
Universität Konstanz Fachbereich Mathematik und Statistik Daniel Plaumann Summer 2015

CLASSICAL ALGEBRAIC GEOMETRY

6th problem sheet Tutorial on 26 May 2015

- 1. Compute the proper transform of the plane curve $\mathcal{V}(y^2 x^3) \subset \mathbb{A}^2$ in the blow-up of \mathbb{A}^2 at the origin.
- 2. Assume char(K) ≠ 2 and let X ⊂ Pⁿ be a quadric hypersurface defined by a quadratic form Q ∈ K[Z₀,..., Z_n]₂.
 Show that the singular points of X form a linear subspace. What is its dimension?
- 3. Let $X \subset \mathbb{C}^n$ be a smooth algebraic curve over \mathbb{C} . Let $\Delta \subset \mathbb{C}$ be an open neighbourhood of 0 and

$$\varphi: \Delta \to \mathbb{C}^n$$

a holomorphic map with $\varphi(\Delta) \subset X$ and $\varphi'(0) \neq 0$.

- (1) Show that the tangent space to *X* at $\varphi(0)$ is spanned by the vector $\varphi'(0)$.
- (2) Use this to compute the tangent space to the twisted cubic in \mathbb{P}^3 at any point. Verify directly that the definition from the lecture gives the same result.