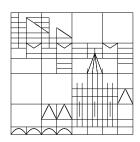
Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Gottfried Barthel Daniel Plaumann Sommersemester 2008



LINEARE ALGEBRA II

6. Übungsblatt

Abgabe bis spätestens Freitag, den 30. Mai 2008, 10:00 Uhr in den entsprechenden Briefkasten

- **21.** Sei R ein kommutativer Ring mit Eins, und es bezeichne R^{\times} die Einheitengruppe von R. Sei \mathfrak{a} ein Ideal von R. Zeigen Sie: Genau dann gilt $\mathfrak{a} = R$, wenn $\mathfrak{a} \cap R^{\times} \neq \emptyset$ ist.
- **22.** Sei R ein euklidischer Ring, und seien $a, b \in R$. Zeigen Sie, dass es Elemente $r, s \in R$ gibt mit

$$ra + sb = ggT(a, b).$$

(*Hinweis:* Betrachten Sie die Teilmenge $M = \{ua + vb \; ; \; u, v \in R\} \subseteq R.$)

- 23. Sei i die imaginäre Einheit und $\mathbb{Z}[i] = \{a+bi; a, b \in \mathbb{Z}\}$ der Ring der gaußschen ganzen Zahlen. Zeigen Sie, dass die Abbildung $\delta \colon \mathbb{Z}[i] \to \mathbb{Z}, \ a+bi \mapsto a^2+b^2$ eine euklidische Wertefunktion und somit $\mathbb{Z}[i]$ ein euklidischer Ring ist. (*Hinweis:* Für die Division mit Rest zeigen Sie zunächst, dass zu jedem $z \in \mathbb{C}$ ein $z' \in \mathbb{Z}[i]$ existiert derart, dass $|z-z'|^2 \leq \frac{1}{2}$ gilt.)
- **24.** (a) Sei $r \geq 1$ und seien $m_1, \ldots, m_r \in \mathbb{Z}$ paarweise teilerfremde ganze Zahlen. Seien $a_1, \ldots, a_r \in \mathbb{Z}$ beliebig. Zeigen Sie, dass es $x \in \mathbb{Z}$ gibt derart, dass die Kongruenzen

$$x \equiv a_1 \pmod{m_1}$$

 \vdots
 $x \equiv a_r \pmod{m_r}$

erfüllt sind.

(*Hinweis*: Setze $M := m_1 \cdots m_r$ und $M_i := \frac{M}{m_i}$ für $i \in \{1, \dots, r\}$. Lösen Sie zunächst die Kongruenzen $M_i x_i \equiv a_i \pmod{m_i}$.)

(b) Bestimmen Sie eine gemeinsame Lösung x für die Kongruenzen

$$x \equiv 2 \pmod{5}$$

$$x \equiv 1 \pmod{6}$$

$$x \equiv 3 \pmod{7}$$
.