Universität Konstanz
Fachbereich Mathematik und Statistik
Daniel Plaumann
Summer 2015

CLASSICAL ALGEBRAIC GEOMETRY

6th problem sheet
Tutorial on 26 May 2015

1. Compute the proper transform of the plane curve $\mathcal{V}\left(y^{2}-x^{3}\right) \subset \mathbb{A}^{2}$ in the blow-up of \mathbb{A}^{2} at the origin.
2. Assume $\operatorname{char}(K) \neq 2$ and let $X \subset \mathbb{P}^{n}$ be a quadric hypersurface defined by a quadratic form $Q \in K\left[Z_{0}, \ldots, Z_{n}\right]_{2}$.
Show that the singular points of X form a linear subspace. What is its dimension?
3. Let $X \subset \mathbb{C}^{n}$ be a smooth algebraic curve over \mathbb{C}. Let $\Delta \subset \mathbb{C}$ be an open neighbourhood of 0 and

$$
\varphi: \Delta \rightarrow \mathbb{C}^{n}
$$

a holomorphic map with $\varphi(\Delta) \subset X$ and $\varphi^{\prime}(0) \neq 0$.
(1) Show that the tangent space to X at $\varphi(0)$ is spanned by the vector $\varphi^{\prime}(0)$.
(2) Use this to compute the tangent space to the twisted cubic in \mathbb{P}^{3} at any point. Verify directly that the definition from the lecture gives the same result.

