Universität Konstanz Fachbereich Mathematik und Statistik Daniel Plaumann Summer 2015

CLASSICAL ALGEBRAIC GEOMETRY

5th problem sheet Tutorial on 19 May 2015

- Show that the image of the rational normal curve C ⊂ Pⁿ under the projection π_p from the point p = [1,0,...,0] ∈ C is a rational normal curve in Pⁿ⁻¹. For the twisted cubic, compare this with Exercise 4 on sheet #2. ([Ha], Ex. 7.7)
- 2. Consider the rational map

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{P}^2 & \cdots & \mathbb{P}^2 \\ [X_0, X_1, X_2] & \mapsto & [X_1 X_2, X_0 X_2, X_0 X_1] \end{array} \right\}$$

called the (standard) quadratic Cremona transformation.

Show that φ is birational and equal to its inverse.

Determine the domain of φ and an open subset U of \mathbb{P}^2 with $\varphi(U) \subset U$.

Describe the geometry of the quadratic Cremona transformation: Which lines does it contract? What does this have to do with the points in which it is undefined?

3. Let *C* be the cubic curve in \mathbb{P}^2 defined by the equation

$$ZY^2 = X^3 + X^2Z.$$

Show that the projection of *C* from the point p = [0, 0, 1] is a birational isomorphism of *C* with \mathbb{P}^1 , so that *C* is a rational curve. ([Ha], Ex. 7.12)

