Universität Konstanz Fachbereich Mathematik und Statistik Daniel Plaumann Summer 2015

CLASSICAL ALGEBRAIC GEOMETRY

3rd problem sheet Tutorial on 5 May 2015

These problems study the Grassmannian $\mathbb{G} = \mathbb{G}(1,3) = G(2,4)$ parametrizing lines in \mathbb{P}^3 .

1. The Plücker embedding puts \mathbb{G} into $\mathbb{P}(\bigwedge^2 K^4) \cong \mathbb{P}^5$. Writing $z_{ij} = v_i \land v_j$, $0 \le i < j \le 3$, show that the image is the quadratic hypersurface

$$\mathcal{V}(z_{01}z_{23}-z_{02}z_{13}+z_{03}z_{12})$$

called the Plücker quadric.

- **2.** For any point $p \in \mathbb{P}^3$ and plane $H \subset \mathbb{P}^3$ with $p \in H$, let $\Sigma_{p,H} \subset \mathbb{G}$ be the set of lines in \mathbb{P}^3 passing through p and lying in H. Show that, under the Plücker embedding, $\Sigma_{p,H}$ is a line in \mathbb{P}^5 , and that, conversely, every line in $\mathbb{G} \subset \mathbb{P}^5$ is of the form $\Sigma_{p,H}$ for some choice of p, H. [Ha], Ex. 6.4
- 3. For any point $p \in \mathbb{P}^3$, let $\Sigma_p \subset \mathbb{G}$ be the set of lines in \mathbb{P}^3 passing through p; for any plane $H \subset \mathbb{P}^3$, let $\Sigma_H \subset \mathbb{G}$ be the locus of lines lying in H. Show that, under the Plücker embedding, both Σ_p and Σ_H are carried into planes in \mathbb{P}^5 . Show that, conversely, any plane $\Lambda \subset \mathbb{G} \subset \mathbb{P}^5$ is either of the form Σ_p for some point p or of the form Σ_H for some plane H. [Ha], Ex. 6.5
- 4. Let $\ell_1, \ell_2 \subset \mathbb{P}^3$ be skew lines (i.e. $\ell_1 \cap \ell_2 = \emptyset$). Show that the set $Q \subset \mathbb{G}$ of lines in \mathbb{P}^3 meeting both is the intersection of \mathbb{G} with a three-dimensional subspace of \mathbb{P}^5 . Deduce that $Q \cong \mathbb{P}^1 \times \mathbb{P}^1$. What happens if ℓ_1 and ℓ_2 meet? [Ha], Ex. 6.6