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An a�ne variety V ⊂ An with vanishing ideal I(V) ⊂ K[z�, . . . , zn] is completely
determined by its coordinate ring A(V) = K[x�, . . . , xn]�I(V), which is the ring of
regular functions on V . By Hilbert’s Nullstellensatz, the points of V correspond to
the maximal ideals of A(V). Two a�ne varieties V and W are isomorphic if and
only if their coordinate rings are isomorphic K-algebras.

If X ⊂ Pn is a projective variety with vanishing ideal I(X) ⊂ K[Z�, . . . , Zn], the
corresponding quotient is the ring

S(X) = K[Z�, . . . , Zn]�I(X),
the homogeneous coordinate ring of X. However, unlike the coordinate ring of an
a�ne variety, its elements are not functions on X.
Furthermore, it is not invariant under isomorphisms of projective varieties. For ex-
ample, the homogeneous coordinate ring of P� is K[X ,Y], while that of the twisted
cubic C ⊂ P� is

S(C) =K[Z�, Z�, Z�, Z�]�(F�, F�, F�),
where F� = Z�Z� − Z�

� , F� = Z�Z� − Z�Z�, F� = Z�Z� − Z�
� .

(It is not hard to check that (F�, F�, F�) is indeed a radical ideal.) �e twisted cubic
is isomorphic to P�, but S(C) is not isomorphic to K[X ,Y]. �at is because the
a�ne cone Ĉ de�ned by F�, F�, F� in A�, whose a�ne coordinate ring is S(C), is not
isomorphic to A�, the a�ne cone of P�; one way of showing this is to examine the
tangent space of Ĉ at the origin, which shows that Ĉ is singular (Exercise).

So the homogeneous coordinate ring is not a ring of functions and not an invari-
ant of a projective variety up to isomorphism. Rather, it encodes information about
the embedding of the variety into projective space.

�.� . T�� H������ F�������

Let X ⊂ Pn be a projective variety with vanishing ideal I(X) ⊂ K[Z�, . . . , Zn].
For d � �, we denote by I(X)d the dth homogeneous part I(X) ∩ K[Z�, . . . , Zn]d of
I(X). Since I(X) is a homogeneous ideal, the homogeneous coordinate ring S(X)

�
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is a graded ring with decomposition

S(X) =�
d��

S(X)d
where S(X)d = K[Z�, . . . , Zn]d�I(X)d .

Each homogeneous part I(X)d is a linear subspace of the �n+d−�n−� �-dimensionalK-
vector space K[Z�, . . . , Zn]d . �e dimension of I(X)d is the number of independent
hypersurfaces of degree d containing X. �eHilbert Function hX of X counts these
hypersurfaces by returning the co-dimension of I(X)d , i.e.

hX ∶� N → N
m � dim�S(X)m� .

Examples �.�. (�) Suppose X consists of three points in P�. �en the value hX(�)
tells us exactly whether or not those three points are collinear. Namely,

hX(�) = � � if the three points are collinear
� if they are not.

On the other hand, hX(�) = � no matter what. To see this, let p�, p�, p� be the three
points and consider the map �

φ∶� K[Z�, Z�, Z�]� → K�

F � (F(p�), F(p�), F(p�)) .

Now for any choice of two of the points p�, p�, p� there is some quadratic form that
vanishes at these two points but not at the other one. �us φ is surjective, and its
kernel is three-dimensional. �e same argument shows hX(m) = � for all m � �.

(�) If X ⊂ P� consists of four points, there are again two possible Hilbert func-
tions, namely

hX(m) = ���������
� for m = �
� for m = �
� for m � �

if the points are collinear and

hX(m) = � � for m = �
� for m � �

if they are not.
(�) We will discuss the following general statement in the exercises:

Proposition �.�. Let X ⊂ Pn be a set of d points. If m � d − �, then hX(m) = d. �
��ere is an abuse of notation here: Since the pi are points in the projective plane, a polynomial

F has no well-de�ned value. However, we can pick vectors vi ∈ K� with p = [vi] and take F(pi) to
mean F(vi). Of course, the value depends on the choice of vi , but as long as we only care about the
dimension of kernels and images, this does not matter. Since this occurs rather frequently, it is too
cumbersome to always choose representatives of points.
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(�) Next, let X ⊂ P� be a curve given by some irreducible homogeneous polyno-
mial F of degree d. �e mth homogeneous part I(X)m then consists of all polyno-
mials of degreem divisible by F. So we can identify I(X)m with K[Z�, Z�, Z�]m−d for
m � d, so that

dim(I(X)m) = �m − d + ��
�,

hence

hX(m) = �m + ��
� − �m − d + �

�
� = d ⋅m − d(d − �)

�
.

So for m � d, hX is a polynomial function of degree �.

It turns out that the last observation comes from a general fact.

�eorem �.�. Let X ⊂ Pn be a projective variety with Hilbert function hX . �en there
exists a polynomial pX in one variable with rational coe�cients such that hX(m) =
pX(m) for all su�ciently large m ∈ N. �e degree of pX is the dimension of X.

�e polynomial pX is called theHilbert polynomial of X.

While we will not need the result in this generality, its proof as outlined in [Ha] uses
several important ideas, some of which we have already seen, and is very interesting
in its own right. We will discuss it a�er some preparation.

Examples �.�. (�) Let X ⊂ Pn be a �nite set of d points. By Prop. �.�, we have
hX(m) = d for all m � d − �. So pX is the constant polynomial d.

(�) If X ⊂ P� is a curve given by a homogeneous polynomial F of degree d as
above, we have just seen that the Hilbert function satis�es hX(m) = d ⋅m−d(d−�)��
for all m � d. �us

pX(t) = d ⋅ t − d(d − �)
�

.

(�) Let us determine the Hilbert polynomial of the rational normal curve C in
Pd . Under the Veronese map vd ∶P� → Pd given by[X�, X�]� [Xd

� , Xd−�
� X�, . . . , X�Xd−�

� , Xd
� ]

the restriction of a homogeneous polynomial F ∈ K[Z�, . . . , Zn] of degree m to C =
vd(P�) is a homogeneous polynomial of degree d ⋅m in X�, X�. It is not hard to check
that this is bijection, in other words S(C)m is isomorphic to K[X�, X�]d⋅m. �us

hX(m) = pX(m) = d ⋅m + �.
�.� . S��������� �� ����������� ������

If X ⊂ Pn is a projective variety, its vanishing ideal I(X) is a homogeneous
ideal. Of course, any homogeneous ideal I with

√
I = I(X) also de�nes X. A par-

ticular such ideal arises by deleting lower homogeneous parts of X. We denote by(Z�, . . . , Zn) the ideal generated by the variables, called the irrelevant ideal (because
its zero set in Pn is empty). For k � �, let J = I(X) ∩ (Z�, . . . , Zn)k, so that

J =�
ℓ�k

I(X)ℓ ,
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i.e. the �rst k − � homogeneous parts have been deleted. It is clear that
√
J = I(X),

since Fk ∈ I for all F ∈ I(X), so in particular, J still de�nes X.
However, it has a stronger property. Given F ∈ I(X) and any form G ∈ K[Z]k of

degree k, we have FG ∈ J. �is has the following consequence: If we dehomogenize
and pass from Pn to one of the standard a�ne-open subsets Ui = {[Z] ∈ Pn ∶ Zi ≠
�} ≅ An, we in fact still obtain the radical ideal: Take i = � for simplicity, then we
pass from homogeneous polynomials in K[Z] = K[Z�, . . . , Zn] to all polynomials in
K[z] = K[z�, . . . , zn], where zi = Zi�Z�. Now given f ∈ K[z]with f �X∩U� = �, we have
F(Z) = Zd

� f (Z��Z�, . . . , Zn�Z�) ∈ I(X), hence Zk
�F ∈ J. But the dehomogenization

of Zk
�F is f . �erefore, the dehomogenisations of I(X) and J are the same.

Example �.�. For a simple example, take the ideal J generated by Z�
� and Z�Z� in

K[Z�, Z�]. �en V(I) = {P} with P = [�, �], but I(P) = (Z�, Z�) ≠ J. In fact, J =
I(P) ∩ (Z�, Z�)�. If we dehomogenize with respect to Z�, we send Z� to z = Z��Z�

and Z� to �, so that J becomes the ideal generated by z� and z in K[z], which is the
vanishing ideal (z) of P ∈ U� ≅ A� in K[z].

To formalize this, we introduce the following notion: Let J ⊂ K[Z�, . . . , Zn] be
an ideal. �en

Sat(J) = �F ∈ K[Z�, . . . , Zn] ∶ there exists k � � such that (Z�, . . . , Zn)k ⋅ F ∈ J�
is an ideal, called the saturation of J. If Sat(J) = J, then J is called saturated.

Lemma �.�. For any two homogeneous ideals I, J ⊂ K[Z�, . . . , Zn], the following are
equivalent:

(�) I and J have the same saturation.
(�) �ere exists d � � such that Im = Jm holds for all m � d.
(�) I and J generate the same ideal locally, i.e. they are the same in every localiza-

tion K[Z��Zi , . . . , Zn�Zi], i = �, . . . , n.
Proof. Exercise �.�. �
Examples �.�. Let C ⊂ Pd be the rational normal curve. Its vanishing ideal I(C) =
K[Z�, . . . , Zn] is generated by the �d�� polynomials

Fi , j = ZiZ j − Zi−�Z j+�, � � i � j � d − �.
We have shown that for d = �, all three polynomials F�,�, F�,�, F�,� are needed to cut
out the curve. But in general, one can show that the �d − � polynomials

Fi ,i for i = �, . . . , d − � and Fi ,i+� for i = �, . . . , d − �
generate an ideal with saturation I(C), but fail to generate I(C) if d � � (c.f. [Ha],
Exercise �.�/�.�).

We will need a strengthening of Bertini’s theorem. Consider �rst the following

Example �.�. Let X be the plane curve in P� de�ned by F = Z�Z� − Z�
� . �e lineWα

de�ned by Lα = Z� − αZ� for α ∈ K will meet X in the two points [α,±√α, �]. For
α ≠ �, these are two distinct points and the vanishing ideal I(X ∩Wα) is generated
by F and Lα. (�is means that (Z� − αZ�, Z� −√αZ�) ∩ (Z� − αZ�, Z� +√αZ�) =(Z�Z�−Z�

� , Z�−αZ�); check!) However, the lineW� is tangent to X, which is re�ected
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in the fact that (F , L�) = (Z�Z� − Z�
� , Z�) is not the vanishing ideal (Z�, Z�) of the

point {[�, �, �]} = X ∩W�, since (F , L�) does not contain Z�.

�eorem �.�. Let X ⊂ Pn be an irreducible projective variety of dimension k with
vanishing ideal I(X). �e general linear subspace W ⊂ Pm of dimension n − k satis�es

Sat(I(X) + I(W)) = I(X ∩W).
Sketch of proof. We know from �m. �.�� that the general linear subspace W of di-
mension n−k intersects X in �nitely many points X∩W = {p�, . . . , pd}. By Bertini’s
theorem �.�, X ∩ W will also be smooth for general W . With our de�nition of
smoothness, this is an empty statement, since�nitelymanypoints are always a smooth
variety. However, what Bertini’s theorem really says in this case is that the intersec-
tion of X ∩W is transversal for generalW , which means that p�, . . . , pd are smooth
points of X and the projective tangent space Tpi(X) meets W only at pi , for i =
�, . . . , d. Using the local description of tangent space from Prop. �.�, one can show
that this implies that I(X) and I(W) generate I(X ∩W) locally. �

�.� . P���� �� ��� ���� ������� �� H������ �����������

To show that the Hilbert function eventually agrees with a polynomial, we need
one more elementary lemma.

Lemma �.��. Let f ∶Z → Z be a function and assume that there exist m� ∈ Z and a
polynomial p(z) ∈ Q(z) such that

f (m + �) − f (m) = p(m)
for all m � m�. �en there exists a polynomial q ∈ Q[z] of degree deg(p)+ � such that
f (m) = q(m) for all m � m�.

Proof. For every k ∈ N, let
Fk(z) = �zk� = �

k!
z(z − �)�(z − k + �).

Since Fk(z) has degree exactly k, it is clear that � = F�, F�, . . . , Fk form a basis of
Q[z]�k. So write p = ∑k

i=� ck−iFi with ci ∈ Q.
Using the notation (∆s)(z) = s(z + �) − s(z) for s ∈ Q[z], we �nd

∆Fk = �z + �k
� − �z

k
� = � z

k − �� = Fk−�.
�us p = ∆q̃, where

q̃ = c�� z
k + �� +� + ck�z��.

It follows that ∆( f − q̃)(m) = � for all m � m�. �is means that ( f − q̃)(m) is a
constant ck+� for all m � m�, hence

f (m) = q̃(m) + ck+�
for all m � m�, so that q = q̃ + ck+� satis�es the claim. �

We are now ready for the proof of�m. �.�.
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�eorem. Let X ⊂ Pn be a projective varietywithHilbert function hX .�en there exists
a polynomial pX in one variable with rational coe�cients such that hX(m) = pX(m)
for all su�ciently large m ∈ N. �e degree of pX is the dimension of X.

Proof. Let k = dim(X) and letW be a linear subspace of dimension n− k that meets
X in �nitely many points and satis�es Sat(I(X), I(L)) = I(X ∩W). Such W exists
by �m. �.� (Note that k is the highest dimension of any irreducible component of
X). Let L�, . . . , Lk be linear forms that generate I(W). Consider the chain of ideals

I(X) = I(�) ⊂ I(�) ⊂ I(k) ⊂ K[Z�, . . . , Zn]
given by I( j) = (I(X), L�, . . . , L j). Let S( j) = K[Z�, . . . , Zn]�I( j) and

h( j)(m) = dim(S( j))m ,
so that h(�)(m) = hX(m). Since the saturation of I(k) is I(X ∩W), the function h(k)
agrees with theHilbert function hX∩W for all su�ciently large arguments. Also, since
X ∩W consists of �nitely many points, we know that hX∩W(m) = d for large values
of m, where d = �(X ∩W) (c.f. Exercise �.�).

Now since the dimension of X ∩W is �, it follows that the variety V(I( j)) must
have dimension exactly k − j. (Reason: �e intersection of a variety of dimen-
sion ℓ with a hyperplane has dimension at least ℓ − �. So if the dimension betweenV(I(�)) = X and V(I(k)) = X ∩W drops from k to �, it must drop by one in each
step.) In particular, this means that the image of L j+� in S( j) is not a zero-divisor,
since otherwise L j+� would generate a zero-dimensional ideal in S( j). �us multi-
plication by L j+� de�nes an inclusion (S( j))m−� � (S( j))m for all m. �e quotient(S( j))m�(S( j))m−� with respect to this inclusion is exactly (S( j+�))m. �is tells us that

h( j+�)(m) = h( j)(m) − h( j)(m − �).
Since h(k) is constant for large arguments, we can apply Lemma �.�� inductively and
conclude that h(�) for large arguments agrees with a polynomial of degree k. �
Remark. While the Hilbert function of a projective variety eventually agrees with a
polynomial, it is in general very hard to predict at what degree the equality occurs.
When trying to analyze the above proof to extract that degree, the problem lies in
the fact that we have to take the saturation of the radical ideal of X with the added
linear forms. It is a non-trivial fact that given any polynomial p ∈ Q[z], there exists
a constantm� such that hX(m) = p(m) holds for allm � m� and all varieties X with
pX = p. Very little is known in general about the size of thism�, even though this is a
highly relevant question formodern constructions like the so-calledHilbert-scheme.
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Together with the dimension, the degree is an important invariant of projective
varieties. Unlike the dimension, however, it is not invariant under isomorphism but
rather depends on the embedding into projective space.

A hypersurface in Pn is de�ned by a square-free� homogeneous polynomial F ∈
K[Z�, . . . , Zn], which is unique up to scaling. �e degree of the hypersurface is then
the degree of X. We would like to extend this de�nition to general subvarieties of Pn.
We say that X ⊂ Pn has pure dimension k if every irreducible component of X has
dimension k.

Proposition �.��. Let X ⊂ Pn be a projective variety of pure dimension k. �en there
exists a number d � � such that the general subspace of dimension n− k intersects X in
exactly d points. �at number is equal to k! times the leading coe�cient of the Hilbert
polynomial of X.

�e number d is called the degree of X.

Proof. Weknow that the general subspace of dimension n−kmeets X in�nitelymany
points. Weneed to show that this number does not depend on the choice of subspace,
i.e. there is someopen subsetU ofG(n, n−k) such that the number of points in X∩W
is the same for all W ∈ U . We could argue using �m. �.�. Alternatively, the proof
of�m. �.� shows that if W is any subspace meetings X transversally (i.e. satisfying
the conclusion of �m. �.�), then the number of points in X ∩W is equal to the
kth di�erence function of the Hilbert function. �is is exactly k! times the leading
coe�cient of the Hilbert polynomial. �

It is not hard to see that this de�nition of degree agress with the old one for hyper-
surfaces: If X is a hypersurface de�ned by a square-free homogeneous polynomial F,
then for a general line W ⊂ Pn, the restriction F �W will have deg(F)-many distinct
roots. (We can argue with the discriminant as we did in the case of curves in Chapter
�.) �us deg(F) is the degree of X.
Examples �.��. (�) If X ⊂ Pn is set of d points, the degree is d by de�nition.
Indeed, we determined in Example �.�(�) that the Hilbert polynomial of X is the
constant d.

(�) If X is a plane curve de�ned by a square-free polynomial F of degree d, we
determined in Example �.�(�) that the Hilbert polynomial is pX(t) = d ⋅ t − d(d −
�)��. �is con�rms that the degree of X is d. (It would not be hard to do a similar
computation in the case of hypersurfaces in Pn.)

(�) Likewise, it follows from �.�(�) that the degree of the rational normal curve
in Pd is d. Again, it is not hard to verify directly that the general hyperplane in Pd

meets the rational normal curve in d distinct points.
(�) In Exercise �.�, we showed that the Hilbert polynomial of the Segre variety

Σm,n = σ(Pm + Pn) is a polynomial of degree m + n with leading coe�cient ��m!n!.
�us the degree of Σm,n is (m + n)!�m!n! = �m+nm �.

��is means that F has distinct irreducible factors, so that the ideal (F) is radical.
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�e simplest form of Bézout’s theorem asserts that two plane projective curves
X and Y of degree d and e that intersect transversally have exactly d ⋅ e intersection
points. In the case of curves, transversal intersection just means� that I(X ∩ Y) =
I(X) + I(Y). Here is the precise statement:

�eorem �.��. (Bézout) Let X and Y be curves in P� without common components.
�en X ∩ Y consists of at most deg(X) ⋅ deg(Y) points, with equality if and only if X
and Y intersect transversely.

Proof. Let d = deg(X), e = deg(Y), I(X) = (F), I(Y) = (G) with F ,G ∈ K[Z] =
K[Z�, Z�, Z�] and put I = (F ,G) ⊂ K[Z]. We wish to compute the Hilbert polyno-
mial of X ∩ Y = V(I). To do this, let m � d + e and consider the linear map

α∶� K[Z]m−d × K[Z]m−e → K[Z]m(A, B) � AF + BG .

�e image of α is exactly Im. We have α(A, B) = � if and only if AF = −BG. Since
F and G are coprime by hypothesis, this implies G�A and F �B. Putting A = A′G and
B = B′F, we �nd A′ = B′. So the kernel of α consists exactly of all elements of the
form (RG ,−RF) for R ∈ K[Z]m−d−e . �erefore, we have

dim(Im) = dim(K[Z]m−d × K[Z]m−e) − dimK[Z]m−d−e
= �m − d + �

�
� + �m − e + �

�
� − �m − d − e + �

�
� = �m + �

�
� − de= dimK[Z]m − de .

�us codim(Im) = de for all m � d + e. Now if X and Y intersect transversely,
then I is the vanishing ideal of X ∩ Y . We then have codim(Im) = hX∩Y(m), hence
pX∩Y = de. �is shows that X ∩ Y is �-dimensional of degree de, as claimed.

If X and Y do not intersect transvesely, then I(X ∩ Y) = �(F ,G) and strictly
includes (F ,G). �erefore, hX∩Y(m)must be strictly less than de for large m. �

�e statement of Bézout’s theorem can be made more precise and can also be
generalized to higher dimensions. We indicate some such statements.

(�) Amore precise version for curves takesmultiplicities into account.�is gen-
eralizes the fact that a polynomial of degree d in one variable has exactly d zeros,
counted with mulitplicities. If X and Y are two curves without common components
and p ∈ X ∩ Y , the intersection multiplicity of X and Y at p is denoted mp(X ,Y).
�eorem. Let X and Y be curves in P� without common components. �en

deg(X) ⋅ deg(Y) = �
p∈X∩Y

mp(X ,Y).
�e intersection multiplicity mp(X ,Y) is de�ned locally: If p ∈ Ui ≅ A� and f

resp. g are polynomials de�ning X ∩Ui resp. Y ∩Ui , thenmp(X ,Y) is de�ned as the
dimension of the K-vector space Op�( f , g), where Op is the local ring k[z�, z�]mp .
With a little bit of local algebra, this de�nition is quite simple to handle.

�Alternatively, X and Y intersect transversely if and only if every point P ∈ X ∩ Y is a smooth
point of X and Y and the tangent lines TpX and TpY are distinct.



�.�. BÉZOUT THEOREMS �

(�) �e most straightforward generalization of �m. �.�� to higher dimensions
is the following.

�eorem. Let X�, . . . , Xn be hypersurfaces in Pn and assume that Z = X� ∩ ⋅ ⋅ ⋅ ∩ Xn is
�nite with I(Z) = ∑n

i=� I(Xi). �en Z consists of deg(X�)�deg(Xn) points.
�is becomes harder to prove than in the case of curves because if I(Xi) = (Fi)

and we look at the map (A�, . . . ,An) � ∑n
i=� AiFi as in the proof of �m. �.��, it is

more di�cult to compute the dimension of the kernel in degree m. �e appropriate
technical tool is the Koszul complex, sketched at the end of Chapter �� in [Ha].

(�) If the intersection is allowed to be higher-dimensional, things become more
complicated. For example, we know that if X and Y are two distinct quadric surfaces
in P�, then X ∩ Y consists of a twisted cubic C and a line L. So we �nd deg(X) ⋅
deg(Y) = � = deg(C) + deg(L) = deg(X ∩ Y), as expected. On the other hand, the
fact that the intersection with another quadric Z containing C de�nes C, which is of
degree �, while deg(X) ⋅ deg(Y) ⋅ deg(Z) = �, is less easy to explain in this way.

(�) In general, the condition that I(X) and I(Y) generate I(X ∩ Y) needs to
be replaced by the following: Let X ,Y ⊂ Pn and let Z�, . . . , Zk be the irreducible
components of X ∩ Y . We say that X and Y intersect generically transversely if for
each i the general point p on Zi is a smooth point of X and Y and the tangent spaces
Tp(X) and Tp(Y) span Tp(Pn).
�eorem. Let X and Y be subvarieties of pure dimensions k and ℓ in Pn with k+ ℓ � n
and suppose they intersect generically transversely. �en

deg(X ∩ Y) = deg(X) ⋅ deg(Y).
In particular, if k + ℓ = n, this implies that X ∩ Y consists of deg(X) ⋅ deg(Y) points.

(�) Again, if we are content with an inequality, we can get away with less. We
say that X and Y intersect properly if dim(X) + dim(Y) � n and every irreducible
component of X ∩ Y has the expected dimension, i.e. dim(X) + dim(Y) − n.
�eorem. Let X ,Y be subvarieties of Pn of pure dimension intersecting properly, then

deg(X ∩ Y) � deg(X)deg(Y).
(�) �ere is a corresponding version with intersection multiplicities that looks

analogous to the case of curves.

�eorem. Let X ,Y be subvarieties of Pn of pure dimension intersecting properly, then

deg(X) ⋅ deg(Y) = �
Z⊂X∩Y

mZ(X ,Y) ⋅ deg(Z)
where the sum is taken over all irreducible components Z of X ∩ Y and mZ(X ,Y) is
the intersection multiplicity of X and Y along Z.

However, it becomes much more complicated in general to correctly de�ne the
intersection multiplicity, and, naturally, also to prove the statement.


