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Let X ⊂ Pn be an irreducible curve of degree d. We know that the Hilbert poly-
nomial pX is a polynomial of degree � with rational coe�cients. As such, it provides
us with two numbers: We know that the leading coe�cient of pX is the degree of X.
�e meaning of the constant term pX(�) is less clear. Note �rst that this is always an
integer (see Exercise ��.�).

De�nition. �e integer ga = � − pX(�) is called the arithmetic genus of X. If X is
smooth, then ga is called the geometric genus, or simply the genus of X.

�us if X is a curve of degree d and arithmetic genus ga, then

pX(m) = dm + � − ga .
In general, the geometric genus of a curve is de�ned to be the arithmetic genus of its
desingularization.

Examples �.�. (�) Let X be a curve in P� de�ned by an irreducible polynomial
F ∈ K[X ,Y , Z] of degree d. We know from Example �.�(�) that the Hilbert polyno-
mial of X is pX(m) = d ⋅m − d(d − �)��, hence the arithmetic genus of X is

ga = (d − �)(d − �)�
= �d − �

�
�.

For the �rst few degrees, we �nd
d � � � � � � �
ga � � � � � �� ��

(�) From the computation of the Hilbert function in Example �.�(�), we know
that the Hilbert polynomial of the twisted cubic C in P� is pC(m) = �m+ �. Hence C
is a curve of degree � and arithmetic genus �. Since C is smooth, its arithmetic and
geometric genus agree.

We have also seen in Exercise �.� that the projectionC′ ⊂ P� ofC from a point not
on C is either a nodal or a cuspidal cubic. It follows that C′ is a curve of arithmetic
genus �, but geometric genus �, since C is its desingularization.

We see from (�) that not all positive integers occur as the arithmetic genus of a
plane curve. However, the arithmetic genus of a curve is always greater or equal to �
and for any g � � there exists a smooth curve of genus g (and therefore also a plane
curve of geometric genus g, obtained by projecting a curve of genus g into the plane).

��
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For the theory of algebraic curves, the genus is the most important invariant. �is is
so for a variety of di�erent reasons, two of which we will brie�y explain.

(�) �e genus of a smooth curve over C determines its topology. A smooth
curve over C leads a double life, �rst as an algebraic variety of dimension �, second
as a complex manifold of dimension �. �e complex manifold corresponding to the
a�ne lineA� overC is the complex planeC, topologically equal toR�.�e projective
line P� = A� ∪ {∞} is the one-point compacti�cation C ∪ {∞}, also known as the
Riemann sphere, topologically a two-dimensional sphere S�. In general, we have the
following amazing fact, the proof of which is outside our scope.

�eorem. A smooth projective curve of genus g overC is an orientable surface of genus
g, which means it is homeomorphic to the g-fold connected sum of the �-torus. �

�e genus is the number of ’holes’ in the surface: A surface of genus � is sphere,
of genus � a torus, genus � a double torus, and so on. For example, the complex
points of a smooth plane curve of degree � form a torus, a fact which forms the basis
for the analytic theory of elliptic curves.

Genus � Genus � Genus � Genus �

(Source: Wikimedia Commons)

(�) �e genus of a smooth curve determines the behaviour of rational (ormero-
morphic) functions on the curve.Weknow that a projective curve X does not admit
any non-constant regular functions, in other words any morphism X → A� is nec-
essarily constant. It follows that any non-constant rational function X �→ A� must
have a pole somewhere, a point at which it is unde�ned. For example, a polynomial
f ∈ K[t] de�nes a morphismA� → A�, which wemay interpret as a rational function
f ∶A� ∪ {∞} = P� �→ A�. �is function has a pole of order deg( f ) at the point∞.

�e general problem of locating the poles or realizing rational functions with
prescribed poles is central to the theory of algebraic curves resp. of Riemann surfaces.
Let X ⊂ Pn be an irreducible curve of degree d and assume that the hyperplaneV(Z�) intersects X transversely in the points p�, . . . , pd ∈ X. Given G ∈ S(X)m, the
fractionG�Zm

� is a rational function on X, an element of the function �eld K(X). As
a function X �→ A�, it is de�ned on X � {p�, . . . , pd}, while in the points p�, . . . , pd
it has a pole. In fact, since Z� intersects X transversely, that pole is of order at most
m; the pole order is equal to m if G does not vanish and pi and lower than m if it
does. In general, given points p�, . . . , pk ∈ X and positive integers m�, . . . ,mk, let

L(X ,m�p� +� +mkpk) = � f ∈ K(X) ∶ f has a pole of order at most mi at pi
for i = �, . . . , k and no other poles on X . �,
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a linear subspace of K(X). What we have just discussed is that there is a map

ι∶� S(X)m → L(X ,mp� +� +mpd)
G � G�Zm

�

It is injective, since G�Zm
� = H�Zm

� on X for G ,H ∈ K[Z�, . . . , Zn]m if and only
if Zm

� ⋅ (G − H) ∈ I(X). Since X is irreducible, I(X) is prime and by assumption
Z� ∉ I(X), hence G −H ∈ I(X), in other words G = H in S(X)m. It follows that

dim L(X ,mp� +� +mpd) � hX(m) = dm + � − ga .
for su�ciently large m. �is holds much more generally.

�eorem �.� (Riemann’s inequality). Let X be a smooth projective curve of genus g.
Let p�, . . . , pk ∈ X and m�, . . . ,mk ∈ Z. �en

dim L(X ,m�p� +� +mkpk) � k�
i=�

mi + � − g .
�e dimensions of the spaces L(X ,m�p� +�+mkpk) can be seen as much more

re�ned versions of the Hilbert function. (Note that the multiplicities m�, . . . ,mk are
also allowed to be negative. In this case, having ’a pole of order at most mi at pi ’
is understood to mean ’vanishing to order at least −mi at pi ’.) �e Riemann-Roch
theorem in its full strength is an equation rather than an equality, i.e. it also describes
the di�erence between the le� and right hand side of Riemann’s inequality. It also
follows from this description that equality holds whenever∑k

i=�mi > �g − �.
Recall that an irreducible curve X is called rational if it is birational to P�. �is

means that the function �eldK(X) is isomorphic to the function �eldK(P�) = K(t),
the rational function �eld in one variable. Explicitly, for X ⊂ Pn, this means that
there is some dense open subset U ⊂ X that can be parametrized through rational
functions, i.e. there is a rational map

φ∶� P� = A� ∪ {∞} �→ X
t � [g�(t)�h�(t), . . . , gn(t)�hn(t)]

given by rational functions gi�hi ∈ K(t), which is an isomorphism between non-
empty open subsets of P� and X, respectively.

It turns out that the geomeric genus exactly determines whether a curve is rational.

�eorem �.�. A smooth projective curve is rational if and only if its genus is �.

Sketch of proof. We know that the genus of P� is �, since it has Hilbert polynomial
pP�(m) = m+�. �at every other smooth rational curve has genus � is a consequence
of the non-trivial fact that the geometric genus is preserved under birational maps.
(�is follows for instance from the Riemann-Roch theorem.) Conversely, suppose
that X is a smooth curve of genus �. �en for any point p� ∈ X, Riemann’s inequality
will give dim L(X; p�) � �. �us L(X; p�) contains a non-constant rational function
f from K(X). Consider the rational map f ∶X �→ P�, p � f (p). Since f ∈ L(X; p�),
we know that f −�(∞) = {p�}. Since p� is a simple pole of f , we can conclude from
this that indeed the general �bre of f contains only a single point. By�m. �.�, this
implies that f is a birational map. �
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Example �.�. We showed in Exercise �.� that the nodal cubic in P� de�ned by Y �Z =
X� − X�Z has a rational parametrization given as the inverse of the projection from
the point [�, �, �]. �is curve has arithmetic genus � but geometric genus �, since its
desingularization is the twisted cubic in P�, as discussed above. If instead we take a
smooth cubic in P�, like X� +Y � = Z� (if charK ≠ �), it will have (geometric) genus �
and therefore will not permit a rational parametrization, by the above theorem. �is,
however, is not so easy to prove directly. (Try for the example just given.)

We will neither prove nor use Riemann’s inequality (moderately easy) or the
Riemann-Roch theorem (more di�cult). Instead, wewill consider in the next section
a somewhat related but more elementary geometric problem about plane curves.

� .� . T�� C�����-B�������� �������

In this section, we discuss the Cayley-Bacharach theorem and its predecessors, a
classical part of the theory of plane curves developed in the ��th century. Our exposi-
tion is based on the paper Cayley-Bacharach�eorems and Conjectures by Eisenbud,
Green and Harris (Bulletin of the American Mathematical Society, ��(�), ����).

�e story begins already in antiquity.

�eorem �.� (Pappus of Alexandria ∼��� AD). Let p, q, r and p′, q′, r′ be two triples
of collinear points in P�, all distinct and no four collinear. �en the three intersection
points pq′ ∩ qp′, pr′ ∩ rp′ and qr′ ∩ rq′ are again collinear (see Figure �).

Of course, Pappus did not state his theorem in the projective plane. To obtain a
true statement in the a�ne plane, one has to allow for a number of exceptional cases
in which lines become parallel. Several di�erent proofs are known. We will obtain
it as a corollary from the following more general result proved by Michel Chasles at
some point around ���� (published ����).

�eorem �.� (Chasles). Let X�, X� be two cubic curves in P� meeting in exactly nine
points p�, . . . , p�. �en any cubic passing through p�, . . . , p� also passes through p�.

Chasles’s theorem is o�en called the Cayley-Bacharach theorem, although that
name should be reserved for a generalisation to curves of higher degree.

�e proof will require some preparation. Note �rst that Pappus’s theorem follows
from that of Chasles: Let L and L′ be the two lines containing p, q, r and p′, q′, r′,
respectively. Let X� be the cubic obtained as the union of pq′, qr′ and rp′ and X� the
union of pr′, qp′, rq′. �e nine intersection points of X� and X� are

p = pq′ ∩ pr′, q = qr′ ∩ qp′, r = rp′ ∩ rq′
p′ = rp′ ∩ qp′, q′ = pq′ ∩ rq′, r′ = qr′ ∩ pr′
a = qr′ ∩ rq′, b = rp′ ∩ pr′, c = pq′ ∩ qp′.

Now apply Chasles’s theorem to the cubic X obtained as the union of L, L′ and ab.
�en X passes through p, p′, q, q′, r, r′, a, b, hence it also passes through c. �e hy-
pothesis implies that c cannot lie on L or L′, so it must lie on ab, as claimed.
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F����� �. Pappus’s theorem
(Source: math.stackexchange.com - original source unknown)

Before we prove Chasles’s theorem, let us try to better understand its meaning.
Let F� and F� be two non-zero homogeneous polynomials of degree �, X� = V(F�),
X� = V(F�). Put V = K[X ,Y , Z]� and let

µi ∶V → K , F � F(pi)
Hi = {F ∈ V ∶ F(pi) = �} = ker(µi)

for i ∈ {�, . . . , �}. �e function µi is a linear functional, called the point evaluation
at pi . Its kernelHi is a hyperplane inV .�e intersection of nine general hyperplanes
in V is �-dimensional. However, H� ∩� ∩H� contains the two cubics F� and F� and
has therefore dimension at least �. It follows that µ�, . . . , µ� ∈ V∗ span a subspace of
dimension at most � in V∗ and are therefore linearly dependent. Let

α�µ� +� + α�µ� = �
be a non-trivial linear relation with a j ≠ �, then we can write µ j = (−��α j)∑i≠ j αiµi .
It follows that any polynomial in V vanishing at the eight points {pi ∶ i ≠ j} also
vanishes at p j.

Does this bit of linear algebra prove the theorem? Not quite, since it gives us no
control over the question which of the coe�cients α�, . . . , α� is non-zero. It only says
that one of themmust be non-zero. �e statement of Chasles’s theorem is equivalent
to the statement that any one of µ�, . . . , µ� is a linear combination of the other eight,
in other words that any eight span the same subspace of V∗. Since the two cubics X�

and X� may be very degenerate (as for instance in the proof of Pappus’s theorem), it
is by no means clear that any one of the nine points behaves like any other.

Wewill prove Chasles’s theorem by analysingmore precisely theHilbert function
of �nitely many points. Remember �rst our solution of Exercise �.� (Prop. �.�).
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Lemma �.�. Let Γ be a set of k points in Pn and let d � �. �e following are equivalent:
(�) �e Hilbert function hΓ satis�es hΓ(d) = k.
(�) �e point evaluations {µp ∶ p ∈ Γ} ⊂ K[Z�, . . . , Zn]∗d are linearly independent,

where µp∶K[Z�, . . . , Zn]d → K, F � F(p).
(�) For each p ∈ Γ there exists F ∈ K[Z�, . . . , Zn]d vanishing at all the points in

Γ � {p} but not at p.
Proof. Write V = K[Z�, . . . , Zn]d , Γ = {p�, . . . , pk}, µi = µpi . Consider the map

φ∶� V → Kk

F � (µ�(F), . . . , µk(F)) .

�en I(Γ)d is the kernel of φ, so that hΓ(d) is the dimension of the image. Hence
hΓ(d) = k implies that φ is surjective. �is means that for each i ∈ {�, . . . , k}, there
is Fi ∈ V with φ(Fi) = ei , which shows (�)⇒(�). Also, if∑k

i=� aiµi is a linear relation,
evaluating at Fi shows ai = �, showing (�)⇒(�). Conversely, (�) implies that all unit
vectors e�, . . . , ek are in the image of φ, so (�)⇒(�). Finally, if φ is not surjective, its
image is contained in a hyperplane in Kk, which shows that µ�, . . . , µk are linearly
dependent, hence (�)⇒(�). �

�e following propositionwill be the key to the proof of Chasles’s theorem. While
we only need a special case (d = � and k = �), the statement and its rather intricate
proof actually become clearer when made for any number of points.

Proposition �.�. Fix d � � and let Γ ⊂ P� be a set of k points where k � �d + �. �en
the Hilbert function hΓ satis�es hΓ(d) < k if and only if one of the following occurs:
(i) Γ contains d + � collinear points.
(ii) k = �d + � and Γ is contained in a conic.

Proof. Again write Vd = K[X ,Y , Z]d , Γ = {p�, . . . , pk} and let µi ∶Vd → K be the
point evaluation at pi .

First suppose that (i) holds and assume a�er relabelling that p�, . . . , pd+� are con-
tained in a line V(L). �en any form in Vd that vanishes on Γ must vanish on V(L)
and is therefore divisble by L. We conclude{F ∈ Vd ∶ F(p�) = � = F(dd+�) = �} ⊂ L ⋅Vd−�.
Since the co-dimension of Vd−� in Vd is �d+�� � − �d+�� � = d + �, the point evaluations
µ�, . . . , µd+� span a subspace of dimension at most d + � in V∗d . �us µ�, . . . , µk span
a subspace of dimension at most d + �+ (k − d − �) = k − � and are therefore linearly
dependent. Similarly, if (ii) holds, the existence of a conic V(Q) containing Γ implies
that µ�, . . . , µk span a subspace of dimension at most �d+�� � − �d�� = �d + �, so that
hΓ(d) � �d + � < �d + � = k.

�e converse direction is harder. We use nested induction, �rst on d and then on
k. For d = �, the statement is clear: If k � � and hΓ(�) < k, then we must have k = �
(hence (ii)) or k = � and p�, p�, p� are collinear (c.f. Examples �.�).

Now let d � �. Suppose, for the sake of contradiction, that hΓ(d) < k, but neither
(i) nor (ii) hold. From Prop. �.� (a.k.a. Exercise �.�) we know that hΓ(d) = k as long
as k � d + �. So we must have k > d + �. Keeping d �xed and applying the induction
hypothesis for k, we may conclude that hΓ′(d) = k − � holds for any subset Γ′ ⊂ Γ of
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k − � points. By Lemma �.�, the point evaluations µ�, . . . , µk are linearly dependent,
but any k − � of them are linearly independent. �erefore, any G ∈ Vd vanishing at
all but one point of Γ vanishes on all of Γ. We now distinguish two cases.

(a) Suppose Γ contains three collinear points. Let V(L) be a line containing the
maximal numberm � � of collinear points in Γ. Since (i) fails, wemust havem � d+�.
Let Γ′ = Γ�V(L) be the k −m remaining points. We apply the induction hypothesis
for (k − m, d − �) to Γ′. We cannot have k − m = �(d − �) + �, since m � �, so (ii)
cannot hold for Γ′ in degree d − �. If Γ′ contains d + � points on a line, then we must
have m � d + � by the maximality of V(L), hence k = �d + � and m = d + �. But then
all points of Γ′ lie on a line V(L′), so that Γ is contained in the conic V(LL′) and (ii)
holds for Γ, a contradiction. �e induction hypothesis therefore yields

hΓ′(d − �) = k −m.

Fix any p ∈ Γ′. Applying Lemma �.�, we �nd G ∈ Vd−� such that G(p) ≠ � and
G(q) = � for all q ≠ p in Γ′.�en L⋅G vanishes on all of Γ except at p, a contradiction.

(b) Suppose that no three points in Γ are collinear. Let p�, p�, p� be any three
points in Γ and let Γ′′ = Γ�{p�, p�, p�}. If hΓ′′∪{pi}(d−�) = k−� for some i ∈ {�, �, �},
we are done by the same argument as in (a). Otherwise, since Γ′′ ∪ {pi} cannot
contain d + � points on a line, the induction hypothesis implies k = �d + � and each
of the sets Γ′′ ∪ {pi} is contained in a conic Ci . If d = �, then Γ consists of six points
and hΓ(�) < � implies that Γ is contained in a conic, so we are done. If d � �, then Γ′′
contains at least � points, no three of which are collinear. So there can be only one
conic containing Γ′′, hence C� = C� = C�. But then this conic contains Γ, hence (ii)
holds. �is completes the proof. �
Proof of Chasles’s theorem (�.�). Let X�, X� be two cubics intersecting in exactly nine
points p�, . . . , p�. We have seen that the point evaluations µ�, . . . , µ� span a space of
dimension at most �. We must show that any eight, say µ�, . . . , µ�, span the same
space. In fact, we prove the stronger statement that µ�, . . . , µ� are linearly indepen-
dent. Applying Prop. �.� with Γ = {p�, . . . , p�}, k = �, d = �, we see that hΓ(�) < �
would imply that (i) four points in Γ lie on a line ℓ or that (ii) {p�, . . . , p�} lie on a
conic C. If (i), both X� and X� would contain ℓ, contradicting �X� ∩ X�� < ∞. If (ii)
and X� contains no component of C, then �C∩X�� � � by Bézout’s theorem (�.��), and
the same for X�. Hence C has a common component with X� and with X�. Since no
component of C can be contained in X� ∩ X�, the only possibilty le� to consider is
that C is the union of two distinct lines ℓ� and ℓ� with ℓ� ⊂ X� and ℓ� ⊂ X�. But since
ℓ� ∪ ℓ� contains Γ, this is easily seen to be impossible. �
Chasles’s theorem admits the following generalisation to curves of higher degree.

�eorem �.� (Cayley-Bacharach theorem). Let X�, X� be two curves in P� of degree
d and e, respectively, such that Γ = X� ∩ X� consists of exactly d ⋅ e points. If X is any
curve of degree d + e − � containing all but one point of Γ, then X contains Γ.
More generally, suppose that Γ is the disjoint union of two subsets Γ′ and Γ′′. �en

hΓ(m) = hΓ′(m) − hΓ′′(d + e − � −m) + �Γ′′�.
holds for any m � d + e − �. �
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To see that the more general statement about the Hilbert function implies the
�rst, let Γ′′ be a single point and put m = d + e − �. Since hΓ′′(�) = �, the equation
becomes hΓ(d + e − �) = hΓ′(d + e − �), which says exactly that any form of degree
d + e − � vanishing on Γ′ vanishes on all of Γ.

Onemight think that since we proved Prop. �.� for any number of points, at least
the �rst form of this result might follow just as easily as Chasles’s theorem. However,
upon inspection, we see that we would need de− � � �d+�e−�, which happens only
if d = e = � (or if one of d , e is at most �, but then case (ii) in Prop. �.� will not lead
to a contradiction).

A modern proof of�m. �.� uses the Riemann-Roch theorem and another fun-
damental result about plane curves known as the Brill-Noether residue theorem. (It
is worth pointing out that, with all this machinery, the proof at last becomes fairly
easy, certainly much shorter than the proof of Chasles’s theorem given above.)

Remark. �e article of Eisenbud, Green and Harris, on which our exposition is
based, presents several further generalisations of the Cayley-Bacharach theorem,
also in higher dimensions, and some open problems. It also contains many interest-
ing historic remarks. One concerns the role of the great Arthur Cayley. His contri-
bution to the ’Cayley-Bacharach theorem’ consisted in an even stronger version that
he published early in his career, which however turned out to be completely wrong
(with hindsight, in a fairly obvious way). �is shows how even great mathematicians
like Cayley, rightly famous for his numerous important contributions to algebra and
geometry, can make basic mistakes in print.

Less known is Isaak Bacharach, who �rst proved the Cayley-Bacharach theorem.
A German mathematician at the University of Erlangen, he was deported for being
Jewish by the Nazis and died at the�eresienstadt concentration camp in ����.
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In this section, we look at another very classical part of the theory of plane curves:
the topology of curves in the real projective plane.

First, we consider the situation over the complex numbers. A�ne space An =
Cn carries not only the Zariski topology but also the usual topology of R�n, which
we refer to as the strong or Euclidean topology on An. It is �ner than the Zariski
topology, i.e. it has more open and closed sets. Complex projective space Pn also
has a Euclidean topology which can be de�ned in two ways: We can de�ne it locally
and say that a set U ⊂ Pn is open if and only if U ∩ Ui is open in the a�ne space
Ui = {[Z] ∈ Pn ∶ Zi ≠ �} for all i = �, . . . , n. Or we can de�ne it on Pn as the
quotient topology obtained from the Euclidean topology on An+� via the quotient
mapAn+��{�}→ Pn. Finally, any subvarietyV ofAn orPn also carries the Euclidean
topology as the subspace topology induced on V , in which a subsetU ⊂ V is open if
and only if there exists an open subsetU ′ in the ambient space such thatU = U ′∩V .

�e Zariski topology is a very coarse topology with many irreducible subsets.
By contrast, the only irreducible sets in the Euclidean topology are single points.
In particular, an irreducible variety of positive dimension is not irreducible in the
Euclidean topology. However, it is still connected in the Euclidean topology. We will
show this in the case of curves.

�eorem �.��. Any irreducible curve over C is connected in the Euclidean topology.

Sketch of proof. Since connectedness is not a�ected by adding or deleting �nitely
many points from X, we may assume that X ⊂ Pn is smooth and projective.

Suppose that X is not connected and let X = M� ∪M� be a decomposition into
two disjoint closed subsets of X. At least one of M�, M� must be in�nite, say M�.
Also, since X is compact, it can have at most �nitely many connected components,
so we may assume that M� is connected. Let p� ∈ M� be any point. �ere exists a
non-constant rational function f ∈ C(X) de�ned on X � {p�}. �is directly follows
from Riemann’s inequality (�m. �.�) applied to L(X ,mp�) for m su�ciently large.
Hence f ∶M� → C is de�ned everywhere and continuous. Let q ∈ M� be a point where� f � attains its maximum on M�. Since f is analytic in some neighbourhood U of q
in Pn, it attains its maximum only on the boundary of U unless f is constant on U ,
by the maximum modulus principle. But q is an interior point of U , so f must be
constant on U , say f �U = α. �en the function f − α ∈ C(X) vanishes identically on
U . �is means that f − α has in�nitely many zeros on X, but is non-constant, since
it has a pole at p�. �is contradiction shows the claim. �
�e same is true in complete generality.

�eorem �.��. Any irreducible quasi-projective variety over C is connected in the Eu-
clidean topology. �

We do not give a proof here, but we mention that this can be deduced from
�m. �.�� by an induction argument on the dimension of X (see Shafarevich, Ba-
sic Algebraic Geometry II, Ch. VII, §�.�).

Over the real numbers, the situation is completely di�erent. Let F ∈ R[X ,Y , Z]
be an irreducible homogeneous polynomial of degree d and let C = V(F). We say
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that C is a real curve. It is usually not true that the set of real points

C(R) = VR(F) = {p ∈ P�(R) ∶ F(p) = �}
is connected.

Example �.��. Consider the cubic curve C = V((Y �Z − (X − Z)(X − �Z)(X − �Z)).
Looking at the a�ne part where Z = �, we see that C(R) has two connected compo-
nents. On the other hand, if C = V(Y �Z − X(X� + Z�)), then C(R) is connected.

�e question we want to answer in this section is: Howmany connected compo-
nents can a real curve of degree d in the projective plane have?

Before we discuss this, we need to know a little about the individual compo-
nents. First note that the real projective plane P�(R) is a compact two-dimensional
manifold. �e manifold structure is given by the usual a�ne cover and compactness
follows from the fact that P�(R) is a quotient of the compact set S�.

Now if C ⊂ P� is a smooth curve, then C(R) is a compact one-dimensional
submanifold (by the implicit function theorem). It therefore has �nitely many con-
nected components and each component is a compact connected one-dimensional
manifold. �ere is only one such manifold up to homeomorphism (or even di�eo-
morphism), namely S�, the circle. (If you attended my topology class last semester,
you have seen a proof of this fact.) �us all connected components of C(R) are
homeomorphic to S�. �ere is one important subtlety, however. If M ⊂ R� is an em-
bedded circle, thenR� �M has two connected components, one bounded, the other
unbounded. �is fact is known as the Jordan curve theorem.

Not so in the real projective plane: �ere are two topologically distinct embed-
dings of a circle into P�(R). Consider the ellipse C = V(X� + Y � − Z�) and a line
L = V(X). Both are smooth and the real points are non-empty and connected, so
C(R) and L(R) are both homeomorphic to S�. But the di�erence is that P��L(R) is
A�(R) = R�, while P�(R) � C(R) has two connected components, the ’outside’ and
the ’inside’ of the ellipse. (To see this, note that the lineV(Z) does notmeetC in a real
point. �us C(R) is contained in the a�ne planeU(R) = R�, whereU = P� �V(Z).
Now (C ∩U)(R) is the unit circle, de�ned by x� + y� − � = �, hence its complement
in R� has two connected components. �e bounded component, the interior of the
unit disc, is then also a component of C(R).) In other words, the topology of C(R)
and L(R) is the same, but the embedding is di�erent, because the topology of the
complement P�(R) � C(R) and P�(R) � L(R) is di�erent.
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�is leads to the following de�nition: IfM ⊂ P�(R) is homeomorphic to S�, then
M is called an oval ifP�(R) has two connected components. Otherwise,M is called a
pseudo-line. IfM is an oval, thenP�(R)�M is the union of the interior ofM, which
is homeomorphic to an open disc, and the exterior ofM, which is homeomorphic to
a Moebius strip. If L is a pseudo-line, then P�(R) �U is homeomorphic to R� (and
thus also to an open disc). �e most important di�erence for us is the following.

Lemma �.��. Let C� and C� be two real curves without common components and as-
sume that C� and C� intersect transversely.

(�) If M ⊂ C�(R) is an oval, then M∩C�(R) consists of an even number of points.
(�) If L� ⊂ C�(R) and L� ⊂ C�(R) are two pseudo-lines, then L� ∩ L� consists of

an odd number of points.
If C� and C� do not intersect transversely, the statements remain true if the intersection
points are counted with multiplicities.

Sketch of proof. We do not quite have the topological tools to give a full proof, but we
sketch the proof of the �rst statement. (�e second is somewhat more di�cult.)

Let U ,V be the components of P�(R) � M. Let N be a connected component
of C�(R). Since N is homeomorphic to S�, there is a parametrization φ∶ [�, �] →
N with φ(�) = φ(�) which is continuous and injective on [�, �). If M ∩ N = �,
there is nothing to show. So suppose M ∩ N ≠ � and let t� < � < tn ∈ [�, �) be
such that φ(t�), . . . , φ(tn) ∈ M ∩ N are all the intersection points of M and N . We
may assume that φ(�) ∉ M, so that t� > �, otherwise we reparametrize. Now since
the intersection of M and N is transversal, N has to pass from the exterior into the
interior or vice-versa in every intersection point. In other words, for each i there is
ε > � such that φ(ti − ε, ti) ⊂ U and φ(ti , ti + ε) ∈ V or the other way around. It
follows that if φ(�) ∈ U , then φ(ti , ti+�) ∈ U if i is even and φ(ti , ti+�) ∈ V if i is odd.
Now φ(�, t�), φ(tn , �) ∈ U , so n must be even, as claimed. (If M is contained in an
a�ne planeUi(R) ≅ R�, there is a simpler way of proving this; see Exercise ��.�.) �
�eorem �.��. Let C be a smooth real curve of degree d in P�. If d is even, then C(R)
is a �nite union of ovals. If C is odd, then C(R) is a �nite union of ovals and exactly
one pseudo-line.

Proof. Since any two pseudo-lines intersect, there cannot be more than one among
the connected components of C(R). �e degree coincides with the number of in-
tersection points of C with a general line. If L is a real line, the number of non-real
intersection points is even, since such points come in complex-conjugate pairs. On
the other hand, the predecing lemma implies that the number of intersection points
of L(R) and C(R) is even if and only if C(R) contains no pseudo-line. �is proves
the claim. �
�eorem �.�� (Harnack). Let C be a smooth real curve of degree d in P�. �en C(R)
has at most g + � connected components, where g = (d − �)(d − �)�� is the genus of C.
Proof. We know that lines (d = �) and conics (d = �) are connected. So we assume
d � � and suppose for the sake of contradiction thatC(R) has at least g+� connected
components. �en C(R) contains at least g + � ovals M�, . . . ,Mg+� and one more
connected component N (which may be either an oval or a pseudo-line). Since the
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space of polynomials of degree d − � in � variables has dimension �d�� = d(d − �)��,
we can pick any d(d − �)�� − � points in P� and always �nd a curve of degree d − �
passing through these points. So pick p�, . . . , pg+� with pi ∈ Mi and the remaining
d(d − �)�� − � − (g + �) = d − � points q�, . . . , qd−� on N . Now let C′ be a real curve
of degree d − � passing through all these points, then C′(R) intersects each ovalMi ,
i = �, . . . , g + � at least twice, so that we �nd a total of

d(d − �)�� − � + g + � = d(d − �) + �
intersection points of C and C′ (counted with multiplicity if the intersection is not
transversal). �is contradicts Bézout’s theorem (�m �.��), which says there can be
at most d(d − �) intersection points.

Source: [Ha], p. ���; Y is V(G) in the text. �
Remark �.��. If C is not smooth, the statement of Harnack’s theorem remains true
if we take g = (d − �)(d − �)�� to be the arithmetic genus.

Harnack’s theorem leads naturally to many further questions: First of all, is the
bound in Harnack’s theorem sharp, i.e. does there always exist a smooth curve of
degree d with the maximal number g + � of components? �e answer is yes and a
construction was already given by Harnack himself. �e construction in general is
quite involved and we do not discuss it.

Example �.��. �e �rst case which is not completely trivial is d = �: By Harnack’s
theorem, a smooth curve of degree � can have atmost � ovals. To �nd a smooth quar-
tic with � ovals, we can use the following trick: Start with two ellipses intersecting in
four real points. For example, we may take G = (X� + �Y � − Z�)(�X� +Y � − Z�). Of
course, V(G) is not smooth. But it can be smoothened out by a small perturbation:
Let H ∈ R[X ,Y , Z]� be any other quartic and consider the curve C = V(G + εH).
For general H and ε, this curve will be smooth (since the set of singular quartics, the
discriminant, is a proper subvariety of the space R[X ,Y , Z]�). On the other hand,
for ε small enough, the real picture C(R) will be ’close’ to that of the two ellipses.
�is will result in the desired curve with four ovals, as in the following picture:
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Source: [Ha], p. ���

Another question concerns the relative position of the ovals. (�e precise formu-
lation of the question is to determine the homotopy type of the embedding C(R)�
P�(R).) �is amounts to deciding what are the possible nestings of ovals.

Example �.��. Let us try to understand
this for quartics (c.f. Exercise ��.�.)
(a) Clearly, there are smooth quartics
with no real points, for example we may
take V(X� + Y� + Z�).
(b) Finding a smooth quartic with just
one oval is also easy, for example we may
take V(X� + Y� − Z�).
(c), (d) To �nd a quartic with two ovals,
we can start with two disjoint ellipses and
apply the perturbation trick above. Note
that there are two possibilities: One ellipse
can be nested inside the other, or not.
(e) A quartic with three ovals can also be
found with the perturbation trick.
(f) A quartic with four ovals was con-
structed above.
Note that if a quartic has more than two
ovals, there can be no nesting. For oth-
erwise we could �nd six collinear points
on those ovals, which is impossible for a
curve of degree �.

Source: [Ha], p. ���

In general, the question for the relative position of the ovals in any degree has
turned out to be very di�cult. It was posed by Hilbert as part of the sixteenth prob-
lem on his famous list of open mathematical problems presented at the ���� Inter-
national Congress of Mathematicians. For example, for d = � it has been shown that
for a curve with the maximal number of ovals (which is � ⋅���+ � = ��), there are only
three possible con�gurations. In general, the problem remains open.


