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A brief inaccurate history of algebraic geometry

1800 - 1880 Projective geometry. Emergence of 'analytic’geometry with cartesian
coordinates, as opposed to ‘synthetic’ (axiomatic) geometry in the style
of Euclid. (Celebrities: Pliicker, Hesse, Cayley)

1820 - 1920 Complex analytic geometry. Powerful new tools for the study of geo-
metric problems over C. (Celebrities: Abel, Jacobi, Riemann)

1880 - 1940 Classical school. Perfected the use of existing tools without any ‘dog-
matic’ approach. (Celebrities: Castelnuovo, Segre, Severi, M. Noether)

1920 - 1950 Algebraization. Development of modern algebraic foundations (‘com-
mutative ring theory’) for algebraic geometry. (Celebrities: Hilbert,
E. Noether, Zariski)

from 1950 Modern algebraic geometry. All-encompassing abstract frameworks
(schemes, stacks), greatly widening the scope of algebraic geometry.
(Celebrities: Weil, Serre, Grothendieck, Deligne, Mumford)

from 1990 Computational algebraic geometry Symbolic computation and dis-
crete methods, many new applications. (Celebrities: Buchberger)
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Affine varieties

K algebraically closed field
A" = K" affine space

V c A" is an affine variety if there is a set of polynomials M c K[xy, ..., xy] such that
V=V(M)={peA": f(p)=0forall fe M}.

If I is the ideal generated by M, then V(M) = V(I). By the Hilbert Basis Theorem, there is a

finite subset M’ c M that also generates I, so in particular V(M') = V(M).

If I and J are two ideals in K[xj, ..., xy], then

V(HuV(()=Vv{])=V(In])
V(DnV(()=V(I+]))

where I] is the ideal generated by all products fg, f €I, g€ J.

Projective space

Let V be a K-vector space.

P(V) = {one-dimensional subspaces of V }, the projective space of V

IP)}’I :IP)KYH-l — (K”+1 N {0})/N
wherev ~w <= IN € K v = Aw.

Points of P"* are denoted in homogeneous coordinates [ Z, ..., Z, ]| where

[ZO,...,Z;/[] = [AZO,...,AZ;/[] forA EKX.

Projective varieties

A polynomial F € K[ Zy, ..., Zy,] is not a function on IP", since in general
F(Zy,....Zy) + F(AZy,...,AZy).
If F is homogeneous of degree d, then
F(AZg,...,AZy) = AF(Zo, ..., Zp).
So given a set M of homogeneous polynomials in K[ Zy, ..., Z,], it makes sense to define

V(M) = {peP": f(p) =0forall f € M}, a projective variety.



The Zariski topology

The projective (resp. affine) varieties in P" (resp. A") form the closed sets of a topology, the
Zariski topology. Projective space is covered by the open subsets

Ui ={[Zo,..., Zu] €P": Z; 20} = {[Y0,..., Vi, 1, Yisp,. .., Yy ] € P"}.
The map

U= A" [Zo,.... Zn) = (Z0]Zis ..., Zi1] Zis Zis1] Zis - - s Zn)
is a homeomorphism. The inverse map is

A" > U, (z0y -5 Zic1>Zis1r Zn) = (21 -+ 5 Zicb L Zigds -+ - Zn .

Thus P" is covered by n + 1 copies of A”.

How to think about projective space
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Intuitive picture



How to think about projective space

Projective plane

/

origin

Exact picture
[Univ. of Toronto Math Network]

We think of projective space over
an algebraically closed field just
as real affine space, together with

Real topological picture - Boy's surface
(virtualmathmuseum.org)

the idea that taking intersections
always works perfectly.

Intuitive picture
[freehomeworkmathhelp.com]

Linear Spaces

If W c Visalinear subspace, then PW c PV is a projective subspace, a linear space of dimen-

siondimPW =dim W —-1in PV.

dimPW =0 point
dimPW =1 line
dimPW =2 plane

dimPW = dim PV -1 hyperplane
If L=PW, L =PW', write

LL' =P(W + W").
We have

dimLL’ =dimL + dimL' — dimLn L’



Dimension

Let X be a variety. X is reducible if it is the union of two proper, non-empty closed subvarieties;
otherwise it is called irreducible.

The Dimension of X is the largest integer k such that there exists a chain
X1 X2¢ X1 EX

of irreducible closed subvarieties.

In particular, dim P"* = dim A" = n.

If X cIP" or X c A" isirreducible:

dimX =0 point

dimX =1 curve

dimX =2 surface
dimX =3 threefold
dim X = n — 1 hypersurface

Theorem. The hypersurfaces in P" are exactly the varieties defined by a single equation.

The hypersurfaces in P2 are the plane projective curves.

Points

Proposition 1.1. Any finite set of d points in P" is described by polynomials of degree at most d.

Proof.LetT = {py,...,pa}.Forq ¢ T, let L, ; be alinear form with L, ;(p;) =0and L, ;(q) # 0.
Put

Fg=LgiLyg.
ThenT =V(F;: q¢T). ]

Definition. Let py,..., py € P".If d < n +1, the points p; are independent if
dim(p1---pg) =d -1,
otherwise dependent.

If d > n +1, the p; are in (linearly) general position if no n + 1 of them are dependent (i.e. lie in
a hyperplane).



Theorem 1.2. Any collection of at most 2n points in general position in P" can be described by
quadratic forms.

Proof. Let T' c P be such a collection. We may assume that I' contains exactly 2n points.
Let g € P" be such that

Fr=0 =— F(q)=0
holds for all quadratic forms F. We must show q € T..
() If T = [} u T, with |T}| = |T2| = 1, then T; spans a hyperplane H; = V(L;), defined by a linear
form L;, and Hyu H, = V(L1L,). So L1L,(g) = 0 by hypothesis. Hence g € H; U H».

(2) Let {p1, ..., px} € T be a minimal subset of T with the property g € p;--py.-

By (1), we can find such a subset with k < n.

Claim:k=1(<= gq=p)

Take Z c T~ {py,..., px} with |Z| = n — k + 1. By hypothesis, the n points {p, ..., pi} U Z span
a hyperplane H that does not contain p;. Since pj € gp>--py, it follows that g ¢ H.

By (1), g lies in the hyperplane spanned by the remaining n points. It follows that g lies on the
hyperplane spanned by p; and any n —1 of the points py,, ..., pan. The intersection of all such
hyperplanes is just p;, hence g = p;. ]

Projective equivalence

The group PGL, ;1K = (GL,HIK)/KXI acts on P". Two varieties X, Y c P" are projectively
equivalent if there exists A € PGL,,,;K suchthat A- X =Y.
Any two ordered sets of n + 2 points in general position in IP" are projectively equivalent.

The group PGL;K acts on P! = Al U {co} through Mébius transformations:

az+b
cz+d

ab .
[C d] € PGL,K induces z —

Two sets of four points in P! are projectively equivalent if and only if they have the same cross-
ratio, defined by

(21— 22)(23 — z4)
(21— 23) (22— 24)

A(Z], 22,23, Z4) =

Cross-ratio
[Krishnavedala - Wikimedia Commons]




The twisted cubic

Let v: P! — 3, [Xo, X1] ~ [ X3, X3X1, XoXZ, X7 ].
The image C = v(P!) is the twisted cubic in P3. It is defined by

where .
It is not defined by any two of these.
Fy = ZoZy - Z} For example, Fy and F; define the union of C
F=20Z5- 72,2, and the line {ZO =/Z1= 0}.
Fy= 7123 - Z3.

Exercise (1.11.in[Hal)

b. More generally, for any 4 = [4,,
11’ )'2]:« let

F}_=2.0'F0+ A’l.Fl +)L’2-F2

and let Q, be the surface defined by F;.
Show that for u # v, the quadrics Q,
and Q, intersect in the union of C and
aline L, ,. (A slick way of doing this
problem is described after Exercise 9.16;
it is intended here to be done naively,
though the computation is apt to get
messy.)

Claudio Rocchini - Wikimedia Commons

Corollary 1.3. IfL is any secant line of C (i.e. L = pq with p, q € C), there exist u, v with
QunQy=CuUlL.

Proof. Forany r € pq, r # p, r # g, the space

{Fy: Fy(r) = 0}

is 2-dimensional.
Let F,, F, be a basis. Since F,, F, vanish at the three points p, g, on L, we have L c V(F,, Fy),
hence

QunQy=V(Fu,F)=Cul

by the exercise above. [

L



The rational normal curve

The rational normal curve in P9 is the Veronese embedding of P! of degree d. It is the image
of the map

v P - P9, [Xo, Xi] = [XE, X471X3, ..., Xo X971, X4].

Any d + 1 points on a rational normal curve are linearly independent. For given distinct points
P0s-..» pg € PL, we may assume p; # [1,0] forall i, say p; = [Y;,1]. The matrix

[ yd ydlyd2 oy, 1]
d yd-1 . .
MR .

. . . . 1
yd - Y 1

is a Vandermonde matrix with determinant [];.;(Y; - Y;) # 0, showing thatv;(po), .., va(pa)
are independent.

Any curve projectively equivalent to the rational normal curve is also a rational normal curve.
In particular, if Hy, ..., Hy is any basis of K[ Xy, X1] 4, then

vyt [Xo, X1] = [Ho(Xo, X1), . .., Hy(Xo, X1)]

is a rational normal curve.

Theorem 1.4. Through any d + 3 points in general position in P4, there passes a unique rational
normal curve.

Construction. Let o, . .., g, Vo, - - -, Vg € KX with [, v;] # [, v;] forall i # jand consider

d
G = [J(uiXo-viX1) € K[Xo, X1]gn
i=0
G
H-——" i-o0,...d.
uiXo —viXy

Then Hy, ..., H are a basis of K[ Xy, X]4. For if Z‘fzo a;H; = 0is any linear relation, evaluation
at [p;, v;] gives a; = 0.

Thus
Vd4: [Xo, Xl] g [HO(XO, Xl), ey Hd(XO) Xl)]

is a rational normal curve. We find
vy([to>v0]) = [1,0,...,0],....vs([gv4]) = [0s...,0,1]

o . i i i .
v4([1,0]) = %% = [ugh . ou7] and va([0,1]) = [vgh..., v,

So let pg, ..., pg., be any d + 3 points in general position in P4,

We can assume p; = [e;] fori = 0,...,d by projective equivalence. Then p4,; and p4,, have
non-zero coordinates. We can choose [pg, vo], ..., [t#g> v4] € P! such that v4[1,0] = p,,; and
v4[0,1] = p4.2- Uniqueness is left as an exercise. ]



