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9. CUBIC SURFACES

9.1. TWENTY-SEVEN LINES ON A CUBIC SURFACE

The goal of this chapter is to prove the famous "theorem of the 27 lines. Let K be a
field of characteristic different from 2 or 3.

Theorem 9.1 (Cayley-Salmon). A smooth cubic surface in P° contains exactly 27 lines.

An equivalent way of saying this is that the Fano variety of a smooth cubic surface
is 0-dimensional and of degree 27.

There is a wide variety of different proofs. The classical proof is very explicit,
relying essentially on the clever use of resultants. We will take a more modern ap-
proach using the Grassmannian and incidence correspondences. Our presentation
is based on the lecture notes of A. Gathmann (Algebraic Geometry, Kaiserslautern,
2014). The idea is simple: We start with a particular smooth cubic for which the
27 lines are easy to compute. We then use topological arguments to show that the
number of lines contained in a smooth cubic cannot change as we move about in the
set of smooth cubics. The only downside is that this argument only works over the
complex numbers. First, here is the particular example we will start from.

Theorem 9.2. The Fermat cubic in P? defined by the equation Z3 + Z; + Z3 + Z; = 0 is
smooth and contains exactly 27 lines.

Proof. Let X be the Fermat cubic. Smoothness is immediate by examining the gra-
dient. (Note that char(K) # 3.) Up to permutation of the coordinates, a line in IP? is
given by two linear equations of the form

Zo=ay2, + asZ;
Zy=byZ,+ bsZ;
for a,, as, by, by € K. Such a line is contained in X if and only if
(a7, + a3Z3)* + (b2 Z, + b3 Z3)’ + Z3 + Z3 = 0
for all Z,, Z;. Comparing coefficients shows this to be the case if and only if
a+b=-1
a+b3=-1
asa; = —b3b;
a,a3 = —b,b3.
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26 9. CUBIC SURFACES

If ay, as, by, bs are all non-zero, squaring the third equation and using the fourth
shows a3 = —b3, which contradicts the first equation. So suppose that a, = 0. Then
the equations become equivalent to

b3 =-1,b;=0and a3 = -1.
Hence we obtain 9 lines in X by choosing a primitive third root of unity w and putting
by = —wl,a; = —w" for 0 < j,k<2.

Taking all possible permutations of the coordinates, we find that there are exactly 27
lines on X, namely

Zo+ 0" Z3 =71+ w/Z,=0, 0<j, k<2
Zo+wkZ2:Z3+ij1:0, OSJ,kSZ,
2

Zo+w*Zi=Z3+ wZ,=0, 0<j,k< ]

Example 9.3. The Fermat cubic does not make for a very exciting picture, since most
of the lines it contains are not real. But it is possible for the 27 lines on a real smooth
cubic to be all real. An example of such a cubic was constructed by Clebsch in 1871,
the Clebsch diagonal surface, given by the equation

Z8+Z?+Z:2;+Z§—(Zo+Zl+Z2+Z3)3=0.

Source: K. Hulek, Elementare Algebraische Geometrie, S. 118.

It is also possible to find cubics defined over QQ for which all 27 lines are rational.
A simple description of such cubics has been given by P. Swinnerton-Dyer in an
unpublished note ("Cubic surfaces with 27 rational lines’).

To proceed with the proof of Thm. 9.1, we introduce some notation. A cubic
surface in IP? is given by a homogeneous polynomial F, = ¥, ¢, Z;° Z[" Z,* Z3®, where
the sum is taken over all & = (g, ..., a3) € Z* with 0 < a; < 3and Y3, &; = 3. The
space of cubics in four variables has dimension (323) =20, so that PK[Zy, ..., Z3]5 is
a projective space of dimension 19. Let U be the open-dense subset of smooth cubics,
the complement of the discriminant hypersurface in P¥.
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Consider the following incidence correspondence:
% = {(L, X): L is a line contained in the smooth cubic X} ¢ G(1,3) x U.

Let m: £ — U be the projection onto the second factor. We want to show that every
fibre of 7 contains exactly 27 elements.

Lemma 9.4.
(1) The incidence correspondence ¥ is a closed subvariety of G(1,3) x U.
(2) Assume K = C. For every pair (L, X) € %, there exists an open neighbourhood
V x W of (L, X) in G(1,3) x U in the Euclidean topology and a holomorphic
function V: W — V whose graph in G(1,3) x W is exactly 2 n (V x W).

Proof. The proof of (1) is similar to that of Prop. 3.10, in which we showed that the
Fano variety of a projective variety is closed. Let (L, X) € X. After a linear change of
coordinates, we may assume that L = V(Z,, Z3). Therefore, L lies in the open subset
Q c G(1,3) of lines complementary to (i.e. not coplanar with) the line V(Z,, Z;).
Such a line is given as the row span of a matrix of the form

1 0 a, djz
0 1 b, b;
with a,, as, b,, bs € K, with the origin corresponding to L. On U we use coordinates

(ca) € PY, as above. Write (a, b, ¢) = (a,, as, by, by, cy) € Q x U, then (a,b,c) € E if
and only if F.(r(1,0, ay, as) + s(0,1, by, b3)) = 0 for all r, s € K. Expanding, we find

Za Cat™s (ray + sby)*(ras + sb3)® =0 forall r,s € K.

This is a homogeneous polynomial in 7, s with coefficients in a, b, c. Let G;(a, b, ¢)
be the coefficient of r's>~%, then (a, b, ¢) € X if and only if the polynomial
23 r's>'G;(a,b,c) =0

i=0

in r, s is zero, i.e. if and only if G;(a,b,¢) =0 for i = , 3. This proves (1).

To prove (2), we find ¥ by applying the implicit functlon theorem, as cited below,
to the map G = (G, Gi, G, G3): C* x C*° - C* at some point (0,0, ¢) € . We must
show that the Jacobian ] = 0G/d(a, b) of G at (0,0, ¢) is invertible. We compute

2 (Z.ris3_iGi) (0,0,¢) = o —F.(r,s,ra; + sby, ras + sb3)(0,0,¢)
aaz ! a aj

E)Zz

The coeflicients of this polynomial in r, s form the first column of J. Similarly, we
find the other columns and obtain

[ s0.0) P 50.0) SE(s0.0) s (500)].

Thus if ] had rank less than 4, we would have a linear relation among the four columns,
i.e. a relation

(/llr+)t3s) (r 5,0,0) + (Ayr + Ays) ;C(r,s,O,O) _0
3



28 9. CUBIC SURFACES

with A;,..., A4 € C, not all zero. Factoring both summands into linear factors in r, s,

we see that 2<(r,s,0,0) and 2 (r,s,0,0) must have a common linear factor. In
2 3

other words, there is a point p = [ po, p1,0,0] € L such that

oF, oF,

- - 0.
57, P) = 57.(P)
Butsince L = V(Z,, Z3) is contained in the surface V(F., ), we have F.(Z,, Z;,0,0) = 0
and F.(Zy, Z1,0,0) = 0, thus also g;; (p) =0and g—g(p) = 0. Hence V(F.)(p) =0,
which is a contradiction, since V(F,) is assumed to be smooth. This shows that J is

invertible, so that (2) is proved. [

In topological terms, Lemma 9.4 says that the projection 7: X — U is a covering map.

The proof made use of the implicit function theorem for holomorphic maps,
which we state below. A reference is the book of Kaup and Kaup [Ka, Thm. 8.6].

Theorem 9.5 (Implicit mapping theorem). Let k,n > 1 and let ®:C"** — C" be a
map. If p € C"** is a point such that ® is holomorphic in an open neighbourhood of p,

®(p) = 0 and the matrix
0D;
[a_zi(f’)]. ]
i,j=L,...,n

......

is invertible, then there is an open neighbourhood V x W of p € C" x C* and a holo-
morphic map V: W — V with ¥ (puits-- > Purk) = (P> - - - » Pn) Such that

{(v,w) eVx W:D(v,w) = 0} =Ty = {(\I’(w),w):w € W}.

Before we can complete the proof of Thm. 9.1, we need a lemma from topology.

Lemma 9.6. If Y ¢ P" is a projective variety over C, then P" \ Y is connected in the
Euclidean topology.

Sketch of proof. Since Y is a proper closed subvariety, it has codimension at least 1 in
[P, But then the codimension in the Euclidean topology is at least 2. This implies
that the complement of Y is (path-)connected. ' ]

Proof of Thm. 9.1. We assume K = C and work in the Euclidean topology. Let X be a
smooth cubic surface and L any line. There are two possibilities.

(1) Either L c X, then Lemma 9.4 shows that there exists an open neighbour-
hood Vi x Wy of (L, X) in G(1,3) x U such that £ n (V; x Wy) is the graph of a
holomorphic function V; — W;. In particular, every cubic in W, contains exactly
one line from V;.

(2) Or L ¢ X, then since X is closed in G(1,3) x U, there is an open neighbour-
hood Vi, x Wy, of (L, X) such that no cubic in W}, contains any line from V;.

Now keep X fixed and let L vary. Since G(1, 3) is a projective variety, it is compact
in the Euclidean topology. Hence there is a finite set £ c G(1, 3) such that the open
sets {Vi:L € L} cover G(1,3). Let W = N, Wi, an open neighbourhood of X. By

"To make this whole line of reasoning at least plausible, just think of the case of finitely many
points on the projective line. In the Euclidean topology, we are dealing with points on the Riemann
sphere, so that the complement remains connected.
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construction, all cubics in W contain the same number of lines, namely the number
of L € £ such that the first case above occurs.

Thus we have shown that the function U — Z U {oo} that assigns to a cubic X
the number of lines contained in X is locally constant. Since U is connected by the
preceding lemma, the number is indeed constant on U. The example of the Fermat
cubic shows it to be equal to 27. ]

Remark 9.7. The proof of Thm. 9.1 given here only works for K = C. In fact, a
proof over C implies that the statement holds over any field of characteristic 0, by
the so-called Lefschetz principle. It is also possible to make an analogous argument
in positive characteristic, but more theory is needed to rephrase the statements about
the covering map in an algebraic way (keyword: étale morphisms).

9.2. CONFIGURATION OF THE 27 LINES - RATIONALITY AND BLOW-UPS

The 27 lines on a cubic surface are arranged in a very particular configuration.
Let us first take another look at the lines on the Fermat cubic.

Corollary 9.8. Let X be the Fermat cubic from Thm. 9.2.
(1) Given any line L in X, there are exactly 10 other lines in X that intersect L.
(2) Given any two disjoint lines Ly, L, in X, there are exactly 5 other lines in X
meeting both L, and L,.

Proof. (1) After permuting the variables and multiplying with a primitive third root
of unity w, we may assume that L is the line given by Z, + Z; = Z, + Z, = 0. Inspection
of the remaining lines shows that the 10 meeting L are exactly the ones given by

Zo+wkZ3=7Z1+wiZ, =0, (j,k)=(1,0),(2,0),(0,1),(0,2) (4lines),
Zo+wiZy=Z5+wiZ=0, 0<j<2 (3 lines),

<
Zo+wiZy=2Z3+wiZy=0, 0<j<2 (3 lines).

(2) We may again assume that L, = Z, + Z; = Z; + Z, = 0. Using (1), we can com-
pare the lists of 10 lines meeting one of L;, L, and find the ones that meet both. For
instance, for L, = Zy + wZ3 = Z, + wZ, = 0, we find the five lines

Zo+Z3=ZI+(DZz:O

Zo+(A)Z3=Zl+ZZ=O

Zo+21:Z3+22:0

Zo+CUZl=Z3+wZZ=0

ZO + (UZZI = Z3 + CL)ZZz =0. ]
Theorem 9.9. The statements (1) and (2) in Cor. 9.8 hold for any smooth cubic surface.

This can be proved via a refinement of the argument we used to prove the The-
orem of the 27 lines, by considering an incidence correspondence of a cubic and up
to three lines. Alternatively, it can be shown directly, as part of a more of explicit
proof of the theorem. To give the spirit, let us prove the first statement. We follow
the exposition in the book of Hulek [Hu].
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Sketch of Proof of Thm. 9.9(1). Let X be a smooth cubic surface in P? and let L be a
line on X. Let H be any plane containing L. Then X n H will decompose into L and
a conic Q. We wish to show that there are exactly five planes H for which Q factors
into two distinct lines. (‘This will in fact prove a slightly stronger statement than (1),
namely that the lines meeting L come in 5 coplanar pairs.)

First, it is not hard to show that Q can never be a double line, since X is smooth.
So we only need to worry about whether or not Q is irreducible. After a change of
coordinates, we may assume that L is the line given by Z, = Z; = 0. If X = V(G) with
G € K[X,Y,Z];, then L c X implies that G is of the form

G= AZ(Z) +BZOZI + CZIZ +DZ() +EZI +F

with A, B, C, D, E, F € K[ Z,, Z;] homogeneous, where A, B and C are of degree 1, D
and E of degree 2 and F of degree 3. The planes containing L are exactly the planes
H),, definedby AZ; - uZ, = 0, [A, u] € PL. Suppose u # 0, then we may assume y =1,
so that H, ; is given by Z, = 1Z;. Substituting into G gives

Glu,, = Z3Q(Zo, Z1, Z3)
where
Q= AZ2+BZyZy+ CZ2 + DZyZs + EZZ5 + FZ2,
A=A(M1),B=B(11),C=C(A,1),D = D(A,1),E = E(A,1), F = F(A,1).

Hence Q defines a singular conic if and only if the determinant

A 1B 1D .
det| 3B C E|=ACF+(BDE-CD’ - AE* - BF)
D IE F

is zero. Allowing for the case y = 0, A = 1, which is analogoues, we see that the values
of the parameter [A, u] € P! for which X n H, , factors into three lines are exactly the
zeros of the homogeneous polynomial

1
A(Z,,Z3) = ACF + Z(BD_E - CD? - AE* - B*F).

Since A has degree 5, the claim is almost proved. Note that A cannot be the zero
polynomial, since that would mean that X contains infinitely many lines. What re-
mains show is that the roots of A are distinct. This can be checked directly. We refer
to Hulek [Hu] for this last part of the argument. |

Remark 9.10. Further statements about the configuration are possible. The full truth
consists of information about all the pairwise intersections and about which triples
of lines are coplanar. Again, all this information is independent of the chosen cubic.
The intersection of the lines can also be understood as a graph with 27 vertices
with an edge if and only if the two corresponding lines intersect. The complementary
graph, in which there is an edge if and only if the corresponding lines are skew, is
called the Schlifli graph (see Fig. 1), named after the Swiss mathematician Ludwig
Schlafli. It has very particular combinatorial properties studied in graph theory.
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F1GURE 1. The Schlifli graph

Source: Wikimedia Commons (Claudio Rocchini)

We now apply some of our knowledge about the configuration of lines to improve
our understanding of the geometry of the smooth cubic surface.

Proposition 9.11. Any smooth cubic surface is rational.

Proof. Let X be a smooth cubic surface in P°. By Thm. 9.9, there are two disjoint
lines L, L, c X. We show that X is birational to L, x L, = P, x P, (which in turn is
rational because it contains an open dense copy of A?).

Given any point p € P?, p ¢ L; U L,, there is a unique line through p intersecting
both L, and L, (see Exercise 13.1). Denote thisline by L, and let ¢: X - -» L;xL, be the
map that sends p to the pair (L;nL,, L,NL,). Itis easy to check that ¢ is a morphism?
on X \ (LU L,). The inverse of ¢ is the rational map taking (g, q2) € L; x L, to the
intersection point of the line g;gq; with X \ (L; U L,). Thus this is defined whenever
1> 42 is not one of the 27 lines contained in X. |

Remark 9.12. This result is in contrast with the case of curves: A smooth cubic in P?
is not rational. By a famous result of Clemens and Griffiths already mentioned earlier,
a general cubic threefold in [P is not rational. Whether a general cubic hypersurface
in P is rational is an open question. On the other hand, any cubic hypersurface
X c IP" with n > 3 is unirational, i.e. there exists a dominant rational map P"! - X
(see [Ha], Prop. 18.20 for the case n = 4).

The construction in the proof of Prop. 9.11 shows much more than just rationality.

2For example, we may change coordinates on P in such a way that L, = V(Zy,Z,), L, =
V(Z»,Z5). Then ¢ is just the map [Z] ~ ([Z2, Z5], [ Zo, Z1]).



32 9. CUBIC SURFACES

Theorem 9.13. A smooth cubic surface in IP? is isomorphic to the blow-up of P? in six
suitably chosen points.

Sketch of proof. Let X be a smooth cubic surface in P*> and L;, L, two disjoint lines in
X;let : X --» Ly x L, = P! x P! be the birational map constructed in the proof of the
previous proposition. The first claim is that ¢ is in fact a morphism. In other words,
we claim that the morphism ¢ defined on X \ (L, U L,) extends to all of X. To see
this, we use a different description of ¢. Given p € X, p ¢ L;, let H, be the plane in
IP? spanned by L; and p and put ¢,(p) = H, n L,. (Note that L, cannot be contained
in H since it does not intersect L;). Define ¢,(p) for p € X \ L, in the analogous
fashion. Then clearly ¢(p) = (¢1(p), ¢(p)) forall p e X \ (L, U L,). Now if p € Ly,
let H, be the tangent plane T, X and again set ¢,(p) = H, N L,. Extending ¢, in the
same way, we see that ¢ is indeed a morphism.

As noted in the proof of Prop. 9.11, the inverse map ¢! is undefined in any point
(q1> q2) € Ly x L, for which the line g;q; is contained in X. For in this case, the whole
line g1, q; is mapped to (g;,¢q2) under ¢. By Thm. 9.9, there are exactly five such
lines. It can now be checked that ¢: X — P! x P! is indeed the blow-up of P! x P! in
the five points to which the five lines are contracted under ¢.

As shown in §5, the blow-up of P! x P! in a point is isomorphic to the blow-up of
P2 in two points. It follows that the blow-up of P! x P! in five points is isomorphic to
the blow-up of IP? in six points. ]

Remark 9.14. There is a different, perhaps more suggestive way to look at the iso-
morphism between a smooth cubic surface and the blow-up of six points in [P2. Let
I = {p1,..., ps} be six points in P? in general position, by which we mean that no
three are collinear and not all six lie on a conic. The space of cubics I(T'); vanishing
on I' has dimension 10 — 6 = 4 (equivalently hr(3) = 6). Let F,...,F; € I(I'); be a
basis and consider the rational map

o P2 - P3

' { (2] = [F(2),R(2),R(Z2),F(2)]

It is defined exactly on P2 \ T. In fact, Fy, ..., F; generate the ideal I(T), so that the
graph of @ is preciselyy the blow-up of P2 in I'. The projection of this graph onto [P?
is an isomorphism and the image is a smooth cubic hypersurface. This is somewhat
analogous to the example of the projection of the quadric surface in P? studied in §s,
but it is a bit harder to proof. One can show further that every smooth cubic surface
arises in this way, which also shows again that all smooth cubic surfaces are rational.

The realization of a smooth cubic surface as the blow-up of six points in P? also
gives an alternative description of the 27 lines and their configuration. These are

o The six exceptional lines of the blow-up.

o The strict transforms of the 15 = (g) lines passing through two of the six points.

o Thestrict transforms of the 6 = (g) conics passing through five of the six points.

It can be checked explicitly that these lines and conics indeed correspond to lines
in the blow-up.



