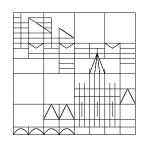
Universität Konstanz Fachbereich Mathematik und Statistik

Prof. Dr. Gottfried Barthel

Dr. Daniel Plaumann

Wintersemester 2008/2009



ALGEBRA

1. Übungsblatt

Abgabe bis spätestens Freitag, den 31. Oktober 2008, 10:00 Uhr in den entsprechenden Briefkasten

1. (a) Sei \sim eine reflexive Relation auf einer Menge M. Zeigen Sie, dass \sim genau dann symmetrisch und transitiv ist, wenn für alle $a, b, c \in M$ gilt:

$$(a \sim b) \land (a \sim c) \implies b \sim c.$$

(b) Behauptung: Jede symmetrische und transitive Relation auf einer Menge M ist reflexiv. Beweis: Für alle $a,b\in M$ gilt wegen der Symmetrie $a\sim b\Rightarrow b\sim a$, also folgt aus der Transitivität $a\sim a$.

Zeigen Sie durch ein Gegenbeispiel, dass die Behauptung falsch ist. Wo liegt der Fehler im "Beweis"?

- 2. Zeigen Sie, dass die folgenden Relationen \sim auf den Mengen M jeweils Äquivalenzrelationen sind. Welche bekannten mathematischen Objekte erkennen Sie in den Äquivalenzklassen?
 - (a) $M = \mathbb{N}_{>0} \times \mathbb{N}_{>0}$; $(a,b) \sim (c,d) \iff a+d=b+c$
 - (b) $M = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}); \quad (a,b) \sim (c,d) \iff ad = bc$
 - (c) $M = \mathbb{R}^n \setminus \{0\};$ $x \sim y$ $\iff \exists \lambda \in \mathbb{R}, \lambda > 0 : x = \lambda y$
- 3. Zeigen Sie, dass die Verknüpfung $(a,b) \mapsto a * b := \text{kgV}(a,b)$ eine Monoidstruktur auf den positiven natürlichen Zahlen $\mathbb{N}_{>0}$ definiert. Stimmt das auch, wenn man kgV durch ggT ersetzt?
- **4.** Sei (G, \cdot) eine nicht-leere Menge mit einer Verknüpfung. Beweisen Sie die Äquivalenz der folgenden beiden Aussagen:
 - (1) (G, \cdot) ist eine Gruppe.
 - (2) Die Verknüpfung · ist assoziativ, und für alle $a, b \in G$ existieren $x, y \in G$ mit $a \cdot x = b$ und $y \cdot a = b$.