CLASSICAL ALGEBRAIC GEOMETRY

3rd problem sheet
Tutorial on 5 May 2015

These problems study the Grassmannian $\mathbb{G}=\mathbb{G}(1,3)=G(2,4)$ parametrizing lines in \mathbb{P}^{3}.

1. The Plücker embedding puts \mathbb{G} into $\mathbb{P}\left(\wedge^{2} K^{4}\right) \cong \mathbb{P}^{5}$. Writing $z_{i j}=v_{i} \wedge v_{j}, 0 \leqslant i<j \leqslant 3$, show that the image is the quadratic hypersurface

$$
\mathcal{V}\left(z_{01} z_{23}-z_{02} z_{13}+z_{03} z_{12}\right)
$$

called the Plücker quadric.
2. For any point $p \in \mathbb{P}^{3}$ and plane $H \subset \mathbb{P}^{3}$ with $p \in H$, let $\Sigma_{p, H} \subset \mathbb{G}$ be the set of lines in \mathbb{P}^{3} passing through p and lying in H. Show that, under the Plücker embedding, $\Sigma_{p, H}$ is a line in \mathbb{P}^{5}, and that, conversely, every line in $\mathbb{G} \subset \mathbb{P}^{5}$ is of the form $\Sigma_{p, H}$ for some choice of p, H.
[Ha], Ex. 6.4
3. For any point $p \in \mathbb{P}^{3}$, let $\Sigma_{p} \subset \mathbb{G}$ be the set of lines in \mathbb{P}^{3} passing through p; for any plane $H \subset \mathbb{P}^{3}$, let $\Sigma_{H} \subset \mathbb{G}$ be the locus of lines lying in H. Show that, under the Plücker embedding, both Σ_{p} and Σ_{H} are carried into planes in \mathbb{P}^{5}. Show that, conversely, any plane $\Lambda \subset \mathbb{G} \subset \mathbb{P}^{5}$ is either of the form Σ_{p} for some point p or of the form Σ_{H} for some plane H.
[Ha], Ex. 6.5
4. Let $\ell_{1}, \ell_{2} \subset \mathbb{P}^{3}$ be skew lines (i.e. $\ell_{1} \cap \ell_{2}=\varnothing$). Show that the set $Q \subset \mathbb{G}$ of lines in \mathbb{P}^{3} meeting both is the intersection of \mathbb{G} with a three-dimensional subspace of \mathbb{P}^{5}. Deduce that $Q \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. What happens if ℓ_{1} and ℓ_{2} meet?
[Ha], Ex. 6.6

