§2

Review:

Morphisms \& Rational Maps, Products \& Projections

Morphisms: Affine vs. projective

If $V \subset \mathbb{A}^{m}$ and $W \subset \mathbb{A}^{n}$ are affine varieties, a morphism $V \rightarrow W$ is just given by an n-tuple of polynomials $f_{1}, \ldots, f_{n} \in K\left[x_{1}, \ldots, x_{m}\right]$ such that

$$
\left(f_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{m}\right)\right) \in W
$$

for all $\left(x_{1}, \ldots, x_{m}\right) \in V$.

If $X \subset \mathbb{P}^{m}$ and $Y \subset \mathbb{P}^{n}$ are projective varieties, the following seems the most natural: We should take homogeneous polynomials $F_{0}, \ldots, F_{n} \in K\left[Z_{0}, \ldots, Z_{m}\right]$ such that

$$
\left[F_{0}\left(Z_{0}, \ldots, Z_{m}\right), \ldots, F_{n}\left(Z_{0}, \ldots, Z_{m}\right)\right] \in Y
$$

for all $\left[Z_{0}, \ldots, Z_{m}\right] \in X$. For this to be well-defined, we must have

$$
\operatorname{deg}\left(F_{0}\right)=\cdots=\operatorname{deg}\left(F_{n}\right) \quad \text { and } \quad \mathcal{V}\left(F_{0}, \ldots, F_{n}\right) \cap X=\varnothing .
$$

This is straightforward, but it turns out to be a little too restrictive, so it is not yet the 'correct' notion of morphism of projective varieties.

An instructive example

Let $C=\mathcal{V}\left(X^{2}+Y^{2}-Z^{2}\right) \subset \mathbb{P}^{2}$ and consider

$$
\varphi:\left\{\begin{array}{ccc}
C & \rightarrow & \mathbb{P}^{1} \\
{[X, Y, Z]} & \mapsto & {[X, Y-Z]}
\end{array}\right.
$$

This is undefined if $X=0$ and $Y=Z$, i.e. at the point $p=[0,1,1]$. It is the stereographic projection from the point p, sending $r \in C, r \neq p$ to the intersection point of the lines $\overline{p r}$ and $\{Y=0\}$.

Consider the open subset $U_{0}=\left\{[S, T] \in \mathbb{P}^{1}: S \neq 0\right\}$. For $[X, Y, Z] \in \varphi^{-1}\left(U_{0}\right)$, we can write

$$
\varphi[X, Y, Z]=[X, Y-Z]=\left[1, \frac{Y-Z}{X}\right],
$$

which of course still appears to be undefined at the point $p=[0,1,1]$. But note that

$$
\frac{Y-Z}{X}=\frac{Y^{2}-Z^{2}}{X(Y+Z)}=\frac{-X^{2}}{X(Y+Z)}=\frac{-X}{Y+Z}
$$

so the restriction of φ to $\varphi^{-1}\left(U_{0}\right)$ is given by

$$
\varphi[X, Y, Z]=\left[1, \frac{-X}{Y+Z}\right]=[Y+Z,-X]
$$

which is defined in the point $[0,1,1]$, but not in the point $[0,1,-1]$.
So we can put $\varphi(p)=[1,0]$ and φ is well-defined everywhere on C.

Maps on varieties in projective space

A subset W of \mathbb{P}^{n} is a quasi-projective variety if it is locally closed in the Zariski topology, i.e. if it is the intersection of an open and a closed subset of \mathbb{P}^{n}.

Since \mathbb{A}^{n} can be identified with the open subset U_{0} of \mathbb{P}^{n}, any affine variety can be regarded as a quasiprojective variety.

Let $V \subset \mathbb{P}^{m}$ and $W \subset \mathbb{P}^{n}$ be quasi-projective varieties. A map $\varphi: V \rightarrow W$ is called a morphism or a regular map if the following condition holds: For every point $p \in V$, there is an open subset U of \mathbb{P}^{m} containing p and homogeneous polynomials $F_{0}, \ldots, F_{n} \in K\left[Z_{0}, \ldots, Z_{m}\right]$ of the same degree such that $\mathcal{V}\left(F_{0}, \ldots, F_{n}\right) \cap U=\varnothing$ and

$$
\varphi\left[Z_{0}, \ldots, Z_{m}\right]=\left[F_{0}\left(Z_{0}, \ldots, Z_{m}\right), \ldots, F_{n}\left(Z_{0}, \ldots, Z_{m}\right)\right]
$$

holds for all points $\left[Z_{0}, \ldots, Z_{m}\right] \in V \cap U$.
A morphism $V \rightarrow \mathbb{A}^{1}$ is called a regular function on V.
A morphism $V_{0} \rightarrow W$, where V_{0} is a non-empty open subset of V, is also called a rational map, denoted

$$
V \rightarrow W .
$$

(More precisely, a rational map is an equivalence class of such maps for various choices of V_{0}, where two maps are equivalent if they agree on the intersection of their domains.)

Summary

If $V \subset \mathbb{A}^{m}$ and $W \subset \mathbb{A}^{n}$ are affine varieties, a morphism $V \rightarrow W$ is given by an n-tuple of polynomials $f_{1}, \ldots, f_{n} \in K\left[x_{1}, \ldots, x_{m}\right]$ such that

$$
\left(f_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{m}\right)\right) \in W
$$

for all $\left(x_{1}, \ldots, x_{m}\right) \in V$.
If $X \subset \mathbb{P}^{m}$ and $Y \subset \mathbb{P}^{n}$ are projective varieties, a morphism $V \rightarrow W$ may be given by homogeneous polynomials $F_{0}, \ldots, F_{n} \in K\left[Z_{0}, \ldots, Z_{m}\right]$ of the same degree such that

$$
\left[F_{0}\left(Z_{0}, \ldots, Z_{m}\right), \ldots, F_{n}\left(Z_{0}, \ldots, Z_{m}\right)\right] \in Y
$$

for all $\left[Z_{0}, \ldots, Z_{m}\right] \in X \backslash \mathcal{V}\left(F_{0}, \ldots, F_{n}\right)$ (which should be non-empty).
But it may not be immediately clear whether such a tuple of polynomials really induces a morphism defined on all of X or just a rational map defined on some proper subset of X. To decide this, it is necessary to examine the points where F_{0}, \ldots, F_{n} vanish on X.

Projections

The linear projection

$$
\pi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n-1},\left[Z_{0}, \ldots, Z_{n}\right] \mapsto\left[Z_{1}, \ldots, Z_{n}\right]
$$

is not a morphism, because It is undefined at the point $p_{0}=[1,0, \ldots, 0]$.
Thus π is only a rational map.
More generally, if $\varphi: V \rightarrow W$ is a linear map between finite-dimensional vector spaces, it induces a rational map $\mathbb{P} V \rightarrow \mathbb{P} W$, defined on $\mathbb{P} V \backslash \mathbb{P}(\operatorname{ker} \varphi)$.

We should also think of projections in projective space differently than in affine space: The point p_{0} is called the center of the projection. Geometrically, π maps a point $q \in \mathbb{P}^{n} \backslash\left\{p_{0}\right\}$ to the intersection of the line $\overline{p_{0} q}$ with the hyperplane $H_{0}=\left\{[Z] \in \mathbb{P}^{n}: Z_{0}=0\right\}$.

For any hyperplane $H \subset \mathbb{P}^{n}$ and any point $p \in$ $\mathbb{P}^{n} \backslash H$, we may define the projection from p onto H, which is just π after the unique change of coordinates taking H to H_{0} and p to p_{0}.

Theorem 2.1 (Fundamental theorem of elimination theory).

Let $X \subset \mathbb{P}^{n}$ be a projective variety, $p \in \mathbb{P}^{n}$ a point not on X and $H \subset \mathbb{P}^{n}$ a hyperplane not containing p. Then $\pi_{p}(X)$ is closed and therefore again a projective variety.

Resultants

Lemma. Two monic polynomials $f, g \in k[t]$ (over any field k) have a common factor if and only if $R(f, g)=0$, where $R(f, g)$ is the resultant of f and g.

Explicitly, if f has roots $\lambda_{1}, \ldots, \lambda_{d} \in K=\bar{k}$ and g has roots μ_{1}, \ldots, μ_{e}, then $R(f, g)=\prod_{i, j}\left(\lambda_{i}-\mu_{j}\right)$ The point is that $R(f, g)$ can also be expressed in the coefficients of f and g, rather than the roots. Namely, if $f=\sum_{i=0}^{d} a_{i} z^{i}, g=\sum_{i=0}^{e} b_{i} z^{i}$, then

$$
R(f, g)=\operatorname{det}\left[\begin{array}{ccccccccccc}
a_{d} & a_{d-1} & \cdot & \cdot & a_{0} & 0 & 0 & \cdot & \cdot & \cdot & 0 \\
0 & a_{d} & a_{d-1} & \cdots & \cdot & a_{0} & 0 & \cdot & \cdot & \cdot & 0 \\
\cdot & & & & & & & & & & \\
\cdot & & & & & & & & & & \\
0 & 0 & \cdot & \cdot & a_{d} & a_{d-1} & \cdot & \cdot & \cdot & \cdot & a_{0} \\
b_{e} & b_{e-1} & \cdot & \cdot & b_{0} & 0 & 0 & \cdot & \cdot & \cdot & 0 \\
0 & b_{e} & b_{e-1} & \cdots & \cdot & b_{0} & 0 & \cdot & \cdot & \cdot & 0 \\
\cdot & & & & & & & & & & \\
\cdot & & & & & & & & & & \\
0 & 0 & \cdot & \cdot & b_{e} & b_{e-1} & \cdot & \cdot & \cdot & \cdot & b_{0}
\end{array}\right]
$$

(This is a $(d+e) \times(d+e)$-matrix, called the Sylvester matrix of f and g.)
Since f, g are assumed monic, we actually have $a_{d}=b_{e}=1$. If $a_{d}=0$ or $b_{e}=0$, the statement about the Sylvester matrix becomes wrong. However, this is an "affine" problem, which goes away in the projective picture (Exercise):
Lemma 2.2. Two homogeneous polynomials $F=\sum_{i=0}^{d} a_{i} X_{0}^{d} X_{1}^{d-i}$ and $G=\sum_{i=0}^{e} b_{i} X_{0}^{i} X_{1}^{e-i}$ have a common zero on \mathbb{P}^{1} if and only if $R(F, G)=0$, where $R(F, G)$ is the Sylvester determinant above.

Elimination theory

Theorem 2.1 (Fundamental theorem of elimination theory).

Let $X \subset \mathbb{P}^{n}$ be a projective variety, $p \in \mathbb{P}^{n}$ a point not on X and $H \subset \mathbb{P}^{n}$ a hyperplane not containing p. Then $\pi_{p}(X)$ is closed and therefore again a projective variety.

Sketch of proof. Let I be a homogeneous ideal in $K\left[Z_{0}, \ldots, Z_{n}\right]$ defining X and assume again $p=$ $[1,0, \ldots, 0]$ and $H=\left\{[Z] \in \mathbb{P}^{n}: Z_{0}=0\right\}$. For homogeneous polynomials $F, G \in K\left[Z_{0}, \ldots, Z_{n}\right]$, we let $R(F, G)$ denote the resultant with respect to Z_{0}. This means that we regard F, G as polynomials in Z_{0} with coefficients in $K\left[Z_{1}, \ldots, Z_{n}\right]$ and define $R(F, G)$ via the Sylvester matrix.
For $q \in H$, we claim that the following are equivalent:
(1) The line $\ell=\overline{p q}$ meets X, i.e. $q \in \pi(X)$.
(2) Every pair of polynomials $F, G \in I$ has a common zero on ℓ.
(3) The resultant $R(F, G)$ vanishes at q for all $F, G \in I$.

The theorem follows, since $\pi(X)$ is then defined by all $R(F, G)$, for homogeneous $F, G \in I$.
Note that if $q=\left[0, Z_{1}, \ldots, Z_{n}\right]$, then $\ell=\left\{\left[\lambda, \mu Z_{1}, \ldots, \mu Z_{n}\right]:[\lambda, \mu] \in \mathbb{P}^{1}\right\}$.
The implication $(1) \Rightarrow(2)$ is clear and $(2) \Leftrightarrow(3)$ follows from the properties of the resultant of two homogeneous polynomials in two variables.
(2) \Rightarrow (1): If $\ell \cap X=\varnothing$, then we can first find $F \in I$ that does not vanish identically on ℓ. For each of the finitely many points $r \in \ell \cap \mathcal{V}(F)$, we can find $G_{r} \in I$ with $G_{r}(r) \neq 0$, by hypothesis. Now the space $\left\{\sum_{r \in \ell \cap \mathcal{V}(F)} \alpha_{r} G_{r}: \alpha_{r} \in K\right\}$ contains some G with $\ell \cap \mathcal{V}(F) \cap \mathcal{V}(G)=\varnothing$.

The Segre embedding

Recall that cartesian products of projective spaces and varieties are more subtle than in the affine case:
The product $\mathbb{P}^{m} \times \mathbb{P}^{n}$ is not \mathbb{P}^{m+n}. For example, if $m \geqslant n$, any two m-subspaces in \mathbb{P}^{m+n} have non-empty intersection, while

$$
\mathbb{P}^{m} \times\{p\} \quad \text { and } \quad \mathbb{P}^{m} \times\{q\}
$$

for $p, q \in \mathbb{P}^{n}, p \neq q$, are clearly disjoint in $\mathbb{P}^{m} \times \mathbb{P}^{n}$.
Instead, the cartesian product is realized via the Segre embedding

$$
\sigma_{m, n}:\left\{\begin{array}{ccc}
\mathbb{P}^{m} \times \mathbb{P}^{n} & \rightarrow & \mathbb{P}^{(m+1)(n+1)-1} \\
{\left[X_{0}, \ldots, X_{m}\right],\left[Y_{0}, \ldots, Y_{n}\right]} & \mapsto\left[X_{0} Y_{0}, X_{0} Y_{1}, X_{0} Y_{2}, \ldots, X_{1} Y_{0}, X_{1} Y_{1}, \ldots, X_{m} Y_{n}\right]
\end{array} .\right.
$$

The image $\Sigma_{m, n}$ of $\sigma_{m, n}$ is closed and $\mathbb{P}^{m} \times \mathbb{P}^{n}$ as a projective variety is defined as $\Sigma_{m, n}$.
For example, the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is the quadric surface in \mathbb{P}^{3}.

The product of two projective varieties $X \subset \mathbb{P}^{m}, Y \subset \mathbb{P}^{n}$ is defined as the image of $X \times Y$ in $\mathbb{P}^{m} \times \mathbb{P}^{n}$. Such subvarieties of $\mathbb{P}^{m} \times \mathbb{P}^{n}$ are defined by bi-homogeneous polynomials, i.e. polynomials $F \in K\left[X_{0}, \ldots, X_{m}, Y_{0}, \ldots, Y_{n}\right]$ that are homogeneous of degree d in X and homogeneous of degree e in Y, so that $F(\lambda X, Y)=\lambda^{d} F(X, Y)$ and $F(X, \lambda Y)=\lambda^{e} F(X, Y)$.

[taken from R. Vakil's homepage

More elimination theory

Theorem 2.3 (Fundamental theorem of elimination theory, second version).
Let Y be any (quasi-projective) variety. Then for any $n \geqslant 0$, the projection

$$
Y \times \mathbb{P}^{n} \rightarrow Y,(y, z) \mapsto y
$$

is a closed map, i.e. it takes Zariski-closed subsets of $Y \times \mathbb{P}^{n}$ to Zariski-closed subsets of Y.

The proof can again be carried out using resultants and induction on n (see [Ha, Thm. 3.12).
Remark. In topology, a Hausdorff-space P has the property that the projection $Y \times P \rightarrow Y$ is closed for all spaces Y if and only if P is compact. The Zariski-topology is not Hausdorff and every quasi-projective variety is (quasi-)compact. Also, the Zariski topology on $X \times Y$ is not the product topology. Nevertheless, the property expressed in the fundamental theorem of elimination theory can be seen as an analogue of compactness in algebraic geometry. Furthermore, the complex projective space $\mathbb{P}^{n}(\mathbb{C})$ is a compact complex manifold, from which it follows that a quasi-projective variety over \mathbb{C} is compact (in the Euclidean topology) if and only if it is projective.

Theorem 2.3 (Fundamental theorem of elimination theory, second version).

Let Y be any (quasi-projective) variety. Then for any $n \geqslant 0$, the projection

$$
Y \times \mathbb{P}^{n} \rightarrow Y,(y, z) \mapsto y
$$

is a closed map, i.e. it takes Zariski-closed subsets of $Y \times \mathbb{P}^{n}$ to Zariski-closed subsets of Y.
Corollary 2.4. If $X \subset \mathbb{P}^{m}$ is a projective variety and $\varphi: X \rightarrow \mathbb{P}^{n}$ any morphism, then $\varphi(X)$ is closed. Proof. First, one checks that the graph map $X \rightarrow \mathbb{P}^{m} \times \mathbb{P}^{n}, x \mapsto(x, \varphi(x))$ is an isomophism from X onto its image Γ_{φ}. Then $\varphi(X)$ is the image of Γ_{φ} under the projection onto the second factor, so it is closed.

Corollary 2.5. A connected projective variety does not admit any non-constant regular function.
Proof. A regular function on a projective variety X is a morphism $f: X \rightarrow \mathbb{A}^{1}$. Composing with the inclusion $\mathbb{A}^{1} \rightarrow \mathbb{P}^{1}$, we can view this as a morphism $X \rightarrow \mathbb{P}^{1}$. By the above corollary, the image of f in \mathbb{P}^{1} is closed. Since the image of f is contained in \mathbb{A}^{1}, it is not all of \mathbb{P}^{1}, so it can be only finitely many points. If X is connected, so is $f(X)$, hence it is only a single point.
Corollary 2.6. If $X \subset \mathbb{P}^{n}$ is a hypersurface and $Y \subset \mathbb{P}^{n}$ any closed subvariety of positive dimension, then $X \cap Y \neq \varnothing$.
Proof. Since X is a hypersurface, there is $F \in K\left[Z_{0}, \ldots, Z_{n}\right]_{d}$ such that $X=\mathcal{V}(F)$. Suppose that $X \cap Y=\varnothing$. Then

$$
Z \mapsto \frac{G(Z)}{F(Z)}
$$

is a regular function on Y, for any $G \in K\left[Z_{0}, \ldots, Z_{n}\right]_{d}$. Since Y is projective, this map is constant on every connected component of Y. We deduce that Y consists of finitely many points.

