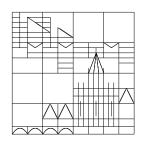
Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Gottfried Barthel. David Grimm/Daniel Plaumann WS 2007/2008



LINEARE ALGEBRA I

13. Übungsblatt

Abgabe am Freitag, dem 8. Februar 2008, bis 10:15 Uhr in den entsprechenden Briefkasten neben Raum F411

- **49.** Sei S_n die Permutationsgruppe von $\{1,...,n\}$ für ein $n \in \mathbb{N}$. Sei $\pi \in S_n \setminus \{id\}$.
 - (a) Zeigen Sie: Es gibt $i_1 \in \{1, ..., n\}$ mit $\pi(i_1) < i_1$.
 - (b) Sei $\{1,...,n\} = I_1 \dot{\cup} I_2$ (d.h. $I_1 \cap I_2 = \emptyset$ und $I_1 \cup I_2 = \{1,...,n\}$). Dann gilt

(für jedes $m \in I_1$ ist $\pi(m) \in I_1$) \Leftrightarrow (für jedes $m \in I_2$ ist $\pi(m) \in I_2$).

 $(I_1 \ ist \ \pi\text{-invariant genau dann, wenn} \ I_2 \ \pi\text{-invariant ist})$

50. Erinnerung: Eine quadratische Matrix $A = (a_{ij})_{1 \leq i,j \leq n}$ wird eine obere Dreiecksmatrix genannt, wenn für alle $1 \leq j < i \leq n$ gilt $a_{ij} = 0$. Zeigen Sie, dass für eine solche Matrix gilt

$$\det(A) = \prod_{i=1}^{n} a_{ii}.$$

51. Sei K ein Körper. Seien $k, l \in \mathbb{N}$ und n := k + l. Seien $A \in \operatorname{Mat}_{k \times k}(K)$ und $B \in \operatorname{Mat}_{l \times l}(K)$ und $C \in \operatorname{Mat}_{n \times n}(K)$ mit

$$c_{ij} = \begin{cases} a_{ij} & \text{falls } 1 \leq i, j \leq k \\ b_{(i-k)(j-k)} & \text{falls } k < i, j \leq n \\ 0 & \text{falls } i > k \text{ und } j \leq k \\ \text{beliebig} & \text{falls } i \leq k \text{ and } j > k \end{cases}, \text{ d.h. } C = \begin{pmatrix} A & \star \\ 0 & B \end{pmatrix}.$$

Zeigen Sie: det(C) = det(A)det(B). (Hinweis: mit Aufgabe 49 (b))

52. Für $A \in \operatorname{Mat}_{n \times n}(K)$ nennen wir $\lambda \in K$ einen Eigenwert von A, falls es ein $v \in K^n \setminus 0$ gibt mit $Av = \lambda v$. Die Menge $\operatorname{Eig}_{\lambda}(A) := \{v \in K^n \mid Av = \lambda v\}$ wird Eigenvaum zum Eigenwert λ genannt. (Man überlege sich, dass dies ein Untervektorraum des K^n ist.)

Bestimmen Sie für die reellen Matrizen A, B, C alle Eigenwerte, sowie jeweils eine Basis des zugehörigen Eigenraumes. Fassen Sie C dann als komplexe Matrix auf und bestimmen Sie die komplexen Eigenwerte:

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & \frac{3}{2} & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

(Anmerkung: $\lambda \in K$ ist genau dann ein Eigenwert einer $n \times n$ -Matrix A, wenn das homogene Gleichungssystem $Av - \lambda v = 0$ eine nichttriviale Lösung hat, d.h. wenn $det(A - \lambda E_n) = 0$ ist.)