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� .� . T�����-����� ����� �� � ����� �������

�e goal of this chapter is to prove the famous ’theorem of the �� lines’. Let K be a
�eld of characteristic di�erent from � or �.

�eorem �.� (Cayley-Salmon). A smooth cubic surface in P� contains exactly �� lines.

An equivalent way of saying this is that the Fano variety of a smooth cubic surface
is �-dimensional and of degree ��.

�ere is a wide variety of di�erent proofs. �e classical proof is very explicit,
relying essentially on the clever use of resultants. We will take a more modern ap-
proach using the Grassmannian and incidence correspondences. Our presentation
is based on the lecture notes of A. Gathmann (Algebraic Geometry, Kaiserslautern,
����). �e idea is simple: We start with a particular smooth cubic for which the
�� lines are easy to compute. We then use topological arguments to show that the
number of lines contained in a smooth cubic cannot change as we move about in the
set of smooth cubics. �e only downside is that this argument only works over the
complex numbers. First, here is the particular example we will start from.

�eorem �.�. �e Fermat cubic in P� de�ned by the equation Z�
� + Z�

� + Z�
� + Z�

� = � is
smooth and contains exactly �� lines.

Proof. Let X be the Fermat cubic. Smoothness is immediate by examining the gra-
dient. (Note that char(K) ≠ �.) Up to permutation of the coordinates, a line in P� is
given by two linear equations of the form

Z� = a�Z� + a�Z�

Z� = b�Z� + b�Z�

for a�, a�, b�, b� ∈ K. Such a line is contained in X if and only if(a�Z� + a�Z�)� + (b�Z� + b�Z�)� + Z�
� + Z�

� = �

for all Z�, Z�. Comparing coe�cients shows this to be the case if and only if

a�
� + b�

� = −�
a�
� + b�

� = −�
a�
�a� = −b�

�b�

a�a�
� = −b�b�

� .

��
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If a�, a�, b�, b� are all non-zero, squaring the third equation and using the fourth
shows a�

� = −b�
�, which contradicts the �rst equation. So suppose that a� = �. �en

the equations become equivalent to

b�
� = −�, b� = � and a�

� = −�.

Hence we obtain � lines in X by choosing a primitive third root of unity ω and putting

b� = −ω j, a� = −ωk for � � j, k � �.

Taking all possible permutations of the coordinates, we �nd that there are exactly ��
lines on X, namely

Z� + ωkZ� = Z� + ω jZ� = �, � � j, k � �,

Z� + ωkZ� = Z� + ω jZ� = �, � � j, k � �,

Z� + ωkZ� = Z� + ω jZ� = �, � � j, k � �. �
Example �.�. �e Fermat cubic does not make for a very exciting picture, since most
of the lines it contains are not real. But it is possible for the �� lines on a real smooth
cubic to be all real. An example of such a cubic was constructed by Clebsch in ����,
the Clebsch diagonal surface, given by the equation

Z�
� + Z�

� + Z�
� + Z�

� − (Z� + Z� + Z� + Z�)� = �.

Kapitel 5

Kubische Flächen

In diesem Kapitel wollen wir zeigen, dass jede glatte Kubik in P3
k genau 27 Gera-

den enthält. Im ersten Abschnitt zeigen wir, dass eine kubische Fläche überhaupt
Geraden enthält, und im zweiten Abschnitt werden wir ihre Anzahl und Konfi-
guration bestimmen. Dies ist ein klassisches Thema der algebraischen Geometrie,
dessen Geschichte bis in das 19. Jahrhundert zurückreicht. Für eine ausführliche
klassische Darstellung sei der Leser etwa auf das Buch von A. Henderson [He]
verwiesen. Ein Beispiel ist die Clebsche Diagonalkubik (siehe Aufgabe (5.3)), für
die alle 27 Geraden auf das reelle Modell der Fläche gezeichnet werden können
(siehe Bild 1). Dieses Kapitel folgt [R2, §7]. Auch hier setzen wir char k �= 2, 3
voraus.

Bild 1: Die Clebsche Diagonalkubik mit 27 Geraden (erstellt mit Hilfe des Pro-
gramms

”
Surf“ von S. Endrass [En])

K. Hulek, Elementare Algebraische Geometrie, DOI 10.1007/978-3-8348-2348-9_6,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 2000, 2012

Source: K. Hulek, Elementare Algebraische Geometrie, S. ���.

It is also possible to �nd cubics de�ned over Q for which all �� lines are rational.
A simple description of such cubics has been given by P. Swinnerton-Dyer in an
unpublished note (’Cubic surfaces with �� rational lines’).

To proceed with the proof of �m. �.�, we introduce some notation. A cubic
surface in P� is given by a homogeneous polynomial Fc = ∑α cαZα�

� Zα�
� Zα�

� Zα�
� , where

the sum is taken over all α = (α�, . . . , α�) ∈ Z� with � � αi � � and ∑�
i=� αi = �. �e

space of cubics in four variables has dimension ��+�� � = ��, so that PK[Z�, . . . , Z�]� is
a projective space of dimension ��. Let U be the open-dense subset of smooth cubics,
the complement of the discriminant hypersurface in P��.
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Consider the following incidence correspondence:

Σ = �(L, X)∶ L is a line contained in the smooth cubic X� ⊂ G(�, �) ×U .

Let π∶Σ → U be the projection onto the second factor. We want to show that every
�bre of π contains exactly �� elements.

Lemma �.�.
(�) �e incidence correspondence Σ is a closed subvariety of G(�, �) ×U.
(�) Assume K = C. For every pair (L, X) ∈ Σ, there exists an open neighbourhood

V ×W of (L, X) in G(�, �)×U in the Euclidean topology and a holomorphic
function Ψ∶W → V whose graph in G(�, �) ×W is exactly Σ ∩ (V ×W).

Proof. �e proof of (�) is similar to that of Prop. �.��, in which we showed that the
Fano variety of a projective variety is closed. Let (L, X) ∈ Σ. A�er a linear change of
coordinates, we may assume that L = V(Z�, Z�). �erefore, L lies in the open subset
Ω ⊂ G(�, �) of lines complementary to (i.e. not coplanar with) the line V(Z�, Z�).
Such a line is given as the row span of a matrix of the form

�� � a� a�

� � b� b�
�

with a�, a�, b�, b� ∈ K, with the origin corresponding to L. On U we use coordinates(cα) ∈ P��, as above. Write (a, b, c) = (a�, a�, b�, b�, cα) ∈ Ω ×U , then (a, b, c) ∈ Σ if
and only if Fc(r(�, �, a�, a�) + s(�, �, b�, b�)) = � for all r, s ∈ K. Expanding, we �nd

�α cαrα� sα�(ra� + sb�)α�(ra� + sb�)α� = � for all r, s ∈ K .

�is is a homogeneous polynomial in r, s with coe�cients in a, b, c. Let Gi(a, b, c)
be the coe�cient of r is�−i , then (a, b, c) ∈ Σ if and only if the polynomial

��
i=� r is�−iGi(a, b, c) = �

in r, s is zero, i.e. if and only if Gi(a, b, c) = � for i = �, . . . , �. �is proves (�).
To prove (�), we �nd Ψ by applying the implicit function theorem, as cited below,

to the map G = (G�, G�, G�, G�)∶C� ×C�� → C� at some point (�, �, c) ∈ Σ. We must
show that the Jacobian J = ∂G�∂(a, b) of G at (�, �, c) is invertible. We compute

∂
∂a�
��i r is�−iGi� (�, �, c) = ∂

∂a�
Fc(r, s, ra� + sb�, ra� + sb�)(�, �, c)

= r ∂Fc

∂Z�
(r, s, �, �).

�e coe�cients of this polynomial in r, s form the �rst column of J. Similarly, we
�nd the other columns and obtain

J = �r ∂Fc
∂Z�
(r, s, �, �) r ∂Fc

∂Z�
(r, s, �, �) s ∂Fc

∂Z�
(r, s, �, �) s ∂Fc

∂Z�
(r, s, �, �)� .

�us if J had rank less than �, we would have a linear relation among the four columns,
i.e. a relation

(λ�r + λ�s) ∂Fc

∂Z�
(r, s, �, �) + (λ�r + λ�s) ∂Fc

∂Z�
(r, s, �, �) = �
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with λ�, . . . , λ� ∈ C, not all zero. Factoring both summands into linear factors in r, s,
we see that ∂Fc

∂Z�
(r, s, �, �) and ∂Fc

∂Z�
(r, s, �, �) must have a common linear factor. In

other words, there is a point p = [p�, p�, �, �] ∈ L such that
∂Fc

∂Z�
(p) = ∂Fc

∂Z�
(p) = �.

But since L = V(Z�, Z�) is contained in the surfaceV(Fc), we have Fc(Z�, Z�, �, �) = �
and Fc(Z�, Z�, �, �) = �, thus also ∂Fc

∂Z�
(p) = � and ∂Fc

∂Z�
(p) = �. Hence ∇(Fc)(p) = �,

which is a contradiction, since V(Fc) is assumed to be smooth. �is shows that J is
invertible, so that (�) is proved. �
In topological terms, Lemma �.� says that the projection π∶Σ → U is a covering map.

�e proof made use of the implicit function theorem for holomorphic maps,
which we state below. A reference is the book of Kaup and Kaup [Ka, �m. �.�].

�eorem �.� (Implicit mapping theorem). Let k, n � � and let Φ∶Cn+k → Cn be a
map. If p ∈ Cn+k is a point such that Φ is holomorphic in an open neighbourhood of p,
Φ(p) = � and the matrix �∂Φ j

∂zi
(p)�

i , j=�,...,n
is invertible, then there is an open neighbourhood V ×W of p ∈ Cn ×Ck and a holo-
morphic map Ψ∶W → V with Ψ(pn+�, . . . , pn+k) = (p�, . . . , pn) such that�(v , w) ∈ V ×W ∶Φ(v , w) = �� = ΓΨ = �(Ψ(w), w)∶w ∈W�.
Before we can complete the proof of �m. �.�, we need a lemma from topology.

Lemma �.�. If Y � Pn is a projective variety over C, then Pn � Y is connected in the
Euclidean topology.

Sketch of proof. Since Y is a proper closed subvariety, it has codimension at least � in
Pn. But then the codimension in the Euclidean topology is at least �. �is implies
that the complement of Y is (path-)connected. � �
Proof of �m. �.�. We assume K = C and work in the Euclidean topology. Let X be a
smooth cubic surface and L any line. �ere are two possibilities.

(�) Either L ⊂ X, then Lemma �.� shows that there exists an open neighbour-
hood VL ×WL of (L, X) in G(�, �) × U such that Σ ∩ (VL ×WL) is the graph of a
holomorphic function VL → WL. In particular, every cubic in WL contains exactly
one line from VL.

(�) Or L ⊄ X, then since Σ is closed in G(�, �) ×U , there is an open neighbour-
hood VL ×WL of (L, X) such that no cubic in WL contains any line from VL.

Now keep X �xed and let L vary. Since G(�, �) is a projective variety, it is compact
in the Euclidean topology. Hence there is a �nite set L ⊂ G(�, �) such that the open
sets {VL∶ L ∈ L} cover G(�, �). Let W = �L∈LWL, an open neighbourhood of X. By

�To make this whole line of reasoning at least plausible, just think of the case of �nitely many
points on the projective line. In the Euclidean topology, we are dealing with points on the Riemann
sphere, so that the complement remains connected.
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construction, all cubics in W contain the same number of lines, namely the number
of L ∈ L such that the �rst case above occurs.

�us we have shown that the function U → Z ∪ {∞} that assigns to a cubic X
the number of lines contained in X is locally constant. Since U is connected by the
preceding lemma, the number is indeed constant on U . �e example of the Fermat
cubic shows it to be equal to ��. �
Remark �.�. �e proof of �m. �.� given here only works for K = C. In fact, a
proof over C implies that the statement holds over any �eld of characteristic �, by
the so-called Lefschetz principle. It is also possible to make an analogous argument
in positive characteristic, but more theory is needed to rephrase the statements about
the covering map in an algebraic way (keyword: étale morphisms).

� .� . C������������ �� ��� �� ����� - ����������� ��� ����-���

�e �� lines on a cubic surface are arranged in a very particular con�guration.
Let us �rst take another look at the lines on the Fermat cubic.

Corollary �.�. Let X be the Fermat cubic from �m. �.�.
(�) Given any line L in X, there are exactly �� other lines in X that intersect L.
(�) Given any two disjoint lines L�, L� in X, there are exactly � other lines in X

meeting both L� and L�.

Proof. (�) A�er permuting the variables and multiplying with a primitive third root
of unity ω, we may assume that L is the line given by Z�+Z� = Z�+Z� = �. Inspection
of the remaining lines shows that the �� meeting L are exactly the ones given by

Z� + ωkZ� = Z� + ω jZ� = �, ( j, k) = (�, �), (�, �), (�, �), (�, �) (� lines),
Z� + ω jZ� = Z� + ω jZ� = �, � � j � � (� lines),
Z� + ω jZ� = Z� + ω jZ� = �, � � j � � (� lines).

(�) We may again assume that L� = Z� + Z� = Z� + Z� = �. Using (�), we can com-
pare the lists of �� lines meeting one of L�, L� and �nd the ones that meet both. For
instance, for L� = Z� + ωZ� = Z� + ωZ� = �, we �nd the �ve lines

Z� + Z� = Z� + ωZ� = �
Z� + ωZ� = Z� + Z� = �
Z� + Z� = Z� + Z� = �
Z� + ωZ� = Z� + ωZ� = �
Z� + ω�Z� = Z� + ω�Z� = �. �

�eorem �.�. �e statements (�) and (�) in Cor. �.� hold for any smooth cubic surface.

�is can be proved via a re�nement of the argument we used to prove the �e-
orem of the �� lines, by considering an incidence correspondence of a cubic and up
to three lines. Alternatively, it can be shown directly, as part of a more of explicit
proof of the theorem. To give the spirit, let us prove the �rst statement. We follow
the exposition in the book of Hulek [Hu].
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Sketch of Proof of �m. �.�(�). Let X be a smooth cubic surface in P� and let L be a
line on X. Let H be any plane containing L. �en X ∩H will decompose into L and
a conic Q. We wish to show that there are exactly �ve planes H for which Q factors
into two distinct lines. (�is will in fact prove a slightly stronger statement than (�),
namely that the lines meeting L come in � coplanar pairs.)

First, it is not hard to show that Q can never be a double line, since X is smooth.
So we only need to worry about whether or not Q is irreducible. A�er a change of
coordinates, we may assume that L is the line given by Z� = Z� = �. If X = V(G)with
G ∈ K[X , Y , Z]�, then L ⊂ X implies that G is of the form

G = AZ�
� + BZ�Z� + CZ�

� + DZ� + EZ� + F

with A, B, C , D, E , F ∈ K[Z�, Z�] homogeneous, where A, B and C are of degree �, D
and E of degree � and F of degree �. �e planes containing L are exactly the planes
Hλ,µ de�ned by λZ�−µZ� = �, [λ, µ] ∈ P�. Suppose µ ≠ �, then we may assume µ = �,
so that Hλ,� is given by Z� = λZ�. Substituting into G gives

G�Hλ ,� = Z�Q(Z�, Z�, Z�)
where

Q = ÃZ�
� + B̃Z�Z� + C̃Z�

� + D̃Z�Z� + ẼZ�Z� + F̃Z�
� ,

Ã = A(λ, �), B̃ = B(λ, �), C̃ = C(λ, �), D̃ = D(λ, �), Ẽ = E(λ, �), F̃ = F(λ, �).
Hence Q de�nes a singular conic if and only if the determinant

det
�������

Ã �
� B̃ �

� D̃
�
� B̃ C̃ �

� Ẽ
�
� D̃ �

� Ẽ F̃

������� = ÃC̃F̃ + �
�
�B̃D̃Ẽ − C̃D̃� − ÃẼ� − B̃�F̃�

is zero. Allowing for the case µ = �, λ = �, which is analogoues, we see that the values
of the parameter [λ, µ] ∈ P� for which X∩Hλ,µ factors into three lines are exactly the
zeros of the homogeneous polynomial

∆(Z�, Z�) = ACF + �
�
�BDE − CD� − AE� − B�F�.

Since ∆ has degree �, the claim is almost proved. Note that ∆ cannot be the zero
polynomial, since that would mean that X contains in�nitely many lines. What re-
mains show is that the roots of ∆ are distinct. �is can be checked directly. We refer
to Hulek [Hu] for this last part of the argument. �
Remark �.��. Further statements about the con�guration are possible. �e full truth
consists of information about all the pairwise intersections and about which triples
of lines are coplanar. Again, all this information is independent of the chosen cubic.

�e intersection of the lines can also be understood as a graph with �� vertices
with an edge if and only if the two corresponding lines intersect. �e complementary
graph, in which there is an edge if and only if the corresponding lines are skew, is
called the Schlä�i graph (see Fig. �), named a�er the Swiss mathematician Ludwig
Schlä�i. It has very particular combinatorial properties studied in graph theory.
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F����� �. �e Schlä�i graph
Source: Wikimedia Commons (Claudio Rocchini)

We now apply some of our knowledge about the con�guration of lines to improve
our understanding of the geometry of the smooth cubic surface.

Proposition �.��. Any smooth cubic surface is rational.

Proof. Let X be a smooth cubic surface in P�. By �m. �.�, there are two disjoint
lines L�, L� ⊂ X. We show that X is birational to L� × L� ≅ P� × P� (which in turn is
rational because it contains an open dense copy of A�).

Given any point p ∈ P�, p ∉ L� ∪ L�, there is a unique line through p intersecting
both L� and L� (see Exercise ��.�). Denote this line by Lp and let φ∶X �→ L�×L� be the
map that sends p to the pair (L�∩Lp, L�∩Lp). It is easy to check that φ is a morphism�

on X � (L� ∪ L�). �e inverse of φ is the rational map taking (q�, q�) ∈ L� × L� to the
intersection point of the line q�q� with X � (L� ∪ L�). �us this is de�ned whenever
q�, q� is not one of the �� lines contained in X. �
Remark �.��. �is result is in contrast with the case of curves: A smooth cubic in P�

is not rational. By a famous result of Clemens and Gri�ths already mentioned earlier,
a general cubic threefold in P� is not rational. Whether a general cubic hypersurface
in P� is rational is an open question. On the other hand, any cubic hypersurface
X ⊂ Pn with n � � is unirational, i.e. there exists a dominant rational map Pn−� → X
(see [Ha], Prop. ��.�� for the case n = �).

�e construction in the proof of Prop. �.�� shows much more than just rationality.
�For example, we may change coordinates on P� in such a way that L� = V(Z� , Z�), L� =V(Z� , Z�). �en φ is just the map [Z]� �[Z� , Z�], [Z� , Z�]�.
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�eorem �.��. A smooth cubic surface in P� is isomorphic to the blow-up of P� in six
suitably chosen points.

Sketch of proof. Let X be a smooth cubic surface in P� and L�, L� two disjoint lines in
X; let φ∶X �→ L�×L� ≅ P�×P� be the birational map constructed in the proof of the
previous proposition. �e �rst claim is that φ is in fact a morphism. In other words,
we claim that the morphism φ de�ned on X � (L� ∪ L�) extends to all of X. To see
this, we use a di�erent description of φ. Given p ∈ X, p ∉ L�, let Hp be the plane in
P� spanned by L� and p and put φ�(p) = Hp ∩ L�. (Note that L� cannot be contained
in H since it does not intersect L�). De�ne φ�(p) for p ∈ X � L� in the analogous
fashion. �en clearly φ(p) = (φ�(p), φ(p)) for all p ∈ X � (L� ∪ L�). Now if p ∈ L�,
let Hp be the tangent plane TpX and again set φ�(p) = Hp ∩ L�. Extending φ� in the
same way, we see that φ is indeed a morphism.

As noted in the proof of Prop. �.��, the inverse map φ−� is unde�ned in any point(q�, q�) ∈ L�×L� for which the line q�q� is contained in X. For in this case, the whole
line q�, q� is mapped to (q�, q�) under φ. By �m. �.�, there are exactly �ve such
lines. It can now be checked that φ∶X → P� × P� is indeed the blow-up of P� × P� in
the �ve points to which the �ve lines are contracted under φ.

As shown in §�, the blow-up of P� ×P� in a point is isomorphic to the blow-up of
P� in two points. It follows that the blow-up of P� ×P� in �ve points is isomorphic to
the blow-up of P� in six points. �
Remark �.��. �ere is a di�erent, perhaps more suggestive way to look at the iso-
morphism between a smooth cubic surface and the blow-up of six points in P�. Let
Γ = {p�, . . . , p�} be six points in P� in general position, by which we mean that no
three are collinear and not all six lie on a conic. �e space of cubics I(Γ)� vanishing
on Γ has dimension �� − � = � (equivalently hΓ(�) = �). Let F�, . . . , F� ∈ I(Γ)� be a
basis and consider the rational map

Φ∶� P� �→ P�[Z] � [F�(Z), F�(Z), F�(Z), F�(Z)] .

It is de�ned exactly on P� � Γ. In fact, F�, . . . , F� generate the ideal I(Γ), so that the
graph of Φ is preciselyy the blow-up of P� in Γ. �e projection of this graph onto P�

is an isomorphism and the image is a smooth cubic hypersurface. �is is somewhat
analogous to the example of the projection of the quadric surface in P� studied in §�,
but it is a bit harder to proof. One can show further that every smooth cubic surface
arises in this way, which also shows again that all smooth cubic surfaces are rational.

�e realization of a smooth cubic surface as the blow-up of six points in P� also
gives an alternative description of the �� lines and their con�guration. �ese are○ �e six exceptional lines of the blow-up.○ �e strict transforms of the �� = ���� lines passing through two of the six points.○ �e strict transforms of the � = ���� conics passing through �ve of the six points.

It can be checked explicitly that these lines and conics indeed correspond to lines
in the blow-up.


