CLASSICAL ALGEBRAIC GEOMETRY

13th problem sheet
Tutorial on 14 July 2015

1. Let L_{1}, L_{2} be two disjoint lines in \mathbb{P}^{3} and let $p \in \mathbb{P}^{3} \backslash\left(L_{1} \cup L_{2}\right)$. Show that there exists a unique line through p that intersects both L_{1} and L_{2}.
2. Assume $\operatorname{char}(K)=0$. Let $\Gamma=\left\{p_{1}, \ldots, p_{6}\right\} \subset \mathbb{P}^{2}$, where

$$
p_{1}=[1,0,0], p_{2}=[0,1,0], p_{3}=[0,0,1], p_{4}=[1,3,1], p_{5}=[2,-1,1], p_{6}=[-1,-2,1] .
$$

Use software for the following:
(a) Show that the points in Γ are in general position, i.e. no three are on a line and not all six on a conic.
(b) Show that the space $I(\Gamma)_{3}$ of cubics passing through Γ has dimension 4 .
(c) Find four cubics $F_{0}, F_{1}, F_{2}, F_{3}$ spanning $I(\Gamma)_{3}$ and show that the image of the rational map

$$
\varphi:\left\{\begin{array}{ccc}
\mathbb{P}^{2} & -- & \mathbb{P}^{3} \\
{[Z]} & \mapsto & {\left[F_{0}(Z), F_{1}(Z), F_{2}(Z), F_{3}(Z)\right]}
\end{array}\right.
$$

is a smooth cubic surface in \mathbb{P}^{3}.
3. Let $U \subset \mathbb{P} K\left[Z_{0}, \ldots, Z_{4}\right]_{5}$ be the open set of smooth quintic threefolds (hypersurfaces of degree 5 in \mathbb{P}^{4}). Consider the incidence correspondence

$$
\Sigma=\{(L, X) \in \mathbb{G}(1,4) \times U: L \text { is a line in } X\} .
$$

You may assume that Σ is irreducible.
(a) Show that Σ has the same dimension as U (which is 125).
(b) Show that the hypersurface $\mathcal{V}\left(Z_{0}^{5}+\cdots+Z_{4}^{5}\right) \subset \mathbb{P}^{4}$ contains infinitely many lines.
(c) What, if anything, does (a) show about lines on a quintic threefold?

