and
(iii) r−1Dηr ∈ L∞(V1) for all |η| ≤ 2m1.

Then for every φ > max{ϕ1, ϕ2 + ϑ}, there exists δ = δ(φ) ≥ 0 such that Ar + δ ∈
RH∞(Lp(Ω, F )) and φR,∞Ar+δ

≤ φ.
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Proof. Step I. For r subject to assumption (i) we have Mr ∈ L(Lp(Ω, F )). This
implies

D(MrA2) := {u ∈ D(A2) : A2u ∈ D(Mr)} = D(A2),
hence D(Ar) = D(A1) ∩D(A2). In addition, assumption (ii) yields 0 ∈ ρ(Mr) and
Mr ∈ H∞(Lp(Ω, F )) with φ∞Mr

≤ ϑ. Thus we can apply Proposition 3.5(b) to the
result that MrA2 ∈ H∞(Lp(Ω, F )) and φ∞MrA2

≤ ϕ2 + φ∞Mr
.

Step II. We show that A1 and MrA2 satisfy the Labbas-Terreni condition (3.5).
To this end, we may assume 0 ∈ ρ(MrA2), since this can always be derived by a
shift which we can compensate at the end by choosing δ ≥ 0 eventually a bit larger.
By the fact that we assume Dirichlet boundary conditions (at this point general
boundary conditions would cause more trouble) and in view of assumption (i), we
obtain Mr

(
D(A1)

)
⊂ D(A1). This implies

D(MrA2A1) = D(A2A1) = D(A1A2) ⊂ D(A1MrA2). (6.1)

For u ∈ D(A1A2) therefore the equality

MrA2(µ+A1)u = (µ+A1 −R)MrA2u (6.2)

with R := [A1,Mr]Mr−1 makes sense in Lp(Ω, F ). Thanks to (6.1) we may also
identify R as

Ru = [A1(x1, D), r(x1)]r(x1)−1u =: R(x1, D)u
for all u ∈MrA2D(A1A2) ⊂ D(A1). Due to assumption (ii) the differential operator
R(x1, D), and hence also R, is well defined on all of D(A1) and represented as a
linear combination of differential operators of the form

Rγ(x1, D) = aα1(x1)
∏

η∈Mγ

(
r−1Dηr

)lη(x1)Dγ ,

with γ < α1, some Mγ ⊂ {η ∈ Nn1
0 ; η 6= 0, 0 ≤ ηi ≤ α1

i for i = 1, . . . , n1} and
integers lη ∈ N such that

∑
η∈Mγ

lηη = α1 − γ. This shows that R(x1, D) is of
lower order w.r.t. A1. In view of assumption (iii) we also see that the coefficients of
R(x1, D) satisfy condition (4.8). Hence there is a δ1 ≥ 0 such that A1 − R + δ1 ∈
S(Lp(Ω, F )) with φA1−R+δ1 = φA1 .

Next, let φ1 > φA1 , µ ∈ Σπ−φ1 , and v ∈ D(A2). Inserting u = (µ + A1)−1v ∈
D(A1A2) into (6.2) and applying (µ+A1−R+ δ1)−1 to the resulting equation gives
us

MrA2(µ+A1)−1v = (µ+A1 −R+ δ1)−1MrA2v.

From this for v ∈ D(A2) and µ ∈ Σπ−φ1 we infer that

[MrA2, (µ+A1)−1]v = (µ+A1)−1(R+ δ1)(µ+A1 −R+ δ1)−1MrA2v.

Let φ2 > φMrA2 and λ ∈ Σπ−φ2 . With the above relation, the expression appearing
in the Labbas-Terreni commutator condition turns into

MrA2(λ+MrA2)−1[(MrA2)−1, (µ+A1)−1]

= −(λ+MrA2)−1(µ+A1)−1(R+ δ1)(µ+A1 −R+ δ1)−1.
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This formula can easily be estimated to the result

‖MrA2(λ+MrA2)−1[(MrA2)−1, (µ+A1)−1]‖

≤ C

(1 + |λ|)|µ|1+
1

2m2

(µ ∈ Σπ−φ1 , λ ∈ Σπ−φ2),

where we employed 0 ∈ ρ(MrA2) and the fact that R is relatively bounded by A1.
The assertion now follows from Proposition 3.7. �

A counterpart of the above result for cylindrical Lipschitz domains reads as fol-
lows.

Theorem 6.2. Let 1 < p < ∞ and Vi, i = 1, 2, be given as in Theorem 5.2 (resp.
Theorem 5.5). Assume that

(i) r ∈ [W 2,p +W 2,∞](V1) if 2p > n1 and r ∈W 2,∞(V1) else,
(ii) r(x1) ∈ Σϑ for all x1 ∈ V1 and some 0 ≤ ϑ < π,
(iii) ∇r

r , ∆r
r − 2 |∇r|

2

r2
∈ L∞(V1),

and let φ > ϑ. Then, there exists ε > 0 depending only on the Lipschitz character of
Vi such that for all (3+ε)′ < p < 3+ε (resp. (4+ε)′ < p < 4+ε) there is a δ ≥ 0 such
that for −∆r,p+δ := −∆p,1−Mr∆p,2+δ defined on D(∆r,p) := D(∆p,1)∩D(Mr∆p,2)
we have that −∆r,p + δ ∈ RH∞(Lp(Ω)) with φR,∞−∆r,p+δ

≤ φ.

Proof. We try to mimic the proof of Theorem 6.1. By the fact that

∆ru = u∆r +∇r · ∇u+ r∆u

we see that also here we have Mr(D(∆p,1)) ⊂ D(∆p,1). Completely analogous as
before we therefore arrive at (6.2) with A1 = −∆p,1, A2 = −∆p,2, and

Ru =
∇r
r
· ∇u+

(
∆r
r
− 2

|∇r|2

r2

)
u.

We have to show that R is relatively bounded. Since we do not have D(∆p,1) ⊂
W 2,p(V1) here, this is not so obvious as above. Recall that by the results obtained in
[25] we know that D((−∆p,1)1/2) = W 1,p

0 (V1). Since ∆p,1 ∈ H∞(Lp(V1)) this yields

W 1,p
0 (V1) = D((−∆p,1)1/2) = [Lp(V1), D(∆p,1)]1/2.

Hence the interpolation inequality

‖u‖W 1,p ≤ C‖u‖1/2
D(∆p,1)‖u‖

1/2
p ≤ C(ε‖u‖D(∆p,1) + C(ε)‖u‖p)

holds for all u ∈ D(∆p,1) and ε > 0. This implies

‖Ru‖p ≤ C‖u‖W 1,p ≤ C(ε‖∆p,1u‖p + C(ε)‖u‖p) (u ∈ D(∆p,1), ε > 0).

Thus R is a Kato perturbation of −∆p,1 from which we deduce that µ − ∆p,1 −
R is sectorial for some µ ≥ 0. The remaining proof then copies verbatim from
Theorem 6.1.

�
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Example 6.3. Theorem 6.2 in particular covers the case of heat conduction in a Lip-
schitz cylinder with longitudinal or in cross-sections non constant heat conductivity
coefficient (see also Example 5.4).

In Theorems 6.1 and 6.2 there appears no explicit non-degeneracy condition on
r. Therefore a brief discussion when r may degenerate is in order.

Remark 6.4. (Examples for r) Consider V1 ⊂ R. Let r satisfy the assumptions of
Theorem 6.2 and assume that r′

r = g with g ∈ Cb(V1). In case that V1 = I := (a, b)
with −∞ < a < b <∞ we have

r(x) = c1 exp(

x∫
a

g(τ)dτ + c2), (6.3)

and in view of condition (i) and (iii) every possible r has this structure. Hence no
degeneration is possible. In case I := (a,∞) equation (6.3) holds as before and no
degeneration at a is possible. On the other hand, c2 = 0 and limx→∞

∫ x
a g(τ)dτ =

−∞ implies r(x) → 0 for x→∞. Thanks to

r′′

r
− 2

r′r′

r2
= g′ − g2,

g ∈ C1
b (V1) suffices for equation (6.3) to define r subject to assumption (iii).

In more explicit situations we may even allow r to grow at infinity as the next
result shows.

Theorem 6.5. Let the assumptions of Theorem 6.2 be satisfied. In case that V1 =
Rn1 the assertions of Theorem 6.2 remain true, if condition (i) is replaced by r ∈
C∞(V1).

Proof. The proof follows by the fact that in this situation relation (6.2) holds in the
sense of distributions. By standard arguments we also can show that MrA2D(A1) ⊂
D(A1). But then we can argue in the same way as in the proof of Theorem 6.1 (see
also [33, Chapter 5]). �

Remark 6.6. Theorem 6.5 includes the special coefficient r(x) = exp(cx) with
c ∈ R and V1 = R. The significance of this degenerate example lies in the fact that
it appears, for instance, in the treatment of contact angle problems (see [33, Chapter
5]).
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