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Secant varieties

Secant varieties

We defined the join J(X, Y') of two disjoint projective varieties X, Y € P" as the union of all lines
pg.peX, yeY.

If X and Y are not disjoint, we can still look at the set of lines in G(1, n) joining two points x € X
and y € Y with x # y. Let J (X, Y) be the Zariski closure of that set and, as before, let

J(XY) =Upeg(x,v) &

a closed subvariety of P
In particular, it makes sense to define $1(X) = 7 (X, X) c G(1, n), the variety of secant lines,
and $1(X) = J(X, X) c P", the secant variety of X.

More generally, let Sp(X) be the closure of the set of £-subspaces in G(¢, n) spanned by € + 1
independent points on X. This is the variety of secant £-subspaces, and S,(X) = Upcs,(x) A
is the ¢th secant variety of X

In general, it can be quite hard to say anything substantial about the secant variety of a given
projective variety. For example, what can be said about its dimension? Let X c P" be irreducible
of dimension k. It is not hard to show that

dim(Sy(X)) = 2k,

unless X is itself a linear subspace. Since lines are one-dimensional and S;(X) is a union of lines
parametrized by S;(X) we would therefore guess that the dimension of S;(X) is equal to 2k + 1.

By the same argument, we would expect the dimension of Sy(X) to be k€ + k + ¢.



With a bit of dimension theory, one can establish the following, which confirms intuition.

Proposition 4.1. If X isirreducible of dimension k, its secant variety S1(X) is of dimension at most
2k +1, with equality if and only if there exists a point on S1(X) lying on only a finite number of secant
lines to X. (In fact, if this is true for a single point, it is true for a dense set of points.) [

The analogous statement holds for the higher secant varieties Sp(X).
The condition in the proposition can be hard to check. Only the case of curves is easy.

Proposition 4.2. IfX c P"isanirreducible curve, then the secantvariety S1(X) is three-dimensional,
unless X is contained in a plane. [

The case of the twisted cubic is treated in the exercises.

For surfaces, things already become more complicated.

Example 4.3. The secant variety to the Veronese surface X = vz(IP’z) c P> (the image of the
map v, sending [Z] € IP? to all quadratic monomials in Z) is only four-dimensional.

The secant variety of the rational normal curve

Proposition 4.4. Let C c P" be a rational normal curve. The secant variety Sy(C) has dimension
min(2¢ + 1, n), for any € between 1 and n.

Sketch of proof for the case 2¢ + 1 < n. Let U c S;p(C) be an open subset consisting of secant ¢-
subspaces spanned by ¢ + 1 distinct points of C. Let A € U, spanned by p,..., pgs1 € C. Since
any n + 12> 2(¢ +1) points on C are linearly independent, the intersection of A with any other
secant £-subspace A’ € U is contained in a subspace of A spanned by some subset of the points
P1>-- > pes1- It follows that if p € A is a point not in any such subspace, then p is contained in
no other secant ¢-subspace of C in U. By Prop. 4.1, this implies that $;(C) has the expected
dimension. [



The secant variety of the rational normal curve

Proposition 4.4. Let C c P" be a rational normal curve. The secant variety Sy(C) has dimension
min(2¢€ + 1, n), for any € between 1 and n.

This has a neat application to sums of nth powers of linear forms.

Corollary 4.5. Let K be an algebraically closed field of characteristic 0. For any n > 1 and d with
2d -1 > n, there is a Zariski open subset U of the space K[ X, Y |,, such that every F € U admits a
representation

F=L{+-+L}
Wil'hLl,...,Ld € K[X, Y]l.

Proof.Let V = K[X,Y];and W = K[X,Y],. If we take the monomial basis X,Y on V and
X", X771y, ..., Y" on W, the Veronese map v,:PV = P! — P" = PW takes a point [u,v]
corresponding to a linear form uX +vY to the point [u”, u"lv,...,v"]. Since char(K) = 0, the
rational normal curve v;(IPV') is projectively equivalent to the curve

— n -
[u,v] — [u”,nu” 1v,...,(k)u” kvk,...,v”]

which sends uX + vY to (uX + vY)™.

Hence the set of nth powers of linear forms is a rational normal curve in PW. By the above
proposition, its (d — 1)th secant variety is all of PW. By definition, an open dense subset of that
secant variety consists of sums of d nth powers. [

The secant variety of the rational normal curve

Proposition 4.4. Let C c P" be a rational normal curve. The secant variety Sy(C) has dimension
min(2¢ + 1, n), for any € between 1 and n.

This has a neat application to sums of nth powers of linear forms.

Corollary 4.5. Let K be an algebraically closed field of characteristic 0. For any n > 1 and d with
2d -1 > n, there is a Zariski open subset U of the space K[ X, Y |,, such that every F € U admits a
representation

F = L?+---+LZ
Wil'hLl,...,Ld € K[X, Y]l.

To obtain analogous statements for polynomials in more variables, one has to understand the
secant varieties of higher-dimensional Veronese varieties. As the example of the Veronese sur-
face in P> shows, the answer becomes more complicated.



Determinantal Varieties

Let M be the projective space P(Mat,x,(K)) = P™"~1of matrices. The general determinantal
variety of rank k is the variety M; c M of matrices of rank at most k. It is closed since it is
defined by the vanishing of all (k +1) x (k + 1)-minors.

Again, it is not clear that the (k + 1) x (k + 1)-minors generate the radical ideal Z(M.). This is
true, but we do not prove it.

Example 4.6. The Segrevariety X, ,, C pmn-1~ pm-lypn-ljg exactly M. To see this, note that
a matrix Z € Mat,;x,(K) has rank 1if and only if it can be writtenas Z = UV T for U € K"\ {0},
V e K"~ {0}, i.e.if and only if it lies in the image of the Segre embedding.

The general determinantal variety M is the kth secant variety to M. This is because a matrix
has rank at most k if and only if it is the sum of k matrices of rank 1.

One can try to use this simple characterisation of secants for the general determinantal variety
to study the secant varieties of other varieties defined by the vanishing of minors. We will carry
this out for the rational normal curve.

Linear Determinantal Varieties

Let Q = (L;j);,j be an m x n-matrix with entries in K[Zy, . .., Z¢];. The variety
2:(Q) ={[Zo,...,Z,] : rank(Q(Z)) <k} c Pt

is called the linear determinantal variety determined by Q. Itis the pullback of M. under the
linear map P¢ — M given by the linear forms L;j. (In case that map is injective, 2, (Q) can be
identified with the intersection of M, with the image of the linear map.)

Remember from the exercises that the rational normal curve C in P4 is the rank-1 determinantal
variety associated with the matrix

Zo 2y Zy - Zgg

QO - Z:1 Zy Zz - Zg ki ,

forany k betweenland d - 1.

Our goal for the rest of this lecture is

Theorem 4.7. The secant variety S1(C) to the rational normal curve C c P4 js the rank-2 determi-
nantal variety associated with Q, for k between 2 and d — 2.

The analogous statement is true for the higher secant varieties of C.



Lemma 4.8. Let S, be the space of homogeneous polynomials of degree d in two variables X and
Y and let V ¢ S, be a proper linear subspace without common zeros (i.e. V(V) = @ in P). Let
W = §; -V be the subspace of S ;,; generated by all products of elements of V with linear forms.
Then

dim(W) > dim(V) +2

Proof. For any point p € PLand any U c S, let Ord,(U) c Z( denote the set of all vanishing
orders of elements in U at the point p.
Note first that if U is a subspace of dimension k, then |Ord,(U)| = k. (Exercise).

Now suppose dim(V) = k and dim(W) < k + 2, then
Ord,(W) > 0rdy(V) u (Ordyp(V) +1),
together with the fact that the polynomials in V have no common zeros, implies
(i) Ordy(V) ={0,L,...,k-1} and (ii)Ordy(W)={0,L2,...,k}.
By (i), we can find a basis {Fy, ..., Fi} of V with ord,(F;) = k—iforalli =1,...,k, where we
take p = [0,1], the zero of X.

Now the three polynomials XF;, YF;, XF, € W all vanish to order at least k — 1 at p, so by (ii),
there must be a non-trivial linear relation between them. On the other hand, XF; and Y F; are
linearly independent, hence there are a, b € K such that

XF, = aXF + bYF, = (aX + bY)F,

so Fj and F, have a common divisor of degree d — 1.

Lemma 4.8. Let S, be the space of homogeneous polynomials of degree d in two variables X and
Y and let V ¢ S, be a proper linear subspace without common zeros (i.e. V(V) = @ in P). Let
W = §; -V be the subspace of S ;.1 generated by all products of elements of V with linear forms.
Then

dim(W) > dim(V) +2

Proof (continued).

(i) Ordp(V) ={0,1,...,k=1} and (ii)Ordp(W)=1{0,1,2,...,k}.
By (i), we can find a basis {Fj, ..., Fi} of V with ordp(Fi) =k—-iforalli=1,...,k wherewe
take p = [0,1], the zero of X.

We proceed to show by inductionthat F, . . ., F;have acommon factor of degree atleast d — j+1,
for j € {2,...,k}. Let j > 3 and assume that G is a common factor of degree d — j + 2 of
Fy,...,Fjy,say F; = GPZ(. The 2j — 1 polynomials

XFy,....,XFj_, YF,...,YF;1, XF;

vanish to order order at least k — j + 1at p. By (ii), they span a space of dimension at most j. On
the other hand, XFj, ... , XFj_, YF,...,YFj_jspanaspace of dimension at least j, so there is
an expression

i—1 i—1 i—1 i—1
XFj=Y" aiXFj+ Y1 biYFi=Y "1 (aiX+b;Y)F;=G-Y1_(a;X +b;Y)F],

which shows what we want. In conclusion, fi, ..., f; have at least d — j + 1 zeros in common.
Since V has no common zeros, we concluded -k +1<0,hencek=d+1land V = §,. [ ]



Proof of Thm. 4.7. First note that any point (Z,...,Z;) € K49+ can be viewed as a linear func-
tional ¢, on the space S; of polynomials of degree d in X and Y, via the rule ¢, (X4-1Y?) = Z;.
Thus we have an identification P4 = P(S%).

Let C be the rational normal curve. If [Z] = [ X4, X9-1Y, ..., Y4] € C, then ¢ is just evaluation
of polynomials at the point [ X, Y] € PL. Conversely, if all polynomials in ker( ¢ ) have acommon
zero [ X, Y] € PL, it follows that ¢ is equal to evaluation at [ X, Y] and [Z] = v4[ X, Y] € C.

Now we consider the matrix
Zo 21 Zy - Zgg
Q- Z1 2y Z3 - Zgoga
Zy Zgoy - Z,

It follows from the case of the secant variety of the general determinantal variety M; that the
rank-2 determinantal variety associated with Q. contains S;(C). We have to show the converse.
So suppose that [Zy, . .., Z;] € P2isa point where Q;(Z) has rank at most 2. The matrix Q;(Z)
represents the bilinear map

Sk % Sk~ Sq L K, (XK1Y, x4 RIYT) o XAy o 7,

where m is the multiplication map.

That Q;(Z) has rank at most 2 means that there exist subspaces V; ¢ Sy and V, ¢ S;_ of
codimension 2 such that W) = V; - S;_; and W, = S - V, are contained in V = ker(¢) c S;. By
our lemma above, both V; and V, must have a common zero, since otherwise we would have
W)= W, =S, Hence if Wy = V or W, = V, then V has a common zero, hence [Z] € C.

Proof (continued).

Zo Zy Zp - Zgg
Q, - Z1 Zy 73 Zg kn
L

Zi Ziop -+ Z,

That Q;(Z) has rank at most 2 means that there exist subspaces V; ¢ Sy and V, ¢ S;_ of
codimension 2 such that Wy = V; - S;_; and W, = Sy - V; are contained in V = ker(¢) c S,;. By
our lemma above, both V; and V, must have a common zero, since otherwise we would have
W)= W, =S,. Hence if Wy = V or W, = V, then V has a common zero, hence [Z] € C.

Otherwise, both Wj and W, have codimension 2in S ;. It follows from the lemma that each must
have a common divisor P; of degree 2 (check!) and thus

VVl = Plsd_z and W2 = PZSd—Z'

Now there are two cases to consider:

(1) If Wp £ Wy, then W) + W, = V and Wy n W, has codimension 2 in V and thus codimension
3in S . It follows that P; and P, must have a common zero which is then a common zero
of V. So we again conclude [Z] € C.



