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Smoothness and Tangent Spaces

Smooth points on a hypersurface

Let f ∈ K[z�, . . . , zn] be an irreducible polynomial and let X = V( f ) ⊂ An be the hypersurface
defined by f . A point p ∈ X is called smooth if the gradient (∇ f )(p) is non-zero.
In particular, the origin p = (�, . . . , �) is a smooth point if and only if the linear term of f is
non-zero.
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The tangent space to an affine variety

Let X ⊂ An be an affine variety with vanishing ideal I(X) ⊂ K[z�, . . . , zn].
For v ∈ Kn, write Dv = ∑n

i=� vi(∂�∂zi) for the derivative in direction v.
The tangent space to X at a point p ∈ X is the linear space

Tp(X) = �v ∈ Kn ∶ (Dv f )(p) = � for all f ∈ I(X)�.
Inparticular,Tp(An) is the spaceof all directional derivatives andTp(X) is a subspaceofTp(An).
If X is a hypersurface defined by an irreducible polynomial f ∈ K[z�, . . . , zn], this agrees with
the previous definition:

Tp(X) = �(v�, . . . , vn) ∈ Kn ∶ Dv( f )(p) = �� = �(v�, . . . , vn) ∈ Kn ∶ n�
i=�

∂ f
∂zi
(p) ⋅ vi = ��.

By definition, the tangent space is a linear subspace of Tp(An) and thus passing through the
origin. However, it is often more in accordance with geometric intuition to picture the tangent
space as an affine space through the point p. Thus the shifted tangent space p+Tp(X) is called
the affine tangent space.

For the hypersurface X = V( f ), this means

p + Tp(X) = �(v�, . . . , vn) ∈ Kn ∶ n�
i=�

∂ f
∂zi
(p) ⋅ (vi − pi) = ��.
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Proposition �.�. Let f�, . . . , fℓ be generators of the ideal I(X) and let J be the ℓ × n-matrix

Ji j = (∂ fi�∂z j)i , j.
Then Tp(X) is the kernel of J(p).
Proof. Given f ∈ I(X), write f = ∑ℓ

j=� g j f j. Then
Dv( f )(p) =�ℓ

j=� g j(p)Dv( f j)(p)
by the product rule.

Thus if v is in the kernel of J(p), we see that Dv( f )(p) = ∑ℓ
j=� g j(p)�∑n

i=� vi(∂ f j�∂zi)(p)� = �.
Hence Tp(X) contains the kernel of J(p). Conversely, if v ∈ Tp(X), then Dv( f j) = � for all
j = �, . . . , ℓ, which implies v ∈ kerJ(p). �
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The tangent space to X at a point p ∈ X is the linear space

Tp(X) = �v ∈ Kn ∶ (Dv f )(p) = � for all f ∈ I(X)�.
This definition of the tangent space has two shortcomings:
(�) It does not immediately generalise to varieties that are not affine.
(�) It is not clear that it is invariant under isomorphisms of varieties.

This is fixed by the following

Proposition �.�. Let X be an affine varietywith coordinate ringA(X). Let p ∈ X be a point and let
m be themaximal ideal of p in A(X). Then there is a natural isomorphism

Tp(X)→ (m�m�)∗,
ofK-vector spaces, where (m�m�)∗ denotes the dual space ofm�m�.
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Proof. First, some linear algebra: Let V andW be finite-dimensional vector spaces and let

α∶V ×W → K

be a bilinear map. If the two linear maps α�∶V → W∗, v � α(v ,−) and α�∶W → V∗, w �
α(−,w) have trivial kernel, then α is called a perfect pairing and α� and α� are isomorphisms.
For if α� is injective, we must have dim(V) � dim(W∗) = dim(W) and the reverse for α�, so
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Note that f ∈ M satisfies Dv( f )(p) = � for all v ∈ Tp(An) if and only if f ∈ M�, by Taylor’s
formula. This implies that the bilinear map

α∶� Tp(An) ×M�M� → K(v , f ) � Dv( f )(p) .
is a perfect pairing. In other words, the proposition holds for X = An.
We claim thatwhenweworkmodulo I(X), α induces a perfect pairing α∶Tp(X)×(m�m�)→ K .

First, α is well-defined: For v ∈ Tp(X) and f ∈ I(X), we have Dv( f )(p) = �, by the definition
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α∶� Tp(An) ×M�M� → K(v , f ) � Dv( f )(p) .
is a perfect pairing. In other words, the proposition holds for X = An.
We claim thatwhenweworkmodulo I(X), α induces a perfect pairing α∶Tp(X)×(m�m�)→ K .
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The tangent space

The tangent space to X at a point p ∈ X is the linear space

Tp(X) = �v ∈ Kn ∶ (Dv f )(p) = � for all f ∈ I(X)�.
This definition of the tangent space has two shortcomings:
(�) It does not immediately generalise to varieties that are not affine.
(�) It is not clear that it is invariant under isomorphisms of varieties.

This is fixed by the following

Proposition �.�. Let X be an affine varietywith coordinate ringA(X). Let p ∈ X be a point and let
m be themaximal ideal of p in A(X). Then there is a natural isomorphism

Tp(X)→ (m�m�)∗,
ofK-vector spaces, where (m�m�)∗ denotes the dual space ofm�m�.
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ofK-vector spaces, where (m�m�)∗ denotes the dual space ofm�m�.

The description of the tangent space furnished by Prop. �.� is local, since it involves only the
maximal ideal of the point in question.

Tomake this precise, if X is a quasi-projective variety, p ∈ X a point andU an open-affine subva-
rietywith p ∈ X, we define the tangent space to X at p to be (m�m�)∗, wherem is themaximal
ideal of p in K[U]. (Of course, it has to be checked that this is independent of the choice of U .
This is easy to see using the language of local rings, but we omit it here.)
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This is easy to see using the language of local rings, but we omit it here.)

Smooth points and singular points

Apoint p ∈ X is called smooth (or X is called smooth at p) if p is contained in a single irreducible
component of X and

dimTp(X) = dimp(X),
wheredimp(X) is the local dimensionof X at p, i.e. the dimensionof the irreducible component
containing p. A point at which X is not smooth is called a singular point or a singularity.

A variety X is called smooth if it is smooth at every point.

Remark. In modern algebraic geometry, what we call ’smooth’ is often called ’non-singular’,
while the word smooth is reserved for a stronger property. The difference is only relevant in
characteristic p. In many texts, the terms ’smooth’ and ’non-singular’ are used interchangeably,
but in characteristic p, one has to exercise caution.
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Smooth points and singular points

Proposition �.�. The set of smooth points of a variety X is open and dense in X.

Proof. First note that the set of points in X that are contained inmore than one irreducible com-
ponent of X are a closed subset with dense complement. Since all those points are singular by
definition, wemay assume that X is irreducible. Furthermore, since X is covered by open affine
subvarieties, we may also assume that X is affine.

If X is a hypersurface defined by a single irreducible polynomial f ∈ K[z�, . . . , zn], the singular
points of X are the points p ∈ X in which the gradient (∇ f )(p) vanishes. So the singular points
form the subvariety V(∂ f �∂z�, . . . , ∂ f �∂zn) ∩ X of X. This is a proper subvariety, unless the
derivatives ∂ f �∂z�, . . . , ∂ f �∂zn are all zero in A(X). Since ∂ f �∂zi has lower degree in zi than
f , it cannot be divisible by f unless it is already � in K[z�, . . . , zn]. In characteristic �, this is
only possible if the variable zi does not occur in f . Since some variable has to occur,∇ f cannot
vanish identically on X. If char(K) = p, then ∂ f �∂zi = � if and only if f is a polynomial in zpi . If
this were to happen for all i = �, . . . , n, we could take the pth root of each coefficient, since K is
algebraically closed, and conclude that f = gp for some g ∈ K[z�, . . . , zn]. This would contradict
the fact that f is irreducible. Hence the claim is proved if X is a hypersurface.

If X is not a hypersurface, we can apply Thm. �.�: Since X is birational to a hypersurface, there
is an open dense subset U of X that is isomorphic to an open dense subset of a hypersurface.
Therefore,U contains an open dense subsetU ′ consisting of smooth points.
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is a perfect pairing. In other words, the proposition holds for X = An.
We claim thatwhenweworkmodulo I(X), α induces a perfect pairing α∶Tp(X)×(m�m�)→ K .

Proof (continued).

First, α is well-defined: For v ∈ Tp(X) and f ∈ I(X), we have Dv( f )(p) = �, by the definition
of Tp(X). So if f and g inM are such that f − g ∈ I(X) +M� and v ∈ Tp(X), then Dv( f )(p) =
Dv(g)(p), so that α is well-defined.

Smooth points and singular points

Proposition �.�. The set of smooth points of a variety X is open and dense in X.

Proof. First note that the set of points in X that are contained inmore than one irreducible com-
ponent of X are a closed subset with dense complement. Since all those points are singular by
definition, wemay assume that X is irreducible. Furthermore, since X is covered by open affine
subvarieties, we may also assume that X is affine.

If X is a hypersurface defined by a single irreducible polynomial f ∈ K[z�, . . . , zn], the singular
points of X are the points p ∈ X in which the gradient (∇ f )(p) vanishes. So the singular points
form the subvariety V(∂ f �∂z�, . . . , ∂ f �∂zn) ∩ X of X. This is a proper subvariety, unless the
derivatives ∂ f �∂z�, . . . , ∂ f �∂zn are all zero in A(X). Since ∂ f �∂zi has lower degree in zi than f ,
it cannot be divisible by f unless it is already � in K[z�, . . . , zn].
In characteristic �, this is only possible if the variable zi does not occur in f . Since some variable
has to occur,∇ f cannot vanish identically on X.

If char(K) = p, then ∂ f �∂zi = � if and only if f is a polynomial in zpi . If this were to happen for
all i = �, . . . , n, we could take the pth root of each coefficient, since K is algebraically closed,
and conclude that f = gp for some g ∈ K[z�, . . . , zn]. This would contradict the fact that f is
irreducible. Hence the claim is proved if X is a hypersurface.

If X is not a hypersurface, we can apply Thm. �.�: Since X is birational to a hypersurface, there
is an open dense subset U of X that is isomorphic to an open dense subset of a hypersurface.
Therefore,U contains an open dense subsetU ′ consisting of smooth points.
Finally, we show that the set of singular points is closed in X. Let f�, . . . , fℓ be generators of I(X)
and let J be thematrix with entries (∂ fi�∂z j) as before. By Prop. �.�, the smooth points of X are
exactly the points p ∈ X in which J(p) has rank n − dim(X).
Since the smooth points are dense in X, the matrix J(p) can never have rank bigger than n −
dim(X). For if the rank of J(p) were bigger for some p ∈ X, the same would happen on some
non-empty open subset of X, which is impossible. (It wouldmean that someminor of size r× r,
with r > n−dim(X)+�wouldnot vanish at p. But then that sameminorwouldbenon-vanishing
on some non-empty open subset of X.)

Hence the singular points of X are precisely the points at which J(p) has rank less than n −
dim(X). This is the closed subset given by the vanishing of all minors of size n − dim(X). �
The proof has shown the following.
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The projective tangent space

We have defined the tangent space to any quasi-projective variety.
But the tangent space to a projective variety should really be a projective linear space.

Here is one way to define the projective tangent space: Let X ⊂ Pn be a projective variety and
p ∈ X. Then p is contained in one of the open affine setsUi ≅ An. Thenwe can take the tangent
space to X ∩ Ui in An and define the projective tangent space Tp(X) as the closure of the
affine tangent space

p + Tp(X ∩Ui) ⊂ Ui ⊂ Pn
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We can further simplify this using the Euler relation
n�
i=�

∂F
∂Zi
⋅ Zi = d ⋅ F ,

where d = deg(F). Since F(�,w�, . . . ,wn) = �, it follows that
n�
i=�

∂F
∂Zi
(�,w�, . . . ,wn) ⋅ (−wi ⋅ Z�) = ∂F

∂Z�
(�,w�, . . . ,wn) ⋅ Z�.

We conclude

Tp(X) = �[Z�, . . . , Zn] ∈ Pn ∶ n�
i=�

∂F
∂Zi
(P) ⋅ Zi = ��.

The point p is singular if and only if all the partial derivatives of F vanish at p, i.e. if and only if
Tp(X) = Pn. In view of the Euler relation, the vanishing of all partial derivatives also implies the
vanishing of F (unless charK divides d), so that the singular locus of V(F) is defined by all the
partial derivatives.

Remark. Yes another way to define the projective tangent space: If X̂ is the cone defined by F
inAn+� and p ≠ � any point on X̂, then Tp(X) = PTp(X̂), by the description above.
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The projective tangent space

If X ⊂ Pn is any projective variety, not necessarily a hypersurface, then TpX is the intersection
of all tangent spaces at p to all the hypersurfaces containing X.

In particular, if the homogeneous ideal I(X) is generated by F�, . . . , Fℓ, then

Tp(X) = ℓ�
i=�Tp(V(Fi)) = �[Z�, . . . , Zn] ∈ Pn ∶ n�

i=�
∂Fj
∂Zi
(P) ⋅ Zi = �, j = �, . . . , ℓ�

= P(kerJ)
where J is the ℓ × n-matrix with entries Ji j = (∂Fi�∂Zj)(P).
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Aword on resolution of singularities

A resolution of singularities is a birational transformation of a variety into a smooth variety
that leaves the smooth locus unchanged. The most general result is due to H. Hironaka (����),
for which he received a Fields medal.

Theorem (Hironaka).

Let X be a variety over a field of characteristic �. Then there exists a smooth variety X̃ together with
a birational morphism φ∶ X̃ → X, which is an isomorphism φ−�(Xreg) ∼�→ Xreg.

This result was proved in a very long and technical paper:

The resolution is made up from successive blow-ups with centres in the singular locus. But it is
quite to hard to say (and still a subject of research) to say what these blow-ups look like or to
find a truly constructive approach.

Resolution of singularities for curves is relatively easy and can be found in many textbooks, in-
cluding [Ha], Ch. ��.

The existence of a resolution of singularities as above for varieties of any dimension over fields
of prime characteristic remains unknown.
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Digression: Genericity

Geometry is full of statements that hold “generically”or for a “general point/line/curve”etc.

Examples.
(�) Let V = Kn. A general point of Vn is a basis of V .
(�) The general fibre of a generically finite rational map of degree d has exactly d points (if

char(K) = �).
(�) A general hypersurface of degree d inAn is smooth.
(�) Let X ⊂ A� be an irreducible plane curve of degree d . A general line in A� meets X in d

distinct points.
We will discuss each of these examples in turn, starting from the following definition.

Definition. Let (A) be a property of points on an irreducible variety X. Then (A) is said to hold
generically if there exists a Zariski open subsetU of X such that (A) holds for all points inU .

Terminology. Instead of saying ’property (A) holds generically’ it is also common to say ’the
general point of X has property (A)’.

It is also common to speak of ’the generic point’. This often has the same meaning, but also
refers to an abstract concept ofmodern algebraic geometry. (Wewill briefly discuss this below.)

Example.We showed that the set of smooth points of any variety is open and dense. Thus ’the
general point of a variety is smooth’.
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Why this seemingly complicated terminology? The main reason is that the existence of an open
subset of points satisfying some property is often much more significant than being able to
describe the subsetU explicitly.

Examples

(�) Let V = Kn. A general point of Vn is a basis of V .

An n-tuple of points (v�, . . . , vn) ∈ Vn forms a basis if and only if v�, . . . , vn are linearly indepen-
dent. This means that the n × n-matrix with row vectors vi has non-zero determinant. We can
view the determinant as a polynomial D on Vn = Kn×n. Thus the statement ’(v�, . . . , vn)’ form
a basis holds on the open setAn×n � V(D) and therefore generically.
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Examples

(�) The general fibre of a generically finite rational map of degree d has exactly d points (if
char(K) = �).
We proved in Thm. �.�:

Theorem. Let φ∶X → Y be a rational map between irreducible varieties. If char(K) = � and the
degree of the field extensionK(X)�K(Y) is d, then there exists a non-empty Zariski-open subsetU
of Y such that the fibre φ−�(y) consists of exactly d points.

In the proof, we also determined in principle equations that define the complement of U in Y .
However, in general, these equations are quite complicated and we do not usually care much
what they look like. It is often enough to know that the subsetU exists.
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Examples

(�) A general hypersurface of degree d in Pn is smooth.

Let V = K[Z�, . . . , Zn]d . We claim that the set ∆ ⊂ PV of all [F] for which the hypersurfaceV(F) ⊂ Pn is singular is a proper closed subset of PV .

To see this, consider the correspondence

Θ = �([p], [F]) ∈ Pn × PV ∶ [p] ∈ V(F)sing�.
The setΘ is closed in Pn × PV , since it is defined by the equations F(p) = � and (∇F)(p) = �,
interpreted as equations in p and the coefficients of F . It follows from elimination theory that
∆ = pr�(Θ) is also closed.

On the other hand, there clearly exists a smooth hypersurface of degree inPn for any pair (n, d).
We may take for example the hypersurface defined by F = ∑n

i=� Zd
i (Check!).

This shows that smoothness is a generic property.

However, it by no means easy to actually determine equations for the variety ∆.
It turns out that ∆ is a hypersurface, called the discriminant. It is defined by a homogeneous
polynomial in the coefficients of F of degree (n + �)(d − �)n. In general, no one has much of an
idea as to what this polynomial looks like (c.f. the book of Gelfand, Kapranov and Zelevinsky).
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Examples

(�) Let X ⊂ P� be an irreducible plane curve of degree d . A general line in P� meets X in d
distinct points.

Here the genericity refers to the space of lines in P�. This is the GrassmannianG(�, �), which is
identifiedwith thedual space (P�)∗. Explicitly, a line inP� is definedbya linear form aX+bY+cZ
corresponding to the point [a, b, c] ∈ P�.
Assume char(K) = �. Let X be a given by an irreducible polynomial F ∈ K[X ,Y , Z]d . We may
restrict to the set of such lines with a ≠ �. Then we put a = � and subsitute X = −bY − cZ into F .
This results in a homogeneous polynomialGb,c(Y , Z) = F(−bY − cZ ,Y , Z) of degree d . We are
interested in the set of parameters b, c for whichGb,c has no multiple roots, and thus d distinct
roots in K . This correponds to the set of b, c for which the discriminant R(Gb,c , ∂Gb,c�∂Y) is
non-zero. This is a polynomial condition in b, c.
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Generic vs. random

Intuitively, it makes sense to think of generic properties as properties that hold for ’random’
points or objects.

In probability theory, one is often concerned with properties that hold ’almost surely’ or ’with
probability �’. In other words, the set on which the property does not hold is a zero-set.
That zero-set, while small, is often very inaccessible and hard to describe explicitly.

In algebraic geometry, the intuition behind statements that hold generically is very similar.
The exceptional set is contained in some proper subvariety, but it may be quite hard to describe
that subvariety explicitly.

For another example, consider the following statement:
Given finitely many points a�, . . . , aN ∈ A� on the line, a generic polynomial f ∈ K[t] of degree
d will have the property

f (k)(ai) ≠ � for all � � k � d and i = �, . . . ,N ,

where f (k) denotes the kth derivative of f .

This is easy toprove. But, given thepoints, howwould you actually construct such apolynomial?

It is not too hard to come up with some algorithm to do this. But for large values of d and n, it
may be very hard to do in practise. Problems of this kind are frequent in certain applications.

A possible solution (in some applications) is to just choose the polynomial f at random.
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that subvariety explicitly.

For another example, consider the following statement:
Assume char(K) = �. Givenfinitelymanypoints a�, . . . , aN ∈ K on the line, ageneric polynomial
f ∈ K[t] of degree d will have the property

f (k)(ai) ≠ � for all � � k � d and i = �, . . . ,N ,

where f (k) denotes the kth derivative of f .

This is easy toprove. But, given thepoints, howwould you actually construct such apolynomial?

It is not too hard to come up with some algorithm to do this. But for large values of d and N , it
may be very hard to do in practice. Problems of this kind are frequent in certain applications.

A possible solution (in some applications) is to just choose the polynomial f at random.

Generic vs. random
Intuitively, it makes sense to think of generic properties as properties that hold for ’random’
points or objects.
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An algebraic definition of genericity

Let V ⊂ An be an irreducible variety overC and k ⊂ C a subfield.
A k-genericpointofV is apoint x ∈ V with theproperty that everypolynomial f ∈ k[x�, . . . , xn]
with f (x) = � vanishes at every point of V .

Proposition �.�. IfC has infinite transcendence degree over k, then every irreducible variety pos-
sesses a k-generic point.

Proof. Let f�, . . . , fm be generators of I(V). Let k̃ be the field extension of k obtained by adjoin-
ing all the coefficients of f�, . . . , fm to k. Since there are only finitely many coefficients,C�k̃ still
has infinite transcendence degree.

Let I� = I(X) ∩ k̃[x�, . . . , xn] and let L be the field of fractions of k̃[x�, . . . , xn]�I�.
Then L is a field extension of k̃ of finite transcendence degree. By a theoremof Steinitz, any such
field is isomorphic to a subfield ofC, i.e. there exists a field homomorphism φ∶ L � C.

Now let xi be the image of the variable xi in L and put

a = �φ(x�), . . . , φ(xn)�.
We claim that a is a k-generic point.

Since fi ∈ I�(V), we have fi(x�, . . . , xn) = � in L, hence fi(a�, . . . , an) = φ( fi(x�, . . . , xn)) = �,
so a ∈ V . Now if f ∈ k[x�, . . . , xn] and f ∉ I(V), then f ∉ I�, hence f (x�, . . . , xn) ≠ � in L.
Therefore, f (a�, . . . , an) = φ( f (x�, . . . , xn)) ≠ �. �
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An algebraic definition of genericity

For example, the variety V itself might be defined by polynomials with rational coefficients.
Then we might take k = Q. A k-generic point of V would then be a general point with respect
to any property defined (in a suitable sense) over any number field.



Bertini’s theorem

The most important general theorem about genericity is Bertini’s theorem.

Theorem �.� Bertini.

Let X ⊂ Pm be a quasi-projective variety. The general linear subspace L ⊂ Pm satisfies

(X ∩ L)sing = Xsing ∩ L.
In particular, if X is smooth, then so is the intersection of X with a general linear subspace.

Thegenericity of k-dimensional linear subspaces is tobeunderstood in theGrassmannianG(n, k),
just like in the case of lines in P�.

There exist many stronger and refined versions of Bertini’s theorem, like the following

Theorem �.�. Assume char(K) = �. Let X be a quasi-projective variety over K and f ∶X → Pn a
morphism. Then the general linear subspace L ⊂ Pn satisfies

f −�(L)sing = Xsing ∩ f −�(L).

From Hartshorne [Hs], p.179
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Examples �.�.

(�) Consider the map φ∶A� → A�, (x , y)� (x , xy).
We find φ(A�) = {(u, v) ∈ A� ∶ u ≠ �}∪{(�, �)}. If (u, v) ∈ A�with u ≠ �, then φ−�(u, v) ={(u, v�u)} has dimension �.
The exceptional fibre φ−�(�, �) is the line x = � inA� and has dimension �.

(�) Let X ⊂ An be an irreducible affine variety of dimension k and let

Θ = {(p, v) ∈ X ×An ∶ v ∈ Tp(X)}.
It is not hard to verify that Θ is closed in X × An. Let π�∶Θ → X be the first projection.
For p ∈ X, the fibre π−�� (p) is exactly Tp(X). From what we know about tangent spaces,
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is open in f (X).
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(�) In the chapter about secant varieties, we saw the following statement.

We are now in a position to prove this.
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The case of the twisted cubic is treated in the exercises.

For surfaces, things already becomemore complicated.
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is because, by the fibre-dimension theorem, the dimension of the general fibre is always
the smallest dimension that occurs anywhere over the image. Since there can be no �-
dimensional fibres (again because of s(tx , ty) = s(x , y) for t ∈ K∗), we conclude that the
general fibre must be �-dimensional.

Now we apply the fibre-dimension theorem and conclude

�dim(X̂) − dim S�(X) = �
and dim(X̂) = k + �, hence dim S�(X) = �k + �, as claimed.
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Dimension of fibres

Corollary �.��. Let X � Pn be a projective variety. For p ∈ Pn � X, let πp be the projection from p
onto a hyperplaneH ≅ Pn−�. Then dim(πp(X)) = dim(X).
Proof. Apply the fibre-dimension theorem to the morphism πp∶X → πp(X). For every q ∈
πp(X), the fibre π−�p (q) consists of the intersection points of the line pq with X. Since p ∉ X
but q ∈ πp(X), these are finitely many points. Thus every fibre is �-dimensional, which implies
dim(X) = dim(πp(X)). �
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Linear spaces of complementary dimension

Theorem �.��. Let X ⊂ Pn be an irreducible projective variety. The dimension of X is the unique
number k such the general linear subspace of dimension n− k inPnmeets X in finitelymany points.

Proof.We first show that k = dim(X) has this property. We do induction on codim(X) = n −
dim(X). If dim(X) = n, the claim is clear.

If dim(X) � n − �, choose any point p ∈ Pn � X and consider the projection X′ = πp(X) onto
H ≅ Pn−�. Since dim(X) = dim(X′), we have codim(X′) = codim(X) − �. By the induction
hypothesis, the general subspace of H of dimension n − k − �meets X′ in finitely many points.
If L is any such subspace, then π−�p (L) is a subspace of dimension n− k inPn (spanned by L and
p) still meeting X in finitelymany points. Thus the general subspace of dimension n−k through
pmeets X in finitely many points. Since p is any point not on X, this shows the claim.
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To show that dim(X) is the only number with this property, suppose the general subspace of
dimension n−kmeets X in finitelymany points. If n = k, then this implies X = Pn, so k = dimX.
So we may assume k < n.
Let L bea subspaceof dimension n−k thatmeetsX in only finitelymanypoints. Then L contains
a subspace L(�) of dimension n − k − � which does not meet X at all. Let p� ∈ L(�) and let π�
be the projection from p� onto H ≅ Pn−�. If n − k − � > �, then the image L(�) = π�(L(�)) is a
subspace ofH of dimension n− k − �which does not meet π�(X). Repeating this step n− k − �
times, we arrive at a subspace L(n−k−�) ⊂ Pn−(n−k−�) = Pk+� of dimension � which is disjoint
from the image (πn−k−�○�○π�)(X). We can then project from this point onemore time. Since
the dimension of X stays the same under all these projections by Cor. �.�� and the image of X
is a subvariety of Pk, we must have dim(X) � k.
Essentially the same argument shows the converse: Let r = codim(X). By Cor. �.��, we can suc-
cessively project X from points p�, . . . , pr outside X. Then p�, . . . , pr span an r − �-dimensional
subspace disjoint from X. Since each pi can be chosen from an open subset, this shows that
the general subspace of dimension r − � does not meet X. So wemust have n − k > r − �, hence
dim(X) � k. �
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Proof. First, some linear algebra: Let V andW be finite-dimensional vector spaces and let

α∶V ×W → K

be a bilinear map. If the two linear maps α�∶V → W∗, v � α(v ,−) and α�∶W → V∗, w �
α(−,w) have trivial kernel, then α is called a perfect pairing and α� and α� are isomorphisms.
For if α� is injective, we must have dim(V) � dim(W∗) = dim(W) and the reverse for α�, so
dim(V) = dim(W). It follows that α� and α� are also surjective.

Now let X ⊂ An and I(X) ⊂ K[z�, . . . , zn]. LetM = (z� − p�, . . . , zn − pn) be the maximal ideal
of p in K[z�, . . . , zn], so thatm = M�I(X).
Note that f ∈ M satisfies Dv( f )(p) = � for all v ∈ Tp(An) if and only if f ∈ M�, by Taylor’s
formula. This implies that the bilinear map

α∶� Tp(An) ×M�M� → K(v , f ) � Dv( f )(p) .
is a perfect pairing. In other words, the proposition holds for X = An.
We claim thatwhenweworkmodulo I(X), α induces a perfect pairing α∶Tp(X)×(m�m�)→ K .

Proof (continued).

First, α is well-defined: For v ∈ Tp(X) and f ∈ I(X), we have Dv( f )(p) = �, by the definition
of Tp(X). So if f and g inM are such that f − g ∈ I(X) +M� and v ∈ Tp(X), then Dv( f )(p) =
Dv(g)(p), so that α is well-defined.
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