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Grassmannians

The Grassmannian

Projective space, by definition, parametrizes one-dimensional subspaces in affine space.

The Grassmann varieties or Grassmannians parametrize higher-dimensional subspaces.
Let V be a finite-dimensional vector space. As a set, we define

G(k,V) = {U c V: Uis ak-dimensional subspace of V}

G(k,n) ={U c K": Uis a k-dimensional subspace of K" }.
By definition,

G(1,n) =P,

Since a k-dimensional subspace of K" can be identified with a k — I-dimensional subspace of
P"-1 we will also use the notation

G(k,n)=G(k+1,n+1)
when dealing with subspaces of P,
Grassmannians are named after Hermann GraBmann (1809-1877), the father of linear algebra.

The first goal is to show that the Grassmannians can be realized as projective varieties.



The Grassmannian

To turn the Grassmannian into a variety, we need a coordinate system for subspaces.

For projective space, a homogeneous coordinate-tuple [ Zy, ..., Z, ] represents an equivalence
class of points in A”*1, namely all points on the same line through the origin.

This equivalence can be seen as coming from a group action. The multiplicative group K* acts
on A™1 < {0} by scalar multiplication and each point of P"* corresponds to an orbit of this
action, in other words, P" is the quotient space (A" \ {0})/K*.

We can try the same for the Grassmannian: A k-dimensional subspace of K" is spanned by k
vectors. So we look at the space of all k-tuples of linearly independent vectors, which we think
of as the rows of k x n-matrices.

The group GL,(K) acts on this space by multiplication from the left:

Ao A\ (a1 @12 o A

Akt - Agk) \ak1 Gk = Gkon
and two k x n-matrices have the same row span if and only if they are in the same orbit under
this group action. So we can identify G(k, n) with the quotient space

Matl®) (K)/GL(K).

where Mat(k) is the set of matrices of rank k.

The Grassmannian

Looking further at the group action

AMa o Mg\ (a1 @12 o A

Aep = A/ \aki Gk = Gkn
we see that if the first k x k-minor of the matrix on the right is non-zero, the orbit contains a
unique element of the form

100 byy byy = byng
01--0byy bap - by, i
00 1bgy bra - bk

Conversely, we obtain a matrix of rank k for any k x (n— k)-matrix B on the right. In other words,
the row spans of matrices of this form are in bijection with an affine space Ak(n=k),

But this involved a choice coming from the assumption that the first k x k-minor is non-zero. In
general, we have to permute columns first. So we see in this way that the Grassmannian G(n, k)
is covered by (Z) copies of affine spaces Ak(n=K)_(Note the analogy with projective space!)

In particular, whatever the Grassmannian is as a variety, it must be of dimension k(n - k).



The Grassmann algebra

While the above description of the Grassmannian in terms of matrices works fine for understand-
ingitasa set, itis not very convenient for the goal of finding an embedding of the Grassmannian
into projective space. Instead, it is better to employ some multilinear algebra.

The Grassmann algebra or exterior algebra is the algebra of antisymmetric tensors.

Let V be a vector space of finite dimension n. The tensor algebra is the non-commutative
algebra T(V) = @y V®, where VK is the k-th tensor power of V, spanned by all tensors
V1 ® - @ v Withvy,..., v, € V. The productin T(V) is given by the tensor product, i.e. it the
map V®k x V®¢ . y®k+l defined as the bilinear extension of MN® @V, W ® - Q@ Wp)
VI® - QV QW ® @ Wy

The exterior algebra A V is the residue class ring of (V) modulo the ideal generated by all
tensors of the form v ® v for v € V. The residue class of a basis tensor v; ® ... ® v is denoted
VLA AV

We call the elements of A V multivectors. The exterior algebra inherits the grading from the
tensor algebra, i.e. it has a decomposition AV = @ /\k V, where /\k V is spanned by all multi-
vectors of the form v; A - Avg for vy, ..., vy € V. In particular, A' V= Vand A’V = K.

The Grassmann algebra

The algebra A V has the following properties forall w, 7,9 € AV, a € K.

MwAr(nprd)=(wan)rd (Associativity)
RQuwr(n+9)=wrn+ord, (w+n)Ad=wAd+yAJ (Bilinearity)
@) a(wrn) = (@w) A =wA(an)

@0Arw=wA0=0
Futhermore, forallv € V = A V, we have

(B)vAv=0. (Antisymmetry)
From (v+w)A(v+w) = 0, itfollows thatv Aw = —v Aw (which is equivalent to (5) if char(K) # 2)
and by induction v A -+ A vy = sgn(0) (V1) A+ A Vg(k)) for all permutations o € Sy.
Now let vy, ..., v, be a basis of V. Then we can use bilinearity to expand every multivector in
A V in terms of this basis. Explicitly, we obtain

il o A4k

(Lawi)nen(QPaigvi) = )

: Vi
1Si1<~~~<ik§n aik,l aik k

1/\---/\Vik

for k < n. In particular, we see that every multivectorin A" V is a multiple of v A--- Avy,, with the
coefficient of a multivector of the form w; A --- A w,, given by the determinant of the coefficient
matrix of wy, ..., w, in terms of the basis vy, ..., v,.

Note that, because of (5), we never need repeated basis elements. In particular, we find
n
dim AF v = ( k)

forallk < nand Ak V = 0forall k > n.



The Pliicker embedding

We now use the Grassmann algebra to realize the Grassmannian as a projective variety.

Let W be a k-dimensional subspace of V with basis vy, ..., v, The multivector vy A --- A vy €
Ak V is determined by W up to a scalar, by what we just saw: If we pick a different basis, the
corresponding multivector in AK V is obtained by multiplying with the determinant of the base
change. So we have a well-defined map

v:G(k, V) > P(A* V).
The image of y is the set of totally decomposable multivectors of Af V. (While general mul-
tivectors in /\k V are sums of totally decomposable ones.)

The map v is injective. To see this, let
Lo={veV:wAv=0}

forany w € /\k V. This is a linear subspace of V. For w = v; A --- A v} as above, wefind L, = W
(see also the lemma on the next slide). So w — L, is the inverse of ¥ (on its image).

In conclusion, we identified the Grassmannian G(k, V') with the set of totally decomposable
multivectors in P(AX V). This is called the Pliicker embedding of G(k, V).

It remains to show that the totally decomposable multivectors form a closed subset ofIP(/\k V)
and to find the equations that describe it.

The Pliicker embedding

Lemma 3.1. Letw € AXV, w # 0. The space L, = {v € V:wAav =0} has dimension at most k,
with equality occuring if and only if w is totally decomposable.

Proof. Picka basis vy, . .., vsof L, and extend toabasis vy, ..., v, of V. We express w in this basis:
For any choice of indices I = {iy, ..., i} with1< i} < < i <nletwr=v; A~ Av;.Then w
can be written as

w = Z Ciwg

Ic{L,.on b |1l=k

for some scalars c; € K. For je {1,...,n}, we find

a)/\v]-: ZCI(UI/\VJ': Z clwl/\vj.
L:j¢l
Now for j < s, we have v; € L, and the equation w A v; = 0 shows ¢; = 0 for all I with j ¢ I.
In other words, all I with ¢; # 0 must contain {1,...,s}. If s > k, there is no such I of length k,
contradicting the fact that w # 0. If s = k, then there is exactly one such I, namely I = {1, ..., k},
hence w is a multiple of vi A--- Av.. Conversely, if w is totally decomposable, say w = wyA--Awy,
thenwy, ..., wy € Ly, hencedim L, > k. [



The Pliicker embedding

Lemma3.1. letw € /\k V,w # 0. Thespace L, = {v eV:iwnAny= O} has dimension at most k,
with equality occuring if and only if w is totally decomposable.

This will be all we need: Fix w € /\k V, w # 0 and consider the map
V - /\k+l VvV
90(60):{ |

Ve WAV
By the lemma, we have [w] € G(k, V) if and only if the rank of ¢(w) is at most n — k.
The map A¥ V — Hom(V, AK*1 V) given by w — ¢(w) is linear. If we fix coordinates by fixing
a basis of V, this means that the matrix A(w) describing ¢(w) has linear entries, i.e. entries that
are homogeneous of degree 1in the coordinates. Therefore, G(k, V') is defined by the vanishing
ofall (n -k +1) x (n — k +1)-minors of this matrix. We have proved:

Theorem 3.2. The Grassmannian G(k, V') is a projective variety, embedded as a closed subset of
P(AK V) under the Pliicker embedding. ]

The Pliicker embedding

Theorem 3.2. The Grassmannian G(k, V') is a projective variety, embedded as a closed subset of
P(AK V) under the Pliicker embedding. ]
Fix a basis of vj,..., v, of V and the corresponding basis vj A -- A v, 1 <4 < -+ < i < nof
NV K(Z). If a subspace W is represented as the row span of a k x n-matrix A, the formula

ail " A4k

Olajwi)nn(Dajvi)= : PV A AV

1<ig<+<ig<n aik,l aikk

which we saw earlier, shows what the Pliicker embedding does in these coordinates: It maps
the matrix A to the tuple of all k x k-minors of A (of which there are (Z) = dim(/\k V).

The Pliicker embedding of G(k, ) as a space of matrices is given by the k x k-minors.
The relations between these minors corresponding to the equations of G(k, n) in P(AX V) are
the Pliicker relations.



Affine cover of the Grassmannian

We have seen how the Grassmannian G(k, n) is covered by (Z) copies of Ak(n=k),
Let us see what that corresponds to under the Pliicker embedding.

First, there is an abstract description:
Let I' be any subspace of dimension n — k of V, corresponding to a multivector 7 € ARy
The set

Hr={WeG(k,V): TnW={0}}

is a hyperplane in G(k, V). Namely, if W = [w] for w € AKV, then T n W # {0} is equivalent to
w A1 =0.Since w A 1 is an element of A" V, which is one-dimensional, we can identify A" V
with K and thus interpret # as a linear form on /\k V given by w = w A 7. (Indeed, this amounts
to a natural isomorphism ARy 2 ARy up to scaling.)

Thus Hr is the hyperplane defined by #, so that Ur = IP(/\k V) \ Hr is an affine space. The in-
tersection G(k, V') n Ur thus corresponds to all k-dimensional subspaces of V that are comple-
mentary to I'. Fix some k-dimensional subspace W, of V complementary to I'. Then any other
such subspace W can be viewed as the graph of a linear map W, — T, and vice-versa. (Given
W, the corresponding map is wg ~ y, where y € I’ is the unique element with wg +y € W.
Conversely, given a: Wy — T, let W = {wg + a(wg) : wg € Wy}.) Since Wy = Kkand T = K"k,
we find

G(k, V) n Ur = Hom(Wj,T) = Maty, (,,_1(K) = AK"F),

Affine cover of the Grassmannian

Now let V = K" and T = span(ej,y,-- ., ey ). Then any subspace W complementary to I has a
unique basis given by the rows of a k x n-matrix of the form

100 by b - bypg
4010 bg,l by - b2,z/l—k
001 bgy bra - brpi
This yields a bijection of G(k, n) n Up with Ak(n=k),

Under the Pliicker embedding, we know that A is mapped to the tuple of all its k x k-minors.
But since the left part of A is the identity, the k x k-minors of A are really just the minors of the
matrix B of any size. Hence the Pliicker embedding of G(k, n) n Uy is given by all the minors of
the matrix B.

Finally, since the affine parts G(k, n) n Ut are irreducible open subsets of dimension k(n — k)
and have pairwise non-empty intersection, we conclude:

Corollary 3.3. The Grassmannian G(k, n) is an irreducible variety of dimension k(n — k). [ ]



The Grassmannian G(1, 3)

The Grassmannian G = G(1,3) = G(2, 4) parametrizes lines in IP3.
The Pliicker embedding puts G into P(A% K*) = P5. Writing zij = vi Av;, 0 < i < j <3, the
image is the quadratic hypersurface
V(201223 — 202213 + 203212)
called the Pliicker quadric.

This and the following statements will be shown in the exercises.

Proposition 3.4. For any point p € IP? and plane H c P> with p € H, let 2, iz ¢ G be the set
of lines in P3 passing through p and lying in H. Under the Pliicker embedding, = p.Hisalinein P>,
Conversely, every linein G c P° s of the form 2, g for some choice of p, H.

Proposition 3.5. For any point p € P3, let 2, c G bethe set of lines in IP3 passing through p; for
any plane H c P3, let 5 ¢ G be the locus of lines lying in H. Under the Pliicker embedding, both
X and Xy are carried into planes in IP>. Conversely, any plane A c G c P is either of the form & P
for some point p or of the form X for some plane H.

Proposition 3.6. Let ¢1, ¢, c I3 be skew lines (i.e. £;n €5 = @). The set Q c G of lines in P3 meeting
both is the intersection of G with a three-dimensional subspace of IP°.

Incidence Correspondences

Let G(k, n) be the Grassmannian of k-subspaces in P" and put

> = {(A,x) €G(k,n)xP": x ¢ A}.
So X is the subvariety of G(k, n) x P whose fibre over a point A € G(k, n) is just A itself as a
subset of P". To see that X is closed, it suffices to note that

S={(viAAvEw) i viA AV AW =0},

Proposition 3.7. Let ® c G(k, n) be a closed subvariety. Then Upcq A is closed in P™.
Proof. Let 1, m, be the projection maps of X onto G(k, n) and P". Then
U A = m(n }(@)). m
AcD
Proposition 3.8. Let X c IP" be a projective variety. Then C.(X) = {A €eG(k,n): AnX # @} is
closed in G(k, n).

Proof. We have
Cr(X) = m(my' (X)) m
The variety Ci(X) is called the variety of incident subspaces.

Proposition 3.9. Let X, Y c P" be two disjoint projective varieties. Let (X, Y') be the union of all
lines pqwith p € X, q € Y, called the join of X and Y. Then J(X, Y) is closed in P".

Proof. The set 7 (X, Y) = C1(X) nCi(Y) is closed in the Grassmannian, hence J(X,Y) = Upe 7 €
is closed in P u



Fano varieties

Let X c PP" be a projective variety. Then Fi.(X) = {A € G(k,n): A c X} is the variety of
k-subspaces contained in X, called the kth Fano variety of X.

Proposition 3.9. The Fano variety F;.(X) is closed in G(k, n).

Proof.Let X = V(Hy, ..., H;). We fixan (n—k)-subspace I' of K"+ and consider the affine open
subset Ur of G(k,n) = G(k+1,n+1) of (k +1)-subspaces complementary to I'. We determine
explicit equations for Ut n F.(X). After changing coordinates, we may assume as before that T
is spanned by ey, . . ., e,. We have seen that any subspace in G(k + 1, n + 1) n Uy is uniquely
represented as the row span of a matrix

100 boy boo -+ by -k
A 0 1 - 0 b},l by - bl,;.q—k
00 1by; bry - bk
The entries b,-,]- are regular functions (even coordinates) on Uy via the Pliicker embedding. For

A e Kkt leta(l) = Zé‘:o A;a;e., Where a;, is the ith row vector of A. Then the subspace spanned
by the rows of A is contained in X if and only if

Hi(a(M)o,...,a(A)n) =0

forallA e Kklandi=1,...,r. Taking coefficients in A, this amounts to a set of polynomial

equations in the cordinates b; j, which defines Fi.(X) in Ur. ]

Example of a Fano variety

Let Q = V(ZoZ3 — Z1Z;) be a quadratic surface in P3.
The surface Q contains two families of linear subspaces,
which can be seen in the real affine picture on the right.
This corresponds to the fact that Q is exactly the Segre
embedding of P1x P!, so the two families of lines are { p}
Pand P! x {g}, for p, q € PL
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How does this translate into the Fano variety F;(Q)?
X . [taken from R. Vakil's homepage
Instead of doing the computation by hand, we are lazy and ask Macaulay2.

i1 : R = QQ[Z0,71,72,73];
i2 : = Fano(1,ideal(Z0*Z3-Z1*22))

2

02 = ideal (pp , pp +PP,PP,PP -PP,PP,P -PP -PP,PP -
45 25 35 15 24 34 @04 3 14 05 23

Pp +pP,P -PP -PP,PP -PP,PP +PP,PP)
14 ©5 2 14 ©5 12 13 02 03 01

Conclusion.
2 : Ideal of . 5 5 5 5 1 i i
0 edl o QQ[po PP PP P F(Q) is the union of
. two plane quadrics in
i3 : decompose F G(1,3) c I[DS’ one for
2 2 each of to the two fam-

o3 = {ideal (p -p, P, P, -p +pp),ideal (p +p, P, P, -P +ppI} .. . :
2 3 5 o 3 14 2 3 4 1 3 o5 lliesoflinesinQ.



