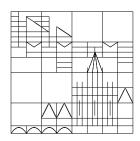
Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Gottfried Barthel Sabine Burgdorf/Daniel Plaumann WS 2007/2008



LINEARE ALGEBRA I

Präsenzübung

1. Seien $x = \binom{x_1}{x_2}, y = \binom{y_1}{y_2} \in \mathbb{R}^2, y \neq 0$. Beweisen Sie die folgende Äquivalenz: Genau dann gibt es ein $a \in \mathbb{R}$ mit x = ay, wenn gilt:

$$x_1y_2 - y_1x_2 = 0.$$

2. Seien A und B zwei Mengen. Zeigen Sie:

$$(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A).$$

- **3.** Seien $x, y \in \mathbb{R}^n$ derart, dass $\langle x, z \rangle = \langle y, z \rangle$ für alle $z \in \mathbb{R}^n$ erfüllt ist. Gilt dann x = y?
- 4. Betrachten Sie die folgenden vier Axiome für die Addition in \mathbb{R} :
 - (A1) Für alle $a, b, c \in \mathbb{R}$ gilt: (a+b)+c=a+(b+c).
 - (A2) Für jedes $a \in \mathbb{R}$ gilt: a + (-a) = 0.
 - (A3) Für jedes $a \in \mathbb{R}$ gilt: a + 0 = a.
 - (A4) Für alle $a, b \in \mathbb{R}$ gilt: a + b = b + a.

Zeigen Sie: Für alle $a, b \in \mathbb{R}$ hat die Gleichung a + x = b genau eine Lösung in \mathbb{R} . Verwenden Sie im Beweis nur die Axiome (A1)–(A4) und geben Sie in jedem Schritt an, welche Axiome Sie verwendet haben.