Universität Konstanz
Fachbereich Mathematik und Statistik
Daniel Plaumann
Summer 2015

CLASSICAL ALGEBRAIC GEOMETRY

1st problem sheet
Tutorial on 23 April 2015

1. Show that any two ordered sets of $n+2$ points in general position in \mathbb{P}^{n} are projectively equivalent.
([Ha], Ex. 1.6)
2. Let Γ be a finite subset of \mathbb{P}^{n}. Show that if Γ consists of d points and is not contained in a line, then Γ may be described by polynomials of degree at most $d-1$.
([Ha], Ex. 1.3)
3. Show that if seven points $p_{1}, \ldots, p_{7} \in \mathbb{P}^{3}$ lie on a twisted cubic C, then C is the zero locus of all quadratic forms vanishing at p_{1}, \ldots, p_{7}.
([Ha], Ex. 1.13)
4. Let k be any integer between 1 and $d-1$. Show that the set of points $\left[Z_{0}, \ldots, Z_{d}\right]$ in \mathbb{P}^{d} for which the $(d-k+1) \times(k+1)$-matrix

$$
\left[\begin{array}{cccccc}
Z_{0} & Z_{1} & Z_{2} & \cdot & Z_{k-1} & Z_{k} \\
Z_{1} & Z_{2} & \cdot & \cdot & \cdot & Z_{k+1} \\
Z_{2} & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & Z_{d-1} \\
Z_{d-k} & \cdot & \cdot & \cdot & Z_{d-1} & Z_{d}
\end{array}\right]
$$

has rank 1 is precisely the rational normal curve.
5. Show that the rational normal curve passing through $d+3$ points in \mathbb{P}^{d} constructed in the lecture is unique.
6. Let $\Gamma=\left\{p_{0}, \ldots, p_{d+2}\right\}, \Gamma^{\prime}=\left\{p_{0}^{\prime}, \ldots, p_{d+2}^{\prime}\right\}$ be two ordered sets of points in \mathbb{P}^{d}. Let $v_{d}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d}$ (resp. v_{d}^{\prime}) be the unique rational normal curve passing through Γ (resp. Γ^{\prime}) and put $\Delta=v_{d}^{-1}(\Gamma), \Delta^{\prime}=\left(v_{d}^{\prime}\right)^{-1}\left(\Gamma^{\prime}\right)$.
Show that Γ and Γ^{\prime} are projectively equivalent in \mathbb{P}^{d} if and only if Δ and Δ^{\prime} are projectively equivalent in \mathbb{P}^{1}.
How is the latter characterized in terms of cross-ratios?
([Ha], Ex. 1.19)

