Universität Konstanz Fachbereich Mathematik und Statistik Daniel Plaumann Summer 2015

CLASSICAL ALGEBRAIC GEOMETRY

10th problem sheet Tutorial on 23 June 2015

- Show that the constant term of the Hilbert polynomial of a projective variety is an integer. (*Suggestion*. Show more generally that if *p* ∈ Q[*z*] is a polynomial such that *p*(*m*) ∈ Z for all sufficiently large *m* ∈ Z, then *p*(0) ∈ Z.)
- **2.** Show that a projective variety $X \subset \mathbb{P}^n$ has degree 1 if and only if X is a linear subspace.
- **3.** Let $\varphi \colon \mathbb{P}^n \to \mathbb{P}^n$ be an automorphism, i.e. φ is bijective and φ, φ^{-1} are morphisms.
 - (a) Show that if *H* ⊂ ℙⁿ is a hyperplane, then so is φ(*H*).
 (*Hint*. Take any line *L* meeting *H* in a single point. Now use a version of Bézout's theorem to conclude that φ(*H*) has degree 1.)
 - (b) Use (a) to show that φ is linear, i.e. that there exist linear forms $L_0, \ldots, L_n \in K[Z_0, \ldots, Z_n]$ such that $\varphi[Z] = [L_0(Z), \ldots, L_n(Z)]$ for all $[Z] \in \mathbb{P}^n$.
 - (c) Conclude that the automorphism group of \mathbb{P}^n is the linear group $PGL_{n+1}(K)$.