Universität Konstanz
Fachbereich Mathematik und Statistik
Daniel Plaumann
Summer 2015

CLASSICAL ALGEBRAIC GEOMETRY

11th problem sheet
Tutorial on 30 June 2015

1. Use the Cayley-Bacharach theorem to deduce Pascal's Theorem: Given an irreducible conic Q in \mathbb{P}^{2} and six distinct points $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3} \in Q$, show that the points

$$
C_{12}=\overline{A_{1} B_{2}} \cap \overline{A_{2} B_{1}}, \quad C_{13}=\overline{A_{1} B_{3}} \cap \overline{A_{3} B_{1}}, \quad C_{23}=\overline{A_{2} B_{3}} \cap \overline{A_{3} B_{2}}
$$

are collinear.

from https://terrytao.wordpress.com
(turn page)
2. Let C be a smooth cubic curve in \mathbb{P}^{2}. We will introduce the group law on C :

Given $P, Q \in C$, let $\ell_{P, Q}$ be the line $\overline{P Q}$ if $P \neq Q$ and let $\ell_{P, P}$ be the tangent line $\mathbb{T}_{P} C$. Then $\ell_{P, Q}$ intersects C in P, Q and one further point which we denote $P * Q$.
Assume that \mathcal{O} is an inflection point of C, which means that the tangent line $\mathbb{T}_{\mathcal{O}} C$ intersects C only at \mathcal{O}, so that $\mathcal{O} * \mathcal{O}=\mathcal{O}$. Define an operation

$$
P+Q=(P * Q) * \mathcal{O}
$$

for $P, Q \in C$.

taken from Silverman, Tate: Rational Points on Elliptic Curves, Fig. 1.6
Show that $(C,+)$ is an abelian group with neutral element \mathcal{O}, by proving the following for all $P, Q, R \in C$.
(a) $P+Q=Q+P$;
(b) $\mathcal{O}+P=P+\mathcal{O}=P$;
(c) Put $-P=P * \mathcal{O}$. Then $(-P)+P=P+(-P)=\mathcal{O}$;
(d) $(P+Q)+R=P+(Q+R)$.

Hint for (d): Assume that the nine points

$$
P, Q, R, \mathcal{O}, P * Q, P+Q, Q * R, Q+R,(P+Q) * R
$$

are all distinct. Use the Cayley-Bacharach theorem to verify that $(P+Q) * R$ is the same point as $P *(Q+R)$.

Remark. We did not show that every smooth cubic possesses an inflection point. Suppose that C is given by an equation of the form

$$
Y^{2} Z=a X^{3}+b X^{2} Z+c X Z^{2}+d Z^{3}
$$

(in what is called the Weierstra β form). Then $[0,1,0] \in C$ is an inflection point.

