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Abstract. We prove R-sectoriality or, equivalently, Lp-maximal regularity for
a class of operators on cylindrical domains of the form Rn−k × V , where V ⊂ Rk

is a domain with compact boundary, Rk, or a half-space. Instead of extensive
localization procedures, we present an elegant approach via operator-valued mul-
tiplier theory which takes advantage of the cylindrical shape of both, the domain
and the operator.

1. Introduction

This note considers the vector-valued Lp-approach to boundary value problems
of the type

∂tu+A(x,D)u = f in R+ × Ω,
Bj(x,D)u = 0 on R+ × ∂Ω (j = 1, ...,m),

u|t=0 = u0 in Ω,
(1.1)

on cylindrical domains Ω ⊂ Rn of the form

Ω = Rn−k × V, (1.2)

where V is a standard domain (see Definition 2.1) in Rk. Here

A(x,D) =
∑

|α|≤2m

aα(x)Dα

is a differential operator in Ω of order 2m for m ∈ N and

Bj(x,D) =
∑

|β|≤mj

bβ(x)Dβ, mj < 2m, j = 1, . . . ,m,

are operators acting on the boundary.
Under the assumption that (1.1) is parameter-elliptic and cylindrical, we will prove

R-sectoriality for the operator A of the corresponding Cauchy problem. Recall that
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R-sectoriality is equivalent to maximal regularity, cf. [20, Theorem 4.2]. Maximal
regularity, in turn, is a powerful tool for the treatment of related nonlinear problems.

Roughly speaking, the assumption ’cylindrical’ implies that A resolves into two
parts

A = A1 +A2

such that A1 acts merely on Rn−k and A2 acts merely on V (see Definition 2.2). Note
that many standard systems, such as the heat equation with Dirichlet or Neumann
boundary conditions, are of this form. Also note that many physical problems
naturally lead to equations in cylindrical domains. We refer to the textbook [9] for an
introduction to such type problems. Therefore, boundary value problems of this type
are certainly of independent interest. On the other hand, they also naturally appear
during localization procedures of boundary value problems on general domains. For
instance, if a system of equations via localization is reduced to a half-space or a
layer problem, then one is usually faced to a problem in the domain

Ω = Rn−1 × V,

where V = (0, d) and d ∈ (0,∞]. Such reduced problems are often of the above
type.

Of course, also problem (1.1) could be treated by a localization procedure em-
ploying an infinite partition of the unity (note that the boundary is non-compact).
However, such procedures are generally extensive and take quite some pages of ex-
hausting calculations and estimations. For this reason, here we pursue a different
strategy. In fact, we essentially take advantage of the cylindrical structure of the
domain and the operator and employ operator-valued multiplier theory. Roughly
speaking, by this method R-sectoriality of (1.1) in Ω is reduced to the correspond-
ing result on the cross-section V , for which it is well-known (see e.g. [10]). This
approach reveals a much shorter and more elegant way to prove the important max-
imal regularity for boundary value problems of type (1.1) on cylindrical domains of
the form (1.2). The chosen approach also demonstrates the strength of operator-
valued multiplier theory and its significance in the treatment of partial differential
equations in general.

We remark that the idea of such a splitting of the variables and operators is
already performed by Guidotti in [14] and [15]. In these papers the author constructs
semiclassical fundamental solutions for a class of elliptic operators on cylindrical
domains. This proves to be a strong tool for the treatment of related elliptic and
parabolic ([14] and [15]), as well as of hyperbolic ([15]) problems. In particular,
this approach leads to semiclassical representation formulas for solutions of related
elliptic and parabolic boundary value problems. Based on these formulas and on
a multiplier result of Amann [5] the author derives a couple of interesting results
for these problems in a Besov space setting. In particular, the given applications
include asymptotic behavior in the large, singular perturbations, exact boundary
conditions on artificial boundaries, and the validity of maximum principles. Very
recently in [12] the wellposedness of a class of parabolic boundary value problems in
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a vector-valued Hölder space setting is proved, when Ω = [0, L] × V , the first part
is given by A1 = a(xn)∂2m

n , xn ∈ [0, L], and when A2 is uniformly elliptic.
In contrast to [14], [15], and [12], here we present the Lp-approach to cylindrical

boundary value problems. Therefore the notion of R-boundedness comes into play,
which is not required in the framework of Besov or Hölder spaces. Also note that in
[14] and [15] A1 = −∆ is assumed, with a remark on possible generalizations. Here
we explicitly consider a wider class of first parts A1 including higher order operators
with variable coefficients. Moreover, with a Banach space E, we consider E-valued
solutions and allow the coefficients of the second part A2 to be operator-valued. Ap-
plications for equations with operator-valued coefficients are, for instance, given by
coagulation-fragmentation systems (cf. [7]), spectral problems of parametrized dif-
ferential operators in hydrodynamics (cf. [11]), or (homogeneous) systems in general.
Albeit in this note we concentrate on the proof of maximal regularity for problems
of type (1.1), we remark that further applications similar to the ones given in [14]
and [15] also in the Lp-framework considered here are possible.

Note that E-valued boundary value problems in standard domains, such as Rn,
a half-space, and domains with a compact boundary were extensively studied in
[10]. There a bounded H∞-calculus and hence maximal regularity for the operator
of the associated Cauchy problem is proved in the situation when E is of class
HT . The results obtained in the paper at hand also extend the maximal regularity
results proved in [10] to a class of domains with non-compact boundary. For classical
papers on scalar-valued boundary value problems we refer to [13], [1], [1], and [19]
in the elliptic case and to [2] and [3] in the parameter-elliptic case. (For a more
comprehensive list see also [10].) For an approach to a class of elliptic differential
operators with Dirichlet boundary conditions in uniform C2-domains we refer to
[16] and [8]. We want to remark that all cited results above are based on standard
localization procedures for the domain, contrary to the approach presented in this
paper. Here we only localize a certain part of the coefficients but not the domain.

This paper is structured as follows. In Section 2 we define the notion of a cylin-
drical boundary value problem and give the precise statement of our main result. In
Section 3 we recall the notion of parameter-ellipticity and of R-bounded operator
families. The proof of our main result Theorem 2.3 then is given in Section 4. The
main steps are split in three subsections. In Subsection 4.1 we treat the correspond-
ing operator-valued model problem, that is, here we assume (partly) constant coeffi-
cients. By a perturbation argument, in Subsection 4.2 we extend the R-sectoriality
of the model problem to slightly varying coefficients. The general case then is han-
dled in Subsection 4.3. The statement of the main result is restricted to the case
that the two parts A1 and A2 are of the same order. However, the same proof works
for mixed order systems. This will be briefly outlined in Section 5.

2. Main result

We proceed with the precise statement of our main result.
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Definition 2.1. Let k ∈ N. We call V ⊂ Rk a standard domain, if it is Rk, the
half-space Rk

+ = {x = (x1, . . . , xk) ∈ Rk : xk > 0}, or if it has compact boundary.

Let F be a Banach space and let Ω := Rn−k × V ⊂ Rn, where V is a standard
domain in Rk. For x ∈ Ω we write x = (x1, x2) ∈ Rn−k × V , whenever we want
to refer to the cylindrical geometry of Ω. Accordingly, we write α = (α1, α2) ∈
Nn−k

0 × Nk
0 for a multiindex α ∈ Nn

0 . In the sequel we consider the vector-valued
boundary value problem

λu+A(x,D)u = f in Ω,
Bj(x,D)u = 0 on ∂Ω (j = 1, ...,m), (2.1)

with A(x,D) =
∑
|α|≤2m aα(x)Dα, m ∈ N, a differential operator in the interior

and operators Bj(x,D) =
∑
|β|<2m bβ(x)Dβ on the boundary. Vector-valued in

this context means that u is F -valued, hence derivatives have to be understood in
appropriate F -valued spaces. Accordingly the coefficients of A(·, D) and Bj(·, D) are
operator-valued, that is L(F )-valued. In particular, we will consider the following
class of operators.

Definition 2.2. The boundary value problem (2.1) is called cylindrical if the oper-
ator A(·, D) is represented as

A(x,D) = A1(x1, D) +A2(x2, D)

:=
∑

|α1|≤2m

a1
α1(x1)D(α1,0) +

∑
|α2|≤2m

a2
α2(x2)D(0,α2)

and the boundary operator is given as

Bj(x,D) = B2,j(x2, D) :=
∑

|β2|≤mj

b2j,β2(x2)D(0,β2) (mj < 2m, j = 1, ...,m).

Thus the differential operators A(x,D) and Bj(x,D) resolve completely into parts
of which each one acts just on Rn−k or just on V .

As the Lp(Ω, F )-realization of the boundary value problem

(A,B) := (A(·, D), B1(·, D), ..., Bm(·, D))

given by (2.1) we define for 1 < p <∞,

D(A) := {u ∈W 2m,p(Ω, F ); Bj(·, D)u = 0 (j = 1, ...,m)}
Au := A(·, D)u, u ∈ D(A).

From now on the cross-section V is assumed to be a standard domain with C2m-
boundary. Furthermore, the following smoothness assumptions on the coefficients
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may hold:

a1
α1 ∈ C(Rn−k,C) for |α1| = 2m, a1

α1(∞) := lim
|x1|→∞

a1
α1(x1) exists,

a2
α2 ∈ C(V ,L(F )) for |α2| = 2m, a2

α2(∞) := lim
|x2|→∞

a2
α2(x2) exists,

a1
α1 ∈ [L∞ + Lrν ](Rn−k,C) for |α1| = ν < 2m, rν ≥ p,

2m− ν

n− k
>

1
rν
,

a2
α2 ∈ [L∞ + Lrν ](V,L(F )) for |α2| = ν < 2m, rν ≥ p,

2m− ν

k
>

1
rν
,

b2j,β2 ∈ C2m−mj (∂V,L(F )) (j = 1, ...,m; |β2| ≤ mj).


(2.2)

Our main result reads as follows. For a rigorous definition of maximal regular-
ity, R-sectoriality, and parameter-ellipticity we refer to the subsequent section (i.p.
Definitions 3.2, 3.4, and 3.10).

Theorem 2.3. Let 1 < p < ∞, let F be a Banach space of class HT enjoying
property (α), and let Ω := Rn−k × V ⊂ Rn, where V is a standard domain of class
C2m in Rk. For the boundary value problem (2.1) we assume that

(i) it is cylindrical,
(ii) the coefficients of A(·, D) and Bj(·, D), j = 1, . . . ,m, satisfy (2.2),
(iii) it is parameter-elliptic in Ω of angle ϕ(A,B) ∈ [0, π

2 ),
(iv) the boundary value problem (A#(∞, D), B1(·, D), ..., Bm(·, D)) with the limit

operator A#(∞, D) :=
∑
|α|=2m aα(∞)Dα is parameter-elliptic in Ω with

angle less or equal to ϕ(A,B).
Then for each φ > ϕ(A,B) there exists δ = δ(φ) ≥ 0 such that A + δ is R-sectorial
in Lp(Ω, F ) with φRS

A+δ ≤ φ and we have

R({λ
`

2mDα(λ+A+ δ)−1; λ ∈ Σπ−φ, ` ∈ N0, α ∈ Nn
0 , 0 ≤ `+ |α| ≤ 2m}) <∞.

(2.3)

By [20, Theorem 4.2] we obtain

Corollary 2.4. Let the assumptions of Theorem 2.3 be given. Then the operator
A+ δ has maximal regularity on Lp(Ω, F ).

Example. It is not difficult to verify that problem (2.1) with A = −∆ the negative
Laplacian in Ω subject to Dirichlet or Neumann boundary conditions satisfies the
assumptions of Theorem 2.3.

3. R-sectoriality and parameter-ellipticity

Throughout this article X,Y,E, and F denote Banach spaces. Given any closed
operator A acting on a Banach space we denote by D(A), ker(A), and R(A) domain
of definition, kernel, and range of the operator and by ρ(A) and σ(A) its resolvent
set and spectrum respectively. The symbol L(X,Y ) stands for the Banach space of
all bounded linear operators from X to Y equipped with operator norm ‖ · ‖L(X,Y ).
As an abbreviation we set L(X) := L(X,X).
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For p ∈ [1,∞) and a domain G ⊂ Rn, Lp(G,F ) denotes the F -valued Lebesgue
space of all p-Bochner-integrable functions, i.e., of functions f : G→ F satisfying

‖f‖Lp(G,F ) :=

∫
G

‖f(x)‖p
Fdx

 1
p

<∞.

We also write L∞(G,F ) for the space consisting of all functions f satisfying ‖f‖∞ :=
ess supx∈G ‖f(x)‖F < ∞. The F -valued Sobolev space of order m ∈ N0 := N ∪ {0}
is denoted by Wm,p(G,F ), that is the space of all f ∈ Lp(G,F ) whose F -valued
distributional derivatives up to order m are functions in Lp(G,F ) again. Its norm
is given by

‖f‖W m,p(G,F ) :=

 ∑
|α|≤m

‖Dαf‖p
Lp(G,F )

 1
p

,

where α ∈ Nn
0 is a multiindex. We write ‖ · ‖p := ‖ · ‖Lp(G,F ) and ‖ · ‖p,m :=

‖ · ‖W m,p(G,F ), if no confusion seems likely. Finally, for m ∈ N0 ∪ {∞}, Cm(G,F )
denotes the space of all m-times continously differentiable functions. For general
facts on vector-valued function spaces we refer to the nice booklet of Amann, [6].

Definition 3.1. A closed linear operator A in a Banach space X is called sectorial,
if

(1) D(A) = X, ker(A) = {0}, R(A) = X,
(2) (−∞, 0) ⊂ ρ(A) and there is some C > 0 such that ‖t(t + A)−1‖L(X) ≤ C

for all t > 0.
In this case it is well-known, see e.g. [10], that there exists a φ ∈ [0, π) such that the
uniform estimate in 2. extends to all

λ ∈ Σπ−φ := {z ∈ C\{0}; | arg(z)| < π − φ}.
The number

φA := inf{φ : ρ(−A) ⊃ Σπ−φ, sup
λ∈Σπ−φ

‖λ(λ+A)−1‖L(X) <∞}

is called spectral angle of A. The class of sectorial operators is denoted by S(X).

Observe that σ(A) ⊂ ΣφA
. In case φA < π

2 , the operator −A generates a bounded
holomorphic C0-semigroup on X. For a suitable treatment of related nonlinear
problems, however, the generation of a holomorphic semigroup might not be enough.
Then the stronger property of maximal regularity is required which is defined as
follows.

Definition 3.2. Let 1 ≤ p ≤ ∞, let X be a Banach space, and let A : D(A) → X
be closed and densely defined. Then A is said to have (Lp-) maximal regularity, if
for each f ∈ Lp(R+, X) there is a unique solution u : R+ → D(A) of the Cauchy
problem {

u′ +Au = f in R+,
u(0) = 0,
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satisfying the estimate

‖u′‖Lp(R+,X) + ‖Au‖Lp(R+,X) ≤ C‖f‖Lp(R+,X)

with a C > 0 independent of f ∈ Lp(R+, X).

If the Banach space X is of class HT (see Definition 3.6), by [20, Theorem 4.2]
it is well known that the property of having maximal regularity is equivalent to
the R-sectoriality of an operator A. This concept is based on the notion of R-
bounded operator families, which we introduce next. We refer to [10] and [17] for
a comprehensive introduction to the notion of R-bounded operator families and
restrict ourselves here to the definition.

Definition 3.3. A familiy T ⊂ L(X,Y ) is called R-bounded, if there exist a C > 0
and a p ∈ [1,∞) such that for all N ∈ N, Tj ∈ T , xj ∈ X and all independent
symmetric {−1, 1}-valued random variables εj on a probability space (G,M, P ) for
j = 1, ..., N , we have that

‖
N∑

j=1

εjTjxj‖Lp(G,Y ) ≤ C‖
N∑

j=1

εjxj‖Lp(G,X). (3.1)

The smallest C > 0 such that (3.1) is satisfied is called R-bound of T and denoted
by R(T ).

Definition 3.4. A closed operator A in X satisfying condition 1. of Definition 3.1
is called R-sectorial, if there exist an angle φ ∈ [0, π) and a constant Cφ > 0 such
that

R({λ(λ+A)−1 : λ ∈ Σπ−φ}) ≤ Cφ. (3.2)
The class of R-sectorial operators is denoted by RS(X) and we call φRS

A given as
the infimum over all angles φ such that (3.2) holds the R-angle of A.

We remark that in general R-boundedness is stronger than the uniform bound-
edness with respect to the operator norm. Therefore R-sectoriality always implies
the sectoriality of an operator A and we have

φA ≤ φRS
A .

We will use the following two results on R-boundedness frequently in subsequent
proofs. The first one shows that R-bounds behave as uniform bounds concerning
sums and products. This follows as a direct consequence of the definition of R-
boundedness. The second one is known as the contraction principle of Kahane. A
proof can be found in [17] or [10].

Lemma 3.5. a) Let X,Y , and Z be Banach spaces and let T ,S ⊂ L(X,Y ) as well
as U ⊂ L(Y, Z) be R-bounded. Then T + S ⊂ L(X,Y ) and UT ⊂ L(X,Z) are
R-bounded as well and we have

R(T + S) ≤ R(S) +R(T ), R(UT ) ≤ R(U)R(T ).

Furthermore, if T denotes the closure of T with respect to the strong operator topol-
ogy, then we have R(T ) = R(T ).
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b) [contraction principle of Kahane]
Let p ∈ [1,∞). Then for all N ∈ N, xj ∈ X, εj as above, and for all aj , bj ∈ C with
|aj | ≤ |bj | for j = 1, . . . , N ,

‖
N∑

j=1

ajεjxj‖Lp(G,X) ≤ 2‖
N∑

j=1

bjεjxj‖Lp(G,X) (3.3)

holds.

Let E be a Banach space and let S(Rn, E) denote the Schwartz space of all
rapidly decreasing E-valued functions and let S ′(Rn, E) := L(S(Rn,C), E). Then
the E-valued Fourier transform

Fϕ(ξ) :=
1

(2π)n/2

∫
Rn

e−iξ·xϕ(x)dx

defines an isomorphism of the space S(Rn, E) which extends by duality to the larger
space S ′(Rn, E). Given two Banach spaces E1, E2 and any operator-valued function
m ∈ L∞(Rn,L(E1, E2)), we may define the operator

Tm : S(Rn, E1) → S ′(Rn, E2); Tmϕ := F−1mFϕ.

We say m defines an operator-valued Fourier multiplier, if Tm extends to a bounded
operator

Tm : Lp(Rn, E1) → Lp(Rn, E2).

In order to state the operator-valued multiplier result our approach is based on,
two further notions from Banach space geometry are required.

Definition 3.6. a) The Hilbert transform H : S(R, E) → S ′(R, E) is given by
Hf := F−1mFf where m(ξ) := iξ

|ξ| . The Banach space E is of class HT or, equiva-
lently, a UMD space, if there exists a q ∈ (1,∞) such that H extends to a bounded
operator on Lq(R, E). In other words, mE := m · idE is an operator-valued (one
variable) Fourier multiplier.
b) A Banach space E is said to have property (α), if there exists a C > 0 such that
for all n ∈ N, αij ∈ C with |αij | ≤ 1, all xij ∈ E, and all independent symmetric
{−1, 1}-valued random variables ε1i on a probability space (G1,M1, P1) and ε2j on a
probability space (G2,M2, P2) for i, j = 1, ..., N , we have that∫

G1

∫
G2

‖
N∑

i,j=1

ε1i (u)ε
2
j (v)αijxij‖Edudv ≤ C

∫
G1

∫
G2

‖
N∑

i,j=1

ε1i (u)ε
2
j (v)xij‖Edudv.

By Plancherel’s theorem Hilbert spaces are of class HT . Besides that, it is well-
known that the spaces Lp(G,F ) are of class HT provided that 1 < p <∞ and that
F is of class HT . Moreover, Cn and the spaces Lp(G,F ) enjoy property (α) for
1 ≤ p <∞, if F does so (cf. [17]).

We are now in position to state the mentioned operator-valued Fourier multiplier
theorem. For a proof we refer to [17, Proposition 5.2].
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Proposition 3.7. Let E1, E2 be Banach spaces of class HT with property (α),
1 < p < ∞, and set Xi := Lp(Rn, Ei), i = 1, 2. Given any set Λ, let mλ ∈
Cn(Rn\{0},L(E1, E2)) for λ ∈ Λ and assume that

R({ξαDαmλ(ξ); ξ ∈ Rn\{0}, λ ∈ Λ, α ∈ {0, 1}n}) ≤ Cm <∞.

Then for all λ ∈ Λ we have

Tλ := F−1mλF ∈ L(X1, X2)

and that
R({Tλ; λ ∈ Λ}) ≤ C(n, p,E1, E2)Cm <∞.

Next we recall the notion of parameter-ellipticity from [10]. Let F be a Banach
space, G ⊂ Rn be a domain, and set

A(x,D) :=
∑

|α|≤2m

aα(x)Dα,

where m ∈ N, α ∈ Nn
0 , and aα : G→ L(F ). For λ ∈ C and boundary operators

Bj(x,D) :=
∑

|β|≤mj

bj,β(x)Dβ ,

where mj < 2m, β ∈ Nn
0 , and bj,β : ∂G → L(F ) for j = 1, ...,m, we consider the

boundary value problem

λu+A(x,D)u = f in G,
Bj(x,D)u = 0 on ∂G (j = 1, ...,m). (3.4)

Definition 3.8. Let F be a Banach space, G ⊂ Rn, m ∈ N, and aα ∈ L(F ). The
L(F )-valued homogeneous polynomial

a(ξ) :=
∑

|α|=2m

aαξ
α (ξ ∈ Rn)

is called parameter-elliptic, if there exists an angle φ ∈ [0, π) such that the spectrum
σ(a(ξ)) of a(ξ) in L(F ) satisfies

σ(a(ξ)) ⊂ Σφ (ξ ∈ Rn, |ξ| = 1). (3.5)

Then
ϕ := inf{φ : (3.5) holds}

is called angle of ellipticity of a.
A differential operator A(x,D) :=

∑
|α|≤2m

aα(x)Dα with coefficients aα : G → L(F )

is called parameter-elliptic in G with angle of ellipticity ϕ, if the principal part of
its symbol

a#(x, ξ) :=
∑

|α|=2m

aα(x)ξα

is parameter-elliptic with this angle of ellipticity for all x ∈ G.
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Definition 3.9. Let F be a Banach space and let G ⊂ Rn be a C1-domain. Let
aα : G → L(F ) and bj,β : ∂G → L(F ). Set B#

j (x,D) :=
∑

|β|=mj

bβ,j(x)Dβ and let

A#(x,D) :=
∑

|α|=2m

aα(x)Dα be parameter-elliptic in G of angle of ellipticity ϕ ∈

[0, π). For each x0 ∈ ∂G we write the boundary value problem in local coordinates
about x0. The boundary value problem (3.4) is said to satisfy the Lopatinskii-Shapiro
condition, if for each φ > ϕ the ODE on R+

(λ+A#(x0, ξ
′, Dxn))v(xn) = 0, xn > 0,

B#
j (x0, ξ

′, Dxn)v(0) = hj , j = 1, ...,m,

v(xn) → 0, xn →∞,

has a unique solution v ∈ C((0,∞), F ) for each (h1, ..., hm)T ∈ Fm and each λ ∈
Σπ−φ and ξ′ ∈ Rn−1 with |ξ′|+ |λ| 6= 0.

We refer to [21] for an introduction to the Lopatinskii-Shapiro condition for scalar-
valued boundary value problems and to [10] for an extensive treatment of the F -
valued case. Parameter-ellipticity of a boundary value problem now reads as follows.

Definition 3.10. The boundary value problem (A,B) given through (3.4) is called
parameter-elliptic in G of angle ϕ ∈ [0, π), if A(·, D) is parameter-elliptic in G of
angle ϕ ∈ [0, π) and if the Lopatinskii-Shapiro condition holds. To indicate that ϕ
is the angle of ellipticity of the boundary value problem (A,B) we use the subscript
notation ϕ(A,B).

4. Proof of the main result

We denote by

D(A2) := {u ∈W 2m,p(V, F ); B2,j(·, D)u = 0 (j = 1, ...,m)}
A2u := A2(·, D)u, u ∈ D(A2),

the Lp(V, F )-realization of the induced boundary value problem

λu+A2(x2, D)u = f in V,
B2,j(x2, D)u = 0 on ∂V (j = 1, ...,m), (4.1)

on the cross-section V of Ω. As the original boundary value problem (2.1) is assumed
to be parameter-elliptic with ellipticity angle ϕ(A,B) ∈ [0, π

2 ), it is easy to see that
the same is valid for the boundary value problem (4.1) and that the corresponding
angle ϕ(A2,B2) is no larger than ϕ(A,B). By employing finite open coverings of V , in
[10] the following result is proved.

Proposition 4.1. Let V ⊂ Rk be a standard domain of class C2m. Given the
assumptions (2.2) on the coefficients a2 and b2, for each φ > ϕ(A2,B2) there exists a
δ2 = δ2(φ) ≥ 0 such that A2 + δ2 ∈ RS(Lp(V, F )) with φRS

A2+δ2
≤ φ. Moreover, we

have
R({λ1− |γ|

2mDγ(λ+A2 + δ2)−1; λ ∈ Σπ−φ, 0 ≤ |γ| ≤ 2m}) <∞. (4.2)
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Remark 4.2. In [10] just the case k ≥ 2 is treated, whereas the case k = 1 is
well-known.

From the definition it is clear that the coefficients of the cylindrical parts A1 and
A2 of A only depend on x1 or x2, respectively. For the sake of simplicity we therefore
drop the special indications for x, if no confusion seems likely. To be precise we write

Ai(xi, D) = Ai(x,D) =
∑

|α|≤2m

ai
α(x)Dα

for i = 1, 2, where

a1
α(x) =

{
0 , α2 6= 0,
a1

α1(x1), α2 = 0,

a2
α(x) =

{
0 , α1 6= 0,
a2

α2(x2), α1 = 0.

Further we set E := Lp(Ω, F ) and X := Lp(Rn−k, E) ∼= Lp(Ω, F ). Given an operator
T : D(T ) ⊂ E → E, its canonical extension is defined by

D(T̃ ) := Lp(Rn−k, D(T ))

(T̃ u)(x) := T (u(x)), u ∈ D(T̃ ), x ∈ Rn−k.

4.1. Constant coefficients a1
α. In the first step we consider the model problem

for the cylindrical boundary value problem (2.1), i.e., we assume A1(x,D) on Rn−k

to be given as homogeneous differential operator

A1(D) :=
∑

|α|=2m

a1
αD

α

with constant coefficients a1
α ∈ C. Let A1 denote its realization in X with domain

D(A1) := W 2m,p(Rn−k, E). We set

A0(·, D) := A1(D) +A2(·, D)

and
A0 := A1 + Ã2, D(A0) := D(A1) ∩D(Ã2).

Note that no further restrictions on A2(x,D) have to be assumed.
Since it will always be clear from the context what we mean, from now on we

do not distinguish between Ã2 and A2. In other words, from this point on we drop
again the tilde notation and just write A2 for simplicity.

Let φ > ϕ(A0,B), λ ∈ Σπ−φ and u ∈ S(Rn−k, D(A2)) ⊂ D(A0). Applying E-valued
Fourier transform F to f := (λ+A0 + δ2)u gives us

(λ+ a1(·) +A2 + δ2)Fu = Ff.
Hence we formally have

u = F−1m0
λFf,

where m0
λ is given by the operator-valued symbol

m0
λ(ξ) := (λ+ a1(ξ) +A2 + δ2)−1, ξ ∈ Rn−k.
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Note that m0
λ ∈ C∞(Rn−k,L(E)) is well-defined if

−(λ+ a1(ξ)) ∈ ρ(A2 + δ2) (ξ ∈ Rn−k).

In view of ϕ(A2,B2) ≤ ϕ(A0,B) and Proposition 4.1 this is obviously satisfied in case
that λ+a1(ξ) ∈ Σπ−φ. This, however, follows directly from the parameter-ellipticity
of A1(D), which is obtained as an immediate consequence of the parameter-ellipticity
of (A0, B), and since the ellipticity angle ϕA1 of A1 fullfills ϕA1 ≤ ϕ(A0,B) < φ.

In order to obtain

(λ+A0 + δ2)−1 = F−1m0
λFf ∈ L(X),

the idea is to apply the operator-valued multiplier result of Proposition 3.7 to m0
λ.

For this purpose, we next establish suitable representation formulas for derivatives
of m0

λ.

Lemma 4.3. Let φ > ϕ(A0,B). Given α ∈ {0, 1}n−k, let

Zα :=

W = (ω1, ..., ωr) ∈ ({0, 1}n−k)r; r ≤ n− k, ωj 6= 0,
r∑

j=1

ωj = α


denote the set of all additive decompositions of α into r = rW many positive multi-
indices. Then, with CW := (−1)rr!, the formula

ξαDαm0
λ(ξ) = (λ+ a1(ξ) +A2 + δ2)−1

·
∑
W∈Zα

CW

 r∏
j=1

ξωj
Dωj

a1(ξ)

 (λ+ a1(ξ) +A2 + δ2)−r

holds for all λ ∈ Σπ−φ and ξ ∈ Rn−k.

Proof. Let |α| = 1. Then there exists i ∈ {1, ..., n−k} such that α = ei. In this case
Zα = {(α)} and we get immediatly

ξiDim
0
λ(ξ)

= −ξi(Dia1)(ξ)(λ+ a1(ξ) +A2 + δ)−2

= (λ+ a1(ξ) +A2 + δ2)−1(−1)ξα(Dαa1)(ξ)(λ+ a1(ξ) +A2 + δ)−1.

Now assume the statement to be true for α ∈ {0, 1}n−k with |α| < n− k.
Then for l ∈ {1, ..., n− k} such that αl = 0 we obtain

ξlξ
αDlD

αm0
λ(ξ)

= ξlDl

∑
W∈Zα

CW

 rW∏
j=1

ξωj
Dωj

a1(ξ)

 (λ+ a1(ξ) +A2 + δ2)−(1+rW )

= ξl
∑
W∈Zα

CW
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·

 rW∑
i=1

ξωi
(DlD

ωi
a1)(ξ)

∏
j 6=i

ξωj
Dωj

a1(ξ)

 (λ+ a1(ξ) +A2 + δ2)−(1+rW )

+

∏
j

ξωj
Dωj

a1(ξ)

 (−(1 + rW))(Dla1)(ξ)(λ+ a1(ξ) +A2 + δ2)−(2+rW )


= (λ+ a1(ξ) +A2 + δ2)−1

·
∑

W∈Zα+el

CW

 rW∏
j=1

ξωj
Dωj

a1(ξ)

 (λ+ a1(ξ) +A2 + δ2)−rW .

�

In the sequel we denote by (β, γ) ∈ Nn−k
0 × Nk

0 a multiindex such that β is the
part corresponding to the variables x1 ∈ Rn−k and γ corresponding to the variables
x2 ∈ V . In order to obtain the general estimate (2.3) for the full operator A, we
also have to consider the more involved symbols

mλ(ξ) := λ1− |β|+|γ|
2m ξβDγm0

λ(ξ) = λ1− |β|+|γ|
2m ξβDγ(λ+ a1(ξ) +A2 + δ2)−1

for λ ∈ Σπ−φ, ξ ∈ Rn−k, and |β|+ |γ| ≤ 2m.

Lemma 4.4. Let φ > ϕ(A0,B). For α ∈ {0, 1}n−k we have

ξαDαmλ(ξ) = λ1− |β|+|γ|
2m ξβDγ(λ+ a1(ξ) +A2 + δ2)−1

·
∑
α′≤α

Cα′,β

∑
W∈Zα−α′

CW

r∏
j=1

(
ξωj

(Dωj
a1)(ξ)(λ+ a1(ξ) +A2 + δ2)−1

)
,

for all λ ∈ Σπ−φ, ξ ∈ Rn−k, and (β, γ) ∈ Nn−k
0 × Nk

0 such that |β| + |γ| ≤ 2m, and
with certain constants Cα′,β ∈ Z.

Proof. We first show

ξαDαmλ(ξ) = λ1− |β|+|γ|
2m ξβ

∑
α′≤α

(
∏

i;α′i 6=0

βi)ξα−α′Dα−α′Dγ(λ+ a1(ξ) +A2 + δ2)−1.

(4.3)

Let α = ei for some i ∈ {1, ..., n− k}. Then

ξiDimλ(ξ)

= λ1− |β|+|γ|
2m ξβ

(
βiD

γ(λ+ a1(ξ) +A2 + δ2)−1 + ξiDiD
γ(λ+ a1(ξ) +A2 + δ2)−1

)
already proves (4.3) for the case |α| = 1. Assume the statement to be true for
α ∈ {0, 1}n−k with |α| < n− k. For l ∈ {1, ..., n− k} such that αl = 0 we have

ξlξ
αDlD

αmλ(ξ)
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= λ1− |β|+|γ|
2m ξlDl

∑
α′≤α

(
∏

i;α′i 6=0

βi)ξβξα−α′Dα−α′Dγ(λ+ a1(ξ) +A2 + δ2)−1

= λ1− |β|+|γ|
2m

 ∑
α′≤α

(
∏

i;α′i 6=0

βi)βlξ
βξα−α′Dα−α′Dγ(λ+ a1(ξ) +A2 + δ2)−1

+
∑
α′≤α

(
∏

i;α′i 6=0

βi)ξβξα+el−α′Dα+el−α′Dγ(λ+ a1(ξ) +A2 + δ2)−1


= λ1− |β|+|γ|

2m ξβ ∑
α′≤α+el;α

′
l=1

(
∏

i;α′i 6=0

βi)ξα+el−α′Dα+el−α′Dγ(λ+ a1(ξ) +A2 + δ2)−1

+
∑

α′≤α+el;α
′
l=0

(
∏

i;α′i 6=0

βi)ξα+el−α′Dα+el−α′Dγ(λ+ a1(ξ) +A2 + δ2)−1


= λ1− |β|+|γ|

2m ξβ
∑

α′≤α+el

(
∏

i;α′i 6=0

βi)ξα−α′Dα−α′Dγ(λ+ a1(ξ) +A2 + δ2)−1.

This proves (4.3). Setting Cα′,β :=
∏

i;α′i 6=0

βi and applying Lemma 4.3 now yields

ξαDαmλ(ξ) = λ1− |β|+|γ|
2m ξβDγ

∑
α′≤α

Cα′,β

·
∑

W∈Zα−α′

CW

 r∏
j=1

ξωj
Dωj

a1(ξ)

Dγ(λ+ a1(ξ) +A2 + δ2)−(r+1)

= λ1− |β|+|γ|
2m ξβDγ(λ+ a1(ξ) +A2 + δ2)−1

∑
α′≤α

Cα′,β

·
∑

W∈Zα−α′

CW

r∏
j=1

(
ξωj

(Dωj
a1)(ξ)(λ+ a1(ξ) +A2 + δ2)−1

)
.

This proves the assertion. �

With the above formulas at hand we can prove R-sectoriality for the model prob-
lem.

Proposition 4.5. For each φ > ϕ(A0,B) we have A0 + δ2 ∈ RS(X) with δ2 = δ2(φ)
as in Proposition 4.1. Moreover, φRS

A0+δ2
≤ φ and it holds that

R({λ1− |β|+|γ|
2m DβDγ(λ+A0 + δ2)−1; λ ∈ Σπ−φ, 0 ≤ |β|+ |γ| ≤ 2m}) <∞. (4.4)
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Furthermore, the domain of A0 is given as

D(A0) = Lp(Rn−k, D(A2)) ∩
2m⋂
j=1

W j,p(Rn−k,W 2m−j,p(V, F )).

Proof. Let φ > ϕ(A0,B). We show that mλ fulfills the assumptions of the multiplier
result Proposition 3.7, i.e., that

R({ξαDαmλ(ξ); ξ ∈ Rn−k, λ ∈ Σπ−φ, α ∈ {0, 1}n−k}) <∞.

As R-boundedness by virtue of Lemma 3.5 is preserved under summation and com-
position of R-bounded operator families, it suffices by Lemma 4.4 to prove that

R({λ1− |β|+|γ|
2m ξβDγ(λ+ a1(ξ) +A2 + δ2)−1;

ξ ∈ Rn−k, λ ∈ Σπ−φ, 0 ≤ |β|+ |γ| ≤ 2m}) <∞

and that

R({ξα(Dαa1)(ξ)(λ+ a1(ξ) +A2 + δ2)−1;

ξ ∈ Rn−k, λ ∈ Σπ−φ, α ∈ {0, 1}n−k}) <∞.

Thanks to (4.2) this follows by the contraction principle of Kahane if we can show
that both

κ1(λ, ξ) :=
λ1− |β|+|γ|

2m ξβ

(λ+ a1(ξ))1−
|γ|
2m

and

κ2(λ, ξ) :=
ξαDαa1(ξ)
λ+ a1(ξ)

are uniformly bounded in (λ, ξ) ∈ Σπ−φ × Rn−k. To see this, we first observe that

κ1(s2mλ, sξ) = κ1(λ, ξ) (s > 0),

hence that κ1 is quasi-homogeneous of degree zero. We set

K := {(λ, ξ) ∈ Σπ−φ × Rn−k : |λ|+ |ξ|2m = 1}. (4.5)

By the ellipticity condition, we obtain a1(ξ) ∈ Σϕ
A1

for all ξ ∈ Rn−k \ {0}. Since
ϕA1 < φ, it therefore easily follows that

λ+ a1(ξ) 6= 0 on K.

Consequently, κ1 is a continuous function on the compact set K and we obtain

|κ1(λ, ξ)| ≤M ((λ, ξ) ∈ K).

By the quasi-homogenity of κ1 this implies

|κ1(s2mλ, sξ)| ≤M ((λ, ξ) ∈ K, s > 0).

We have
|s2mλ|+ |sξ|2m = s2m(|λ|+ |ξ|2m).
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Thus, if we set s = (|λ|+ |ξ|2m)−1/2m we deduce

(s2mλ, sξ) ∈ K ((λ, ξ) ∈ Σπ−φ × Rn−k)

and therefore that

|κ1(λ, ξ)| = |κ1(s2mλ, sξ)| ≤M ((λ, ξ) ∈ Σπ−φ × Rn−k).

The uniform boundedness of κ2 can be proved in exactly the same way. By applying
Proposition 3.7, relation (4.4) follows.

In particular, we have

(λ+A0 + δ2)−1 = F−1m0
λFf ∈ L(X)

and

D(A0) ⊂
2m⋂
j=1

W j,p(Rn−k,W 2m−j,p(V, F )).

Furthermore, we can represent the resolvent applied to f ∈ S(Rn−k, E) as a Bochner
integral via

(λ+A0 + δ2)−1f(x1) =
1

(2π)(n−k)/2

∫
Rn−k

eix
1·ξ(λ+ a1(ξ) +A2 + δ2)−1Ff(ξ)dξ.

Since taking the trace acts as a bounded operator on E, it commutes with the
integral sign. This yields

B2,j(λ+A0 + δ2)−1f = 0 (f ∈ S(Rn−k, E)).

Employing a density argument we conclude that

D(A0) = Lp(Rn−k, D(A2)) ∩
2m⋂
j=1

W j,p(Rn−k,W 2m−j,p(V, F )).

Assuming that (A0 + δ2)u = 0 for u ∈ D(A0) next implies that

(a1(ξ) +A2 + δ2)Fu(ξ) = 0 (ξ ∈ Rn−k).

Since A2 + δ2 is sectorial and a1 parameter-elliptic this yields Fu = 0, hence u = 0.
By permanence properties for sectorial operators, i.e. in this case for A2 + δ2, we
obtain that the same is true for the dual operator of A0+δ2. This implies that A0+δ2
is injective and has dense range. Hence we have proved that A0 + δ2 ∈ RS(X). �

4.2. Slightly varying coefficients a1
α. By a perturbation argument in this para-

graph we generalize the R-sectoriality for constant coefficients to the case of slightly
varying coefficients of A1. To this end, we will employ the following perturbation
result which is based on a standard Neuman series argument.

Lemma 4.6. Let R be a linear operator in X such that D(A0) ⊂ D(R) and let δ2
be given as in Proposition 4.5. Assume that there are η > 0 and δ > δ2 such that

‖Rx‖X ≤ η‖(A0 + δ)x‖X (x ∈ D(A)).
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Then A0 +R+ δ ∈ RS(X), φRS
A0+R+δ ≤ φRS

A0+δ2
, and for every φ > ϕ(A0,B) we have

R({λ
`

2mDβDγ(λ+A0 +R+ δ)−1; λ ∈ Σπ−φ, 0 ≤ `+ |β|+ |γ| ≤ 2m}) <∞, (4.6)

whenever η < R({(A0 + δ)(λ+A0 + δ)−1})−1.

Proof. As

‖R(λ+A0 + δ)−1‖L(X) ≤ η‖(A0 + δ)(λ+A0 + δ)−1‖L(X)

≤ ηR({(A0 + δ)(λ+A0 + δ)−1})
< 1

by assumption, we see that

λ+A0 +R+ δ =
(

1 +R(λ+A0 + δ)−1

)
(λ+A0 + δ)

is invertible. This implies

λ
`

2mDβDγ(λ+A0 +R+ δ)−1

= λ
`

2mDβDγ(λ+A0 + δ)−1
∞∑

j=0

(−R(λ+A0 + δ)−1)j .

By assumption we have δ0 := δ − δ2 > 0. The fact that

|λ+ δ0| ≥ cφδ0 (λ ∈ Σπ−φ)

for some cφ > 0 yields the existence of a Mφ > 0 such that

|λ`/2m|
|(λ+ δ0)1−(|β|+|γ|)/2m|

≤Mφ (λ ∈ Σπ−φ).

Thanks to the contraction principle of Kahane and Proposition 4.5 we deduce

R({λ
`

2mDβDγ(λ+A0 + δ)−1})

≤ CR({(λ+ δ0)1−
|β|+|γ|

2m DβDγ((λ+ δ0) +A0 + δ2)−1}) ≤ C.

Lemma 3.5(a) then yields

R({λ
`

2mDβDγ(λ+A0 + δ)−1(−R(λ+A0 + δ)−1)j})

≤ R({λ
`

2mDβDγ(λ+A0 + δ)−1})R({(R(λ+A0 + δ)−1)j})
≤ CηjR({(A0 + δ)(λ+A0 + δ)−1)})j ≤ Cνj (j ∈ N0)

with ν := ηR({(A0 + δ)(λ + A0 + δ)−1}) < 1. Employing again Lemma 3.5(a), in
particular the fact that the R-bound is preserved when taking the closure in the
strong operator topology, the assertion follows. �

Corollary 4.7. Let R(x1, D) :=
∑
|α1|=2m rα1(x1)D(α1,0) be given such that the

condition
∑

|α1|=2m

‖rα1‖∞ < η is satisfied. Set

Ava(x,D) := A0(x2, D) +R(x1, D), x ∈ Ω, (4.7)
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and denote its X-realization by Ava defined on D(Ava) = D(A0). Then there exists a
δ > 0 such that Ava+δ ∈ RS(X) with φRS

Ava+δ ≤ φRS
A0+δ2

provided that η is sufficiently
small. In this case for φ > ϕ(A0,B) we have

R({λ
`

2mDβDγ(λ+Ava + δ)−1; λ ∈ Σπ−φ, 0 ≤ l + |β|+ |γ| ≤ 2m}) <∞. (4.8)

Proof. By Proposition 4.5, in particular by relation (4.4), there exists a C > 0 such
that

‖D(α1,0)(A0 + δ)−1‖L(X) ≤ C (α1 ∈ Nn−k
0 , |α1| = 2m)

for each δ > δ2. For a fixed δ > δ2 this implies

‖Ru‖p ≤
∑

|α1|=2m

‖rα1‖∞‖D(α1,0)(A0 + δ)−1(A0 + δ)u‖p

≤ Cη‖(A0 + δ)u‖p (u ∈ D(A0)).

Thus, if we assume that η < 1/CR({(A0 + δ)(λ+A0 + δ)−1}), the assertion follows
from Lemma 4.6. �

4.3. Variable coefficients a1
α. In the next lemma we establish estimates that will

turn out to be crucial for the localization procedure.

Lemma 4.8. Let 1 < p <∞, (β1, 0) ∈ Nn−k
0 × Nk

0, |(β1, 0)| = ν < 2m, and rν ≥ p

such that 2m− ν > n−k
rν

. Let b ∈ [L∞ + Lrν ](Rn−k), Ava be the operator as defined
in (4.7), and assume that φ > ϕ(A,B).

(a) For every ε > 0 there exists C(ε) > 0 such that

‖bD(β1,0)u‖p ≤ ε‖u‖p,2m + C(ε)‖u‖p (u ∈W 2m,p(Rn−k, E)).

(b) For every ε > 0 there exists a δ = δ(ε) > 0 such that

R({bD(β1,0)(λ+Ava + δ)−1; λ ∈ Σπ−φ}) ≤ ε.

Proof. (a) Let ε > 0 be arbitrary. For simplicity we set β = (β1, 0). For b ∈
L∞(Rn−k) we obtain by Hölder’s inequality and vector-valued complex interpolation
(see e.g. [4]) that

‖bDβu‖p ≤ ‖b‖∞‖u‖p,ν ≤ C‖b‖∞‖u‖
ν

2m
p,2m‖u‖

1− ν
2m

p (u ∈W 2m,p(Rn−k, E)).

With the help of Young’s inequality we then can achieve that

‖bDβu‖p ≤ ε‖u‖p,2m + C(ε)‖u‖p (u ∈W 2m,p(Rn−k, E)).

Now let b ∈ Lrν (Rn−k), r := rν
p , and 1

r + 1
r′ = 1. Then Hölder’s inequality and the

vector-valued version of the Gagliardo-Nirenberg inequality (see [18]) imply

‖bDβu‖p ≤ C‖b‖pr‖Dβu‖pr′ ≤ C‖b‖rν‖u‖τ
p,2m‖u‖1−τ

p ,

where τ = n−k
rν(2m−ν) ∈ (0, 1) by our assumption on rν . Again an application of

Young’s inequality yields

‖bDβu‖p ≤ ε‖u‖p,2m + C(ε)‖u‖p (u ∈W 2m,p(Rn−k, E)).
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(b) Let (εj)j∈N be a family of independent symmetric {−1, 1}-valued random
variables on a probability space ([0, 1],M, P ), λj ∈ Σπ−φ, and fj ∈ X. For
b ∈ L∞(Rn−k), δ0 > 0, and arbitrary t ∈ [0, 1] we have

‖
N∑

j=1

εj(t)bDβ(λj + δ0 +Ava + δ)−1fj‖p

≤ ‖b‖∞‖
N∑

j=1

εj(t)Dβ(λj + δ0 +Ava + δ)−1fj‖p.

Note that there is a cφ > 0 such that

|λ+ δ0| ≥ cφδ0 (λ ∈ Σπ−φ, δ0 > 0).

Taking Lp-norm with respect to t and applying the contraction principle of Kahane
therefore yields

‖
N∑

j=1

εj(·)bDβ(λj + δ0 +Ava + δ)−1fj‖Lp([0,1],X)

≤ C‖b‖∞‖
N∑

j=1

εj(·)
(
λj + δ0
δ0

)1− |β|
2m

Dβ(λj + δ0 +Ava + δ)−1fj‖Lp([0,1],X).

Thanks to (4.8) this implies

‖
N∑

j=1

εj(·)bDβ(λj + δ0 +Ava + δ)−1fj‖Lp([0,1],X)

≤ C‖b‖∞δ
−(1− |β|

2m
)

0 ‖
N∑

j=1

εj(·)fj‖Lp([0,1],X).

Thus for δ0 > (C‖b‖∞/ε)1/(1−|β|/2m) the assertion follows.
In case that b ∈ Lrν (Rn−k), Hölder’s inequality and the Gagliardo-Nirenberg

inequality imply for τ(2m− ν) = n−k
rν

and arbitrary t ∈ [0, 1] that

‖
N∑

j=1

εj(t)bDβ(λj + δ0 +Ava + δ)−1fj‖p

≤ ‖b‖pr‖
N∑

j=1

εj(t)Dβ(λj + δ0 +Ava + δ)−1fj‖pr′

≤ C‖b‖rν

( ∑
|α|=2m

‖
N∑

j=1

εj(t)Dα(λj + δ0 +Ava + δ)−1fj‖p
p

)τ/p

· ‖
N∑

j=1

εj(t)(λj + δ0 +Ava + δ)−1fj‖1−τ
p .
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Taking Lp-norm with respect to t and applying once more Hölder’s inequality we
deduce

‖
N∑

j=1

εj(·)bDβ(λj + δ0 +Ava + δ)−1fj‖Lp([0,1],X)

≤ C‖b‖rν

( ∑
|α|=2m

‖
N∑

j=1

εj(·)Dα(λj + δ0 +Ava + δ)−1fj‖p
Lp([0,1],X)

)τ/p

· ‖
N∑

j=1

εj(·)(λj + δ0 +Ava + δ)−1fj‖1−τ
Lp([0,1],X).

The contraction principle of Kahane then gives us

‖
N∑

j=1

εj(·)bDβ(λj + δ0 +Ava + δ)−1fj‖Lp([0,1],X)

≤ C‖b‖rν

( ∑
|α|=2m

‖
N∑

j=1

εj(·)Dα(λj + δ0 +Ava + δ)−1fj‖p
Lp([0,1],X)

)τ/p

· ‖
N∑

j=1

εj(·)
λj + δ0
δ0

(λj + δ0 +Ava + δ)−1fj‖1−τ
Lp([0,1],X).

Taking into account (4.8) we arrive at

‖
N∑

j=1

εj(·)bDβ(λj + δ0 +Ava + δ)−1fj‖Lp([0,1],X)

≤ C‖b‖rνδ
τ−1
0 ‖

N∑
j=1

εj(·)fj‖Lp([0,1],X).

Choosing δ0 > (C‖b‖rν/ε)1/(1−τ) proves the lemma. �

Proof of Theorem 2.3. We denote by

A#
1 (x,D) :=

∑
|α|=2m

a1
α(x)Dα

the principal part of A1(x,D) and by A#
1 its realization in X with domain D(A#

1 ) =
W 2m,p(Rn−k, E). Recall that A#

1 (x,D) = A#
1 (x1, D) does not depend on x2 ∈ V .

Freezing the coefficients at some arbitrary x1
0 ∈ Rn−k∪{∞}, Proposition 4.5 applies

to A1(D) := A#
1 (x1

0, D).
So, we first choose a large ball Br0(0) ⊂ Rn−k with a fixed radius r0 > 0 such

that
|a1

α1(x1)− a1
α1(∞)| ≤ η/Mα, for all |x1| ≥ r0, |α1| = 2m,
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and set U0 := Rn−k\Br0(0). Here Mα =
∣∣{α1 ∈ Nn−k

0 ; |α1| = 2m, aα1 6= 0}
∣∣

and η = η(∞) is the constant given in Corollary 4.7 for the principal part of the
’limiting operator’ A#

1 (∞, D) =
∑
|α|=2m a1

α(∞)Dα. For every x1
0 ∈ Br0(0) let

η = η(x1
0) be the constant given in Corollary 4.7 for the ’frozen coefficients operator’

A1(D) := A#
1 (x1

0, D). By our continuity assumptions on the coefficients then there
exists a radius r = r(x1

0) such that

|a1
α1(x1)− a1

α1(x1
0)| ≤ η(x1

0)/Mα, for all |x1 − x1
0| ≤ r(x1

0), |α1| = 2m.

Obviously the collection {Br(x1
0)(x

1
0)) : x1

0 ∈ Br0(0)} represents an open covering of
Br0(0). Thus, by compactness we have

Br0(0) ⊆
N⋃

j=1

Br(x1
j )(x

1
j )

for a certain finite set (x1
j )

N
j=1.

For simplicity we set xj := (x1
j , 0), rj := r(x1

j ), and Uj := Brj (x
1
j ) for j = 1, . . . , N ,

as well as x1
0 := ∞. For each j = 0, ..., N we define coefficients of A#

1 (x,D)-
localizations

A1,loc
j (x,D) :=

∑
|α|=2m

a1
j,α(x)Dα

by reflection, i.e., we set

a1
0,α(x) =

{
a1

α(x) , x1 /∈ Br0(0),
a1

α( r2
0

|x|2x), x1 ∈ Br0(0),

and

a1
j,α(x) =

{
a1

α(x) , x1 ∈ Brj (x
1
j ),

a1
α(xj +

r2
j

|x−xj |2 (x− xj)), x1 /∈ Brj (x
1
j ).

Then by definition we have∑
|α1|=2m

|a1
j,α1(x)− a1

α1(xj)| ≤ η(x1
j )

for x = (x1, 0) ∈ Rn−k × Rk and j = 0, ..., N , that is, A1,loc
j (x,D) + A2(x,D) is a

small variation of A#(x1
j , D) := A#

1 (x1
j , D) +A2(x,D). Hence Corollary 4.7 applies

to
Aloc

j := A1,loc
j +A2.

In other words, for each φ > ϕ(A,B) there exists δ = δ(φ) > 0 such that Aloc
j + δ ∈

RS(X) and we have

R({λ
`

2mDβDγ(λ+Aloc
j +δ)−1; λ ∈ Σπ−φ, 0 ≤ `+ |β|+ |γ| ≤ 2m}) ≤ Cφ <∞ (4.9)

for j = 0, ..., N .
Next we choose a partition of unity (ϕj)N

j=0 ⊂ C∞(Rn−k) of Rn−k subordinate to
the open covering (Uj)N

j=0 such that 0 ≤ ϕj ≤ 1. In addition, we fix ψj ∈ C∞(Rn−k)
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such that ψj ≡ 1 on supp ϕj and supp ψj ⊂ Uj . We set B(x,D) := A(x,D) −
A#(x,D) and pick λ ∈ Σπ−φ. Then

λu+A(·, D)u = f

holds if and only if
λu+A#(·, D)u = f − B(·, D)u.

Multiplying the line above by ϕj we obtain

λϕju+A#(·, D)ϕju = ϕjf + [A#(·, D), ϕj ]u− ϕjB(·, D)u,

where the commutators

[A#(·, D), ϕj ] := A#(·, D)ϕj − ϕjA
#(·, D) = [A#

1 (·, D), ϕj ]

do only depend on A#
1 (·, D). Applying the resolvent of Aloc

j to the localized equations
we deduce

ϕju = (λ+Aloc
j + δ)−1ϕjf + (λ+Aloc

j + δ)−1([A#(·, D), ϕj ]u− ϕjB(·, D)u).

By multiplying with ψj and by summing up over j we gain the representation

u =
N∑

j=0

ψj(λ+Aloc
j +δ)−1ϕjf+

N∑
j=0

ψj(λ+Aloc
j +δ)−1([A#(·, D), ϕj ]u−ϕjB(·, D))u.

Hence we obtain

(I −
N∑

j=0

ψj(λ+Aloc
j + δ)−1Cj(·, D))u =

N∑
j=0

ψj(λ+Aloc
j + δ)−1ϕjf,

where
Cj(·, D) := [A#

1 (·, D), ϕj ]− ϕjB(·, D)
is a differential operator inX of lower order whose coefficients fullfill the assumptions
of Lemma 4.8. We set

R0(λ, δ) :=
N∑

j=0

ψj(λ+Aloc
j + δ)−1ϕj (4.10)

and

R1(λ, δ) :=
N∑

j=0

ψj(λ+Aloc
j + δ)−1Cj(·, D).

Relation (4.9) and Lemma 4.8(a) now imply that

‖R1(λ, δ′ + δ0)u‖W 2m,p(Ω,F ) + δ0‖R1(λ, δ′ + δ0)u‖p

≤ C
(
‖R1(λ+ δ0, δ

′)u‖W 2m,p(Ω,F ) + |λ+ δ0|‖R1(λ+ δ0, δ
′)u‖p

)
≤ C‖Cj(·, D)u‖p

≤ C
(
ε‖u‖W 2m,p(Rn−k,E) + C(ε)‖u‖p

)
≤ 1

2

(
‖u‖W 2m,p(Rn−k,E) + δ0‖u‖p

)
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≤ 1
2

(
‖u‖W 2m,p(Ω,F ) + δ0‖u‖p

)
(λ ∈ Σπ−φ)

for some δ′ > 0 and provided that δ0 > 0 is sufficiently large. Setting δ := δ′ + δ0
we see that then

Lλ := (I −R1(λ, δ))−1R0(λ, δ) : Lp(Rn−k, E) → D(A)

is a left inverse of λ+A+ δ which admits an estimate

|λ|‖Lλf‖p ≤ C‖f‖p (λ ∈ Σπ−φ).

Thus, if we can prove that there exists a right inverse as well, we obtain A+δ ∈ S(X)
and φA+δ ≤ φ.

To this end, let f ∈ X be arbitrary. Then

(λ+A(·, D) + δ)R0(λ, δ)f = (λ+A#(·, D) + δ)R0(λ, δ)f + B(·, D)R0(λ, δ)f

= (λ+A#(·, D) + δ)
N∑

j=0

ψj(λ+Aloc
j + δ)−1ϕjf

+ B(·, D)
N∑

j=0

ψj(λ+Aloc
j + δ)−1ϕjf

=
N∑

j=0

ψj(λ+A#(·, D) + δ)(λ+Aloc
j + δ)−1ϕjf

+
N∑

j=0

D(·, D)(λ+Aloc
j + δ)−1ϕjf,

where
D(·, D) := [A#

1 (·, D), ψj ] + B(·, D)ψj

is again a differential operator in X of lower order whose coefficients fullfill the
assumptions of Lemma 4.8. Since supp ψj ⊂ Uj and ψ ≡ 1 on supp ϕj , we obtain

(λ+A(·, D) + δ)R0(λ, δ)f = f +R2(λ, δ)f

with

R2(λ, δ) :=
N∑

j=0

D(·, D)(λ+Aloc
j + δ)−1ϕj .

Lemma 4.8(b) implies ‖R2(λ, δ)‖L(X) ≤ 1/2 for large enough δ > 0. Consequently,
Rλ := R0(λ, δ)(I +R2(λ, δ))−1 is a right inverse of λ+A+ δ.

With the help of the Leibniz rule and the contraction principle of Kahane, from
representation (4.10) and relation (4.9) we obtain that

R({λ
`

2mDβDγR0(λ, δ)}) ≤ C(N + 1).
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In view of Lemma 4.8(b) and Lemma 3.5 the representation

(λ+A+ δ)−1 = R0(λ, δ)
∞∑
i=0

R2(λ, δ)i

as a Neumann series finally gives us

R({λ
`

2mDβDγ(λ+A+ δ)−1; λ ∈ Σπ−φ, 0 ≤ `+ |β|+ |γ| ≤ 2m})

≤ R({λ
`

2mDβDγR0(λ, δ)})R({
∞∑
i=0

R2(λ, δ)i})

≤ (N + 1)C
∞∑
i=0

(N + 1)i(Cε)i =
(N + 1)C

1− (N + 1)Cε
<∞.

Hence the proof of Theorem 2.3 is complete. �

5. Mixed orders

All parts of the proof can easily be adjusted to the situation when the differential
operators A1(·, D) and A2(·, D) have different orders, say 2m1 and 2m2 respectively.
Then a cylindrical boundary value problem is given as

λu+A(x,D)u = f in Ω,
Bj(x,D)u = 0 on ∂Ω (j = 1, ...,m), (5.1)

with

A(x,D) = A1(x1, D) +A2(x2, D)

:=
∑

|α1|≤2m1

a1
α1(x1)D(α1,0) +

∑
|α2|≤2m2

a2
α2(x2)D(0,α2)

and

Bj(x,D) = B2,j(x2, D) :=
∑

|β2|≤m2,j

b2j,β2(x2)D(0,β2) (m2,j < 2m2, j = 1, ...,m2).

However, then the notion of parameter-ellipticity for the entire cylindrical boundary
value problem is no longer appropriate. Instead we assume the differential operator
A1(·, D) to be parameter-elliptic in Rn−k as well as the boundary value problem

λu+A2(x,D)u = f in V,
B2,j(x,D)u = 0 on ∂V (j = 1, ...,m), (5.2)

to be parameter-elliptic in the cross-section V of Ω with a joint angle of parameter-
ellipticity ϕ ∈ [0, π

2 ). The exact same proof as the one of Theorem 2.3 can be used
to show the following result.

Theorem 5.1. Given the assumptions of Theorem 2.3, let A1(·, D) in Rn−k as well
as the boundary value problem (5.2) in V be parameter-elliptic with a joint angle of
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parameter-ellipticity ϕ ∈ [0, π
2 ). For Ω = Rn−k×V we define the Lp(Ω, F )-realization

of the cylindrical boundary value problem (5.1) by

D(A) = {u ∈ Lp(Ω, F ); Dαu ∈ Lp(Ω, F )

for
|α1|
2m1

+
|α2|
2m2

≤ 1 and Bj(·, D)u = 0 (j = 1, ...,m)}

Au = A(·, D)u, u ∈ D(A).

Then for each φ > ϕ there exists δ = δ(φ) > 0 such that A+ δ ∈ RS(Lp(Ω, F )) with
φRS

A+δ ≤ φ. Moreover, for α = (α1, α2) ∈ Nn−k
0 × Nk

0 we have

R({λ1−(
|α1|
2m1

+
|α2|
2m2

)
Dα(λ+A+ δ)−1; λ ∈ Σπ−φ, 0 ≤ |α1|

2m1
+
|α2|
2m2

≤ 1}) <∞.
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