Universität Konstanz
Fachbereich Mathematik und Statistik
Daniel Plaumann
Summer 2015

CLASSICAL ALGEBRAIC GEOMETRY

5th problem sheet
Tutorial on 19 May 2015

1. Show that the image of the rational normal curve $C \subset \mathbb{P}^{n}$ under the projection π_{p} from the point $p=[1,0, \ldots, 0] \in C$ is a rational normal curve in \mathbb{P}^{n-1}.
For the twisted cubic, compare this with Exercise 4 on sheet \#2.
([Ha], Ex. 7.7)
2. Consider the rational map

$$
\varphi:\left\{\begin{array}{ccc}
\mathbb{P}^{2} & -\cdots & \mathbb{P}^{2} \\
{\left[X_{0}, X_{1}, X_{2}\right]} & \mapsto & {\left[X_{1} X_{2}, X_{0} X_{2}, X_{0} X_{1}\right]}
\end{array}\right.
$$

called the (standard) quadratic Cremona transformation.
Show that φ is birational and equal to its inverse.
Determine the domain of φ and an open subset U of \mathbb{P}^{2} with $\varphi(U) \subset U$.
Describe the geometry of the quadratic Cremona transformation: Which lines does it contract? What does this have to do with the points in which it is undefined?
3. Let C be the cubic curve in \mathbb{P}^{2} defined by the equation

$$
Z Y^{2}=X^{3}+X^{2} Z
$$

Show that the projection of C from the point $p=[0,0,1]$ is a birational isomorphism of C with \mathbb{P}^{1}, so that C is a rational curve.
([Ha], Ex. 7.12)

