CLASSICAL ALGEBRAIC GEOMETRY

Daniel Plaumann Universität Konstanz Summer 2015

A brief inaccurate history of algebraic geometry

1800 - 1880	Projective geometry. Emergence of 'analytic' geometry with cartesian coordinates, as opposed to 'synthetic' (axiomatic) geometry in the style of Euclid. (<i>Celebrities:</i> Plücker, Hesse, Cayley)				
1820 - 1920	Complex analytic geometry. Powerful new tools for the study of geometric problems over \mathbb{C} . (<i>Celebrities:</i> Abel, Jacobi, Riemann)				
1880 - 1940	Classical school. Perfected the use of existing tools without any 'dog- matic' approach. (<i>Celebrities:</i> Castelnuovo, Segre, Severi, M. Noether)				
1920 - 1950	Algebraization. Development of modern algebraic foundations ('com- mutative ring theory') for algebraic geometry. (<i>Celebrities:</i> Hilbert, E. Noether, Zariski)				
from 1950	Modern algebraic geometry. All-encompassing abstract frameworks (schemes, stacks), greatly widening the scope of algebraic geometry. (<i>Celebrities:</i> Weil, Serre, Grothendieck, Deligne, Mumford)				
from 1990	Computational algebraic geometry Symbolic computation and dis- crete methods, many new applications. (<i>Celebrities:</i> Buchberger)				

Literature

Primary source

[Ha] J. Harris, *Algebraic Geometry: A first course*. Springer GTM 133 (1992)

Classical algebraic geometry

- [BCGB] M. C. Beltrametti, E. Carletti, D. Gallarati, G. Monti Bragadin. *Lectures on Curves, Surfaces and Projective Varieties. A classical view of algebraic geometry*. EMS Textbooks (translated from Italian) (2003)
- [Do] I. Dolgachev. *Classical Algebraic Geometry*. *A modern view*. Cambridge UP (2012)

Algorithmic algebraic geometry

- [CLO] D. Cox, J. Little, D. O'Shea. *Ideals, Varieties, and Algorithms*. Springer UTM (1992)
- [EGSS] D. Eisenbud, D. R. Grayson, M. Stillman, B. Sturmfels. *Computations in Algebraic Geometry with Macaulay* 2. Springer (2002).

'Big books'

- [GH] P. Griffiths, J. Harris. *Principles of Algebraic Geometry*. John Wiley & Sons (1978)
- [Hs] R. Hartshorne. *Algebraic Geometry*. Springer GTM 52 (1977)
- [Sh] I. Shafarevich. *Basic Algebraic Geometry I: Varieties in projective space*. Springer (translated from Russian) (1974)

§1 Projective Varieties

Affine varieties

Kalgebraically closed field $\mathbb{A}^n = K^n$ affine space

 $V \subset \mathbb{A}^n$ is an **affine variety** if there is a set of polynomials $M \subset K[x_1, \ldots, x_n]$ such that

$$V = \mathcal{V}(M) = \{ p \in \mathbb{A}^n : f(p) = 0 \text{ for all } f \in M \}.$$

Affine varieties

K algebraically closed field $\mathbb{A}^n = K^n$ affine space

 $V \subset \mathbb{A}^n$ is an **affine variety** if there is a set of polynomials $M \subset K[x_1, \ldots, x_n]$ such that

$$V = \mathcal{V}(M) = \{ p \in \mathbb{A}^n : f(p) = 0 \text{ for all } f \in M \}.$$

If *I* is the **ideal** generated by *M*, then $\mathcal{V}(M) = \mathcal{V}(I)$. By the **Hilbert Basis Theorem**, there is a **finite** subset $M' \subset M$ that also generates *I*, so in particular $\mathcal{V}(M') = \mathcal{V}(M)$.

Affine varieties

Kalgebraically closed field $\mathbb{A}^n = K^n$ affine space

 $V \subset \mathbb{A}^n$ is an **affine variety** if there is a set of polynomials $M \subset K[x_1, \ldots, x_n]$ such that

$$V = \mathcal{V}(M) = \{ p \in \mathbb{A}^n : f(p) = 0 \text{ for all } f \in M \}.$$

If *I* is the **ideal** generated by *M*, then $\mathcal{V}(M) = \mathcal{V}(I)$. By the **Hilbert Basis Theorem**, there is a **finite** subset $M' \subset M$ that also generates *I*, so in particular $\mathcal{V}(M') = \mathcal{V}(M)$.

If *I* and *J* are two ideals in $K[x_1, \ldots, x_n]$, then

```
V(I) \cup V(J) = V(IJ) = \mathcal{V}(I \cap J)V(I) \cap V(J) = V(I+J)
```

where IJ is the ideal generated by all products $fg, f \in I, g \in J$.

Projective space

Let V be a K-vector space.

 $\mathbb{P}(V) = \{ \text{one-dimensional subspaces of } V \}, \text{ the projective space of } V \\ \mathbb{P}^n = \mathbb{P}K^{n+1} = \left(K^{n+1} \smallsetminus \{0\} \right) / \sim \\ \text{ where } v \sim w \iff \exists \lambda \in K^{\times} : v = \lambda w.$

Projective space

Let V be a K-vector space.

$$\mathbb{P}(V) = \{\text{one-dimensional subspaces of } V\}, \text{ the projective space of } V$$
$$\mathbb{P}^n = \mathbb{P}K^{n+1} = \left(K^{n+1} \smallsetminus \{0\}\right) / \sim$$
where $v \sim w \iff \exists \lambda \in K^{\times} : v = \lambda w.$

Points of \mathbb{P}^n are denoted in **homogeneous coordinates** $[Z_0, \ldots, Z_n]$ where

$$[Z_0,\ldots,Z_n] = [\lambda Z_0,\ldots,\lambda Z_n]$$
 for $\lambda \in K^{\times}$.

Projective space

Let V be a K-vector space.

 $\mathbb{P}(V) = \{\text{one-dimensional subspaces of } V\}, \text{ the projective space of } V$ $\mathbb{P}^n = \mathbb{P}K^{n+1} = \left(K^{n+1} \setminus \{0\}\right) / \sim$ where $v \sim w \iff \exists \lambda \in K^{\times} : v = \lambda w.$

Points of \mathbb{P}^n are denoted in **homogeneous coordinates** $[Z_0, \ldots, Z_n]$ where

$$[Z_0,\ldots,Z_n] = [\lambda Z_0,\ldots,\lambda Z_n]$$
 for $\lambda \in K^{\times}$.

Projective varieties

A polynomial $F \in K[Z_0, ..., Z_n]$ is **not** a function on \mathbb{P}^n , since in general

 $F(Z_0,\ldots,Z_n) \neq F(\lambda Z_0,\ldots,\lambda Z_n).$

If *F* is **homogeneous** of degree *d*, then

$$F(\lambda Z_0,\ldots,\lambda Z_n) = \lambda^d F(Z_0,\ldots,Z_n).$$

So given a set M of homogeneous polynomials in $K[Z_0, \ldots, Z_n]$, it makes sense to define

 $\mathcal{V}(M) = \{ p \in \mathbb{P}^n : f(p) = 0 \text{ for all } f \in M \}, a \text{ projective variety}.$

The Zariski topology

The projective (resp. affine) varieties in \mathbb{P}^n (resp. \mathbb{A}^n) form the closed sets of a topology, the **Zariski topology**. Projective space is covered by the open subsets

$$U_i = \{ [Z_0, \ldots, Z_n] \in \mathbb{P}^n : Z_i \neq 0 \} = \{ [Y_0, \ldots, Y_{i-1}, 1, Y_{i+1}, \ldots, Y_n] \in \mathbb{P}^n \}$$

The map

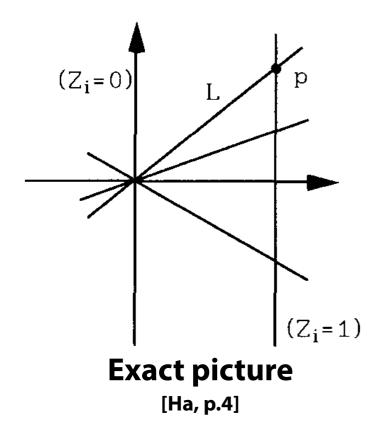
$$U_i \rightarrow \mathbb{A}^n, [Z_0, \ldots, Z_n] \mapsto (Z_0/Z_i, \ldots, Z_{i-1}/Z_i, Z_{i+1}/Z_i, \ldots, Z_n)$$

is a homeomorphism. The inverse map is

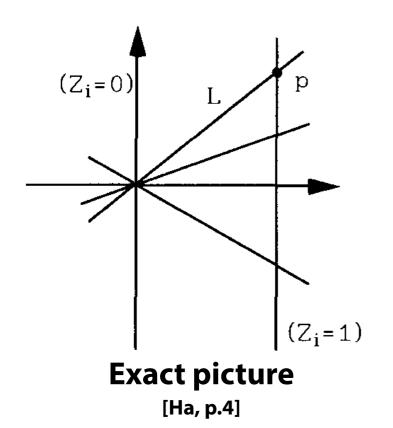
$$\mathbb{A}^n \to U_i, (z_0, \dots, z_{i-1}, z_{i+1}, z_n) \mapsto [z_1, \dots, z_{i-1}, 1, z_{i+1}, \dots, z_n].$$

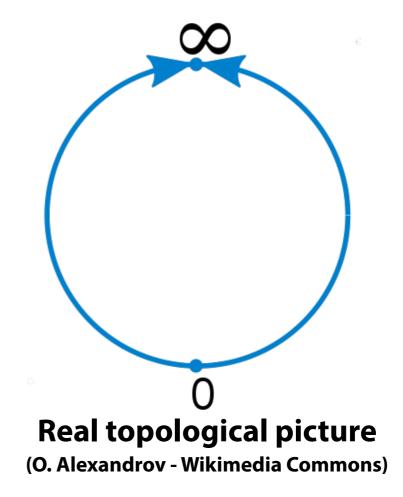
Thus \mathbb{P}^n is covered by n + 1 copies of \mathbb{A}^n .

Projective line

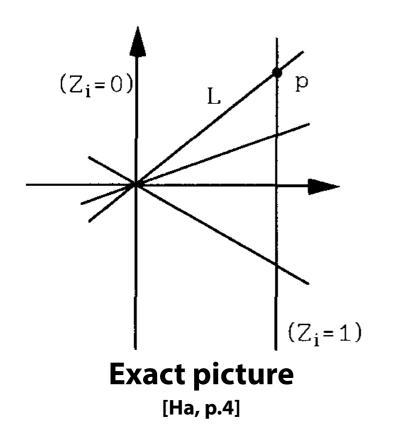


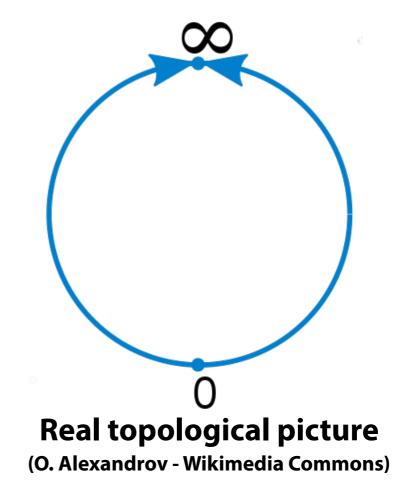
Projective line





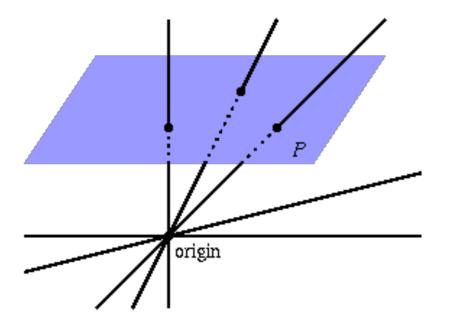
Projective line





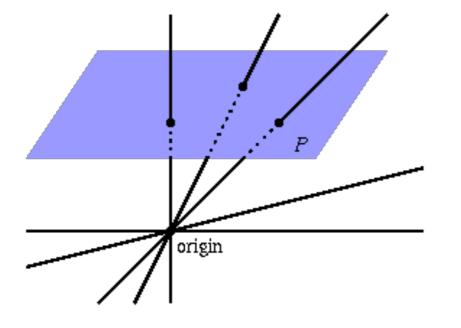
Intuitive picture

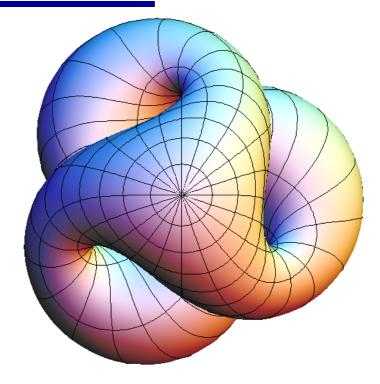
Projective plane



Exact picture [Univ. of Toronto Math Network]

Projective plane

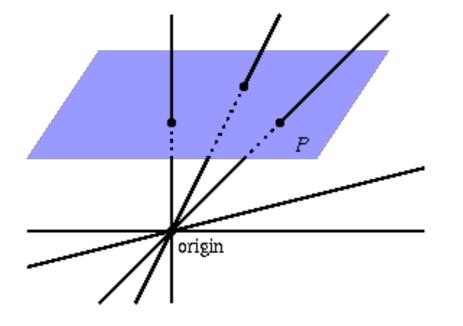


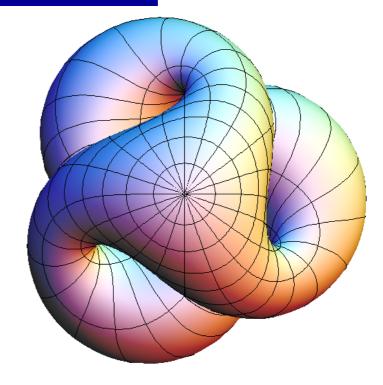


Real topological picture - Boy's surface (virtualmathmuseum.org)

Exact picture [Univ. of Toronto Math Network]

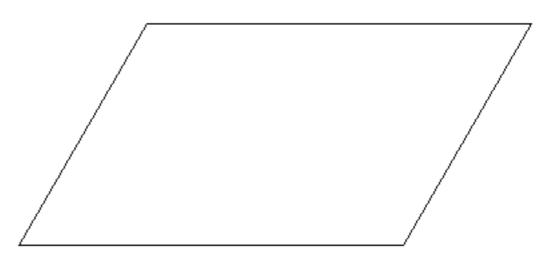
Projective plane





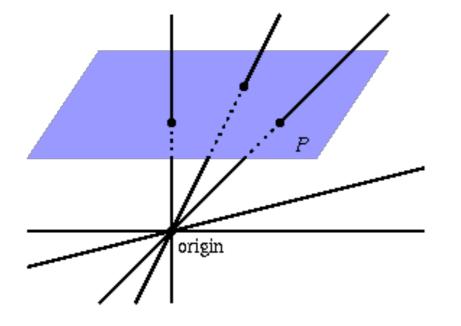
Real topological picture - Boy's surface (virtualmathmuseum.org)

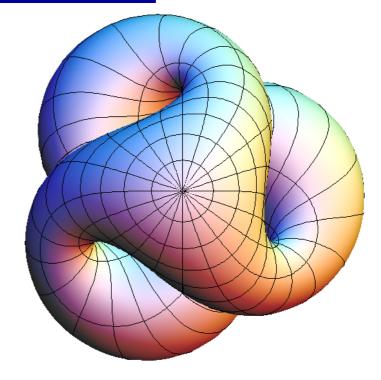
Exact picture [Univ. of Toronto Math Network]



Intuitive picture [freehomeworkmathhelp.com]

Projective plane

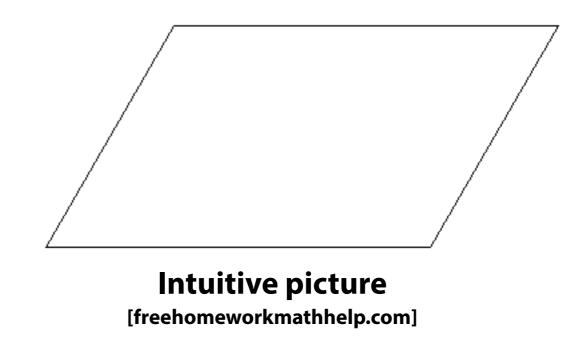




Real topological picture - Boy's surface (virtualmathmuseum.org)

Exact picture [Univ. of Toronto Math Network]

We think of projective space over an algebraically closed field just as real affine space, together with the *idea* that taking intersections always works perfectly.



Linear Spaces

If $W \subset V$ is a linear subspace, then $\mathbb{P}W \subset \mathbb{P}V$ is a projective subspace, a **linear space** of dimension dim $\mathbb{P}W = \dim W - 1$ in $\mathbb{P}V$.

Linear Spaces

If $W \subset V$ is a linear subspace, then $\mathbb{P}W \subset \mathbb{P}V$ is a projective subspace, a **linear space** of dimension dim $\mathbb{P}W = \dim W - 1$ in $\mathbb{P}V$.

dim $\mathbb{P}W = 0$ pointdim $\mathbb{P}W = 1$ linedim $\mathbb{P}W = 2$ planedim $\mathbb{P}W = \dim \mathbb{P}V - 1$ hyperplane

If $L = \mathbb{P}W$, $L' = \mathbb{P}W'$, write

 $\overline{LL'} = \mathbb{P}(W + W').$

We have

 $\dim \overline{LL'} = \dim L + \dim L' - \dim L \cap L'.$

Let X be a variety. X is **reducible** if it is the union of two proper, non-empty closed subvarieties; otherwise it is called **irreducible**.

Let X be a variety. X is **reducible** if it is the union of two proper, non-empty closed subvarieties; otherwise it is called **irreducible**.

The **Dimension of** *X* is the largest integer *k* such that there exists a chain

 $\varnothing \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_{k-1} \subsetneq X$

of irreducible closed subvarieties.

In particular, dim $\mathbb{P}^n = \dim \mathbb{A}^n = n$.

Let X be a variety. X is **reducible** if it is the union of two proper, non-empty closed subvarieties; otherwise it is called **irreducible**.

The **Dimension of** *X* is the largest integer *k* such that there exists a chain

 $\varnothing \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_{k-1} \subsetneq X$

of irreducible closed subvarieties.

```
In particular, dim \mathbb{P}^n = \dim \mathbb{A}^n = n.
```

If $X \subset \mathbb{P}^n$ or $X \subset \mathbb{A}^n$ is irreducible:

dim X = 0pointdim X = 1curvedim X = 2surfacedim X = 3threefolddim X = n - 1hypersurface

Let X be a variety. X is **reducible** if it is the union of two proper, non-empty closed subvarieties; otherwise it is called **irreducible**.

The **Dimension of** *X* is the largest integer *k* such that there exists a chain

 $\varnothing \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_{k-1} \subsetneq X$

of irreducible closed subvarieties.

```
In particular, dim \mathbb{P}^n = \dim \mathbb{A}^n = n.
```

If $X \subset \mathbb{P}^n$ or $X \subset \mathbb{A}^n$ is irreducible:

dim X = 0pointdim X = 1curvedim X = 2surfacedim X = 3threefolddim X = n - 1hypersurface

Theorem. The hypersurfaces in \mathbb{P}^n are exactly the varieties defined by a single equation.

The hypersurfaces in \mathbb{P}^2 are the **plane projective curves**.

Points

Proposition 1.1. Any finite set of d points in \mathbb{P}^n is described by polynomials of degree at most d.

Points

Proposition 1.1. Any finite set of d points in \mathbb{P}^n is described by polynomials of degree at most d.

Proof. Let $\Gamma = \{p_1, \ldots, p_d\}$. For $q \notin \Gamma$, let $L_{q,i}$ be a linear form with $L_{q,i}(p_i) = 0$ and $L_{q,i}(q) \neq 0$. Put

 $F_q = L_{q,1} \cdots L_{q,d}.$

Then $\Gamma = \mathcal{V}(F_q : q \notin \Gamma)$.

Points

Proposition 1.1. Any finite set of d points in \mathbb{P}^n is described by polynomials of degree at most d.

Proof. Let $\Gamma = \{p_1, \ldots, p_d\}$. For $q \notin \Gamma$, let $L_{q,i}$ be a linear form with $L_{q,i}(p_i) = 0$ and $L_{q,i}(q) \neq 0$. Put

 $F_q = L_{q,1} \cdots L_{q,d}.$

Then $\Gamma = \mathcal{V}(F_q : q \notin \Gamma)$.

Definition. Let $p_1, \ldots, p_d \in \mathbb{P}^n$. If $d \leq n + 1$, the points p_i are **independent** if $\dim(\overline{p_1 \cdots p_d}) = d - 1$,

otherwise dependent.

If d > n + 1, the p_i are in (linearly) **general position** if no n + 1 of them are dependent (i.e. lie in a hyperplane).

Proof. Let $\Gamma \subset \mathbb{P}^n$ be such a collection. We may assume that Γ contains exactly 2n points.

Proof. Let $\Gamma \subset \mathbb{P}^n$ be such a collection. We may assume that Γ contains exactly 2n points. Let $q \in \mathbb{P}^n$ be such that

 $F|_{\Gamma} = 0 \implies F(q) = 0$

holds for all quadratic forms *F*. We must show $q \in \Gamma$.

Proof. Let $\Gamma \subset \mathbb{P}^n$ be such a collection. We may assume that Γ contains exactly 2n points. Let $q \in \mathbb{P}^n$ be such that

 $F|_{\Gamma} = 0 \implies F(q) = 0$

holds for all quadratic forms *F*. We must show $q \in \Gamma$.

(1) If $\Gamma = \Gamma_1 \cup \Gamma_2$ with $|\Gamma_1| = |\Gamma_2| = n$, then Γ_i spans a hyperplane $H_i = \mathcal{V}(L_i)$, defined by a linear form L_i , and $H_1 \cup H_2 = \mathcal{V}(L_1L_2)$. So $L_1L_2(q) = 0$ by hypothesis. Hence $q \in H_1 \cup H_2$.

Proof. Let $\Gamma \subset \mathbb{P}^n$ be such a collection. We may assume that Γ contains exactly 2n points. Let $q \in \mathbb{P}^n$ be such that

 $F|_{\Gamma} = 0 \implies F(q) = 0$

holds for all quadratic forms *F*. We must show $q \in \Gamma$.

(1) If $\Gamma = \Gamma_1 \cup \Gamma_2$ with $|\Gamma_1| = |\Gamma_2| = n$, then Γ_i spans a hyperplane $H_i = \mathcal{V}(L_i)$, defined by a linear form L_i , and $H_1 \cup H_2 = \mathcal{V}(L_1L_2)$. So $L_1L_2(q) = 0$ by hypothesis. Hence $q \in H_1 \cup H_2$.

(2) Let $\{p_1, \ldots, p_k\} \in \Gamma$ be a minimal subset of Γ with the property $q \in \overline{p_1 \cdots p_k}$. By (1), we can find such a subset with $k \leq n$.

Claim: $k = 1 (\iff q = p_1)$

Proof. Let $\Gamma \subset \mathbb{P}^n$ be such a collection. We may assume that Γ contains exactly 2n points. Let $q \in \mathbb{P}^n$ be such that

 $F|_{\Gamma} = 0 \implies F(q) = 0$

holds for all quadratic forms *F*. We must show $q \in \Gamma$.

(1) If $\Gamma = \Gamma_1 \cup \Gamma_2$ with $|\Gamma_1| = |\Gamma_2| = n$, then Γ_i spans a hyperplane $H_i = \mathcal{V}(L_i)$, defined by a linear form L_i , and $H_1 \cup H_2 = \mathcal{V}(L_1L_2)$. So $L_1L_2(q) = 0$ by hypothesis. Hence $q \in H_1 \cup H_2$.

(2) Let $\{p_1, \ldots, p_k\} \in \Gamma$ be a minimal subset of Γ with the property $q \in \overline{p_1 \cdots p_k}$. By (1), we can find such a subset with $k \leq n$.

Claim: k = 1 ($\iff q = p_1$)

Take $\Sigma \subset \Gamma \setminus \{p_1, \ldots, p_k\}$ with $|\Sigma| = n - k + 1$. By hypothesis, the *n* points $\{p_2, \ldots, p_k\} \cup \Sigma$ span a hyperplane *H* that does not contain p_1 . Since $p_1 \in \overline{qp_2 \cdots p_k}$, it follows that $q \notin H$.

Proof. Let $\Gamma \subset \mathbb{P}^n$ be such a collection. We may assume that Γ contains exactly 2n points. Let $q \in \mathbb{P}^n$ be such that

 $F|_{\Gamma} = 0 \implies F(q) = 0$

holds for all quadratic forms *F*. We must show $q \in \Gamma$.

(1) If $\Gamma = \Gamma_1 \cup \Gamma_2$ with $|\Gamma_1| = |\Gamma_2| = n$, then Γ_i spans a hyperplane $H_i = \mathcal{V}(L_i)$, defined by a linear form L_i , and $H_1 \cup H_2 = \mathcal{V}(L_1L_2)$. So $L_1L_2(q) = 0$ by hypothesis. Hence $q \in H_1 \cup H_2$.

(2) Let $\{p_1, \ldots, p_k\} \in \Gamma$ be a minimal subset of Γ with the property $q \in \overline{p_1 \cdots p_k}$. By (1), we can find such a subset with $k \leq n$.

Claim: k = 1 ($\iff q = p_1$)

Take $\Sigma \subset \Gamma \setminus \{p_1, \ldots, p_k\}$ with $|\Sigma| = n - k + 1$. By hypothesis, the *n* points $\{p_2, \ldots, p_k\} \cup \Sigma$ span a hyperplane *H* that does not contain p_1 . Since $p_1 \in \overline{qp_2 \cdots p_k}$, it follows that $q \notin H$.

By (1), *q* lies in the hyperplane spanned by the remaining *n* points. It follows that *q* lies on the hyperplane spanned by p_1 and any n - 1 of the points p_{k+1}, \ldots, p_{2n} . The intersection of all such hyperplanes is just p_1 , hence $q = p_1$.

Projective equivalence

The group $PGL_{n+1}K = (GL_{n+1}K)/K^{\times}I$ acts on \mathbb{P}^n . Two varieties $X, Y \subset \mathbb{P}^n$ are **projectively** equivalent if there exists $A \in PGL_{n+1}K$ such that $A \cdot X = Y$.

Any two ordered sets of n + 2 points in general position in \mathbb{P}^n are projectively equivalent.

Projective equivalence

The group $PGL_{n+1}K = (GL_{n+1}K)/K^{\times}I$ acts on \mathbb{P}^n . Two varieties $X, Y \subset \mathbb{P}^n$ are **projectively** equivalent if there exists $A \in PGL_{n+1}K$ such that $A \cdot X = Y$.

Any two ordered sets of n + 2 points in general position in \mathbb{P}^n are projectively equivalent.

The group PGL_2K acts on $\mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\}$ through **Möbius transformations:**

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{PGL}_2 K \text{ induces } z \mapsto \frac{az+b}{cz+d}.$$

Projective equivalence

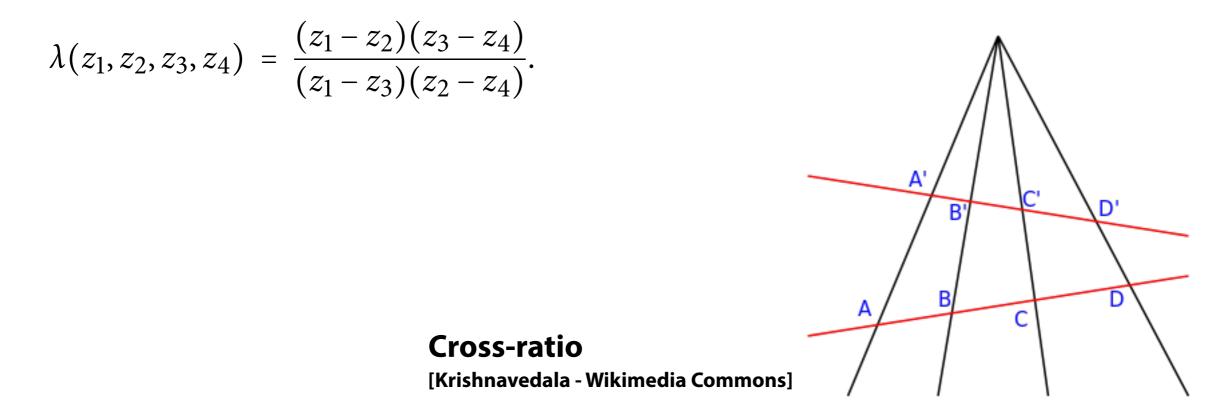
The group $PGL_{n+1}K = (GL_{n+1}K)/K^{\times}I$ acts on \mathbb{P}^n . Two varieties $X, Y \subset \mathbb{P}^n$ are **projectively** equivalent if there exists $A \in PGL_{n+1}K$ such that $A \cdot X = Y$.

Any two ordered sets of n + 2 points in general position in \mathbb{P}^n are projectively equivalent.

The group PGL_2K acts on $\mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\}$ through **Möbius transformations:**

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{PGL}_2 K \text{ induces } z \mapsto \frac{az+b}{cz+d}.$$

Two sets of *four* points in \mathbb{P}^1 are projectively equivalent if and only if they have the same **crossratio**, defined by



The twisted cubic

Let $v: \mathbb{P}^1 \to \mathbb{P}^3$, $[X_0, X_1] \mapsto [X_0^3, X_0^2 X_1, X_0 X_1^2, X_1^3]$. The image $C = v(\mathbb{P}^1)$ is the **twisted cubic** in \mathbb{P}^3 . It is defined by

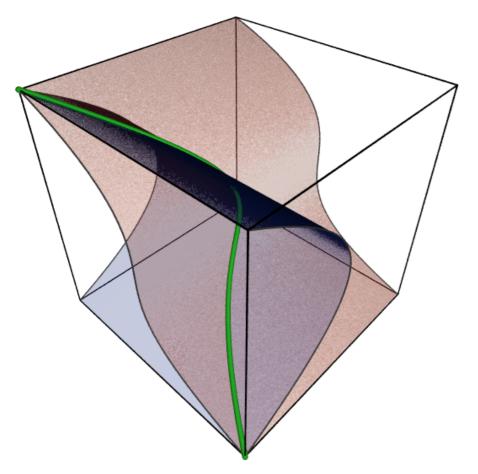
 $C = \mathcal{V}(F_0, F_1, F_2)$

where

$$F_0 = Z_0 Z_2 - Z_1^2$$

$$F_1 = Z_0 Z_3 - Z_1 Z_2$$

$$F_2 = Z_1 Z_3 - Z_2^2.$$



The twisted cubic

Let $v: \mathbb{P}^1 \to \mathbb{P}^3$, $[X_0, X_1] \mapsto [X_0^3, X_0^2 X_1, X_0 X_1^2, X_1^3]$. The image $C = v(\mathbb{P}^1)$ is the **twisted cubic** in \mathbb{P}^3 . It is defined by

 $C = \mathcal{V}(F_0, F_1, F_2)$

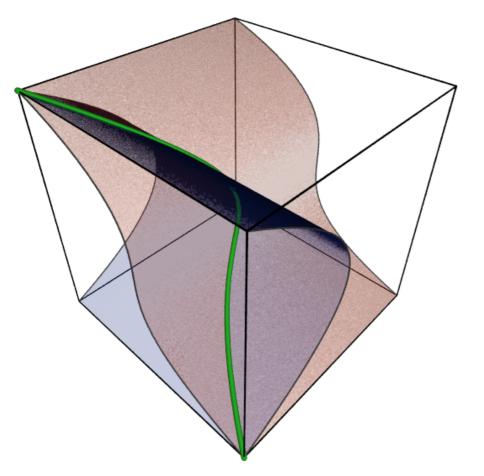
where

$$F_0 = Z_0 Z_2 - Z_1^2$$

$$F_1 = Z_0 Z_3 - Z_1 Z_2$$

$$F_2 = Z_1 Z_3 - Z_2^2.$$

It is *not* defined by any two of these. For example, F_0 and F_1 define the union of Cand the line $\{Z_0 = Z_1 = 0\}$.



Claudio Rocchini - Wikimedia Commons

The twisted cubic

Let $v: \mathbb{P}^1 \to \mathbb{P}^3$, $[X_0, X_1] \mapsto [X_0^3, X_0^2 X_1, X_0 X_1^2, X_1^3]$. The image $C = v(\mathbb{P}^1)$ is the **twisted cubic** in \mathbb{P}^3 . It is defined by

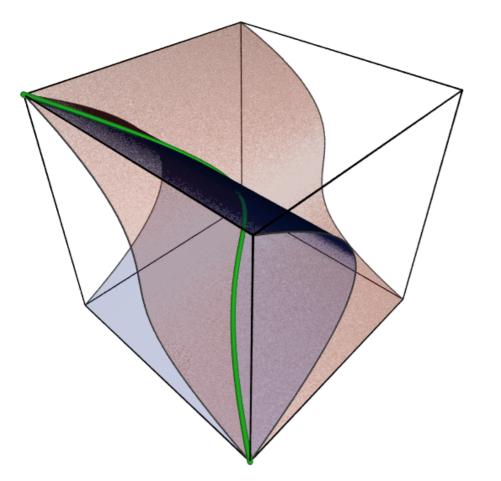
 $C = \mathcal{V}(F_0, F_1, F_2)$

where

$$F_0 = Z_0 Z_2 - Z_1^2$$

$$F_1 = Z_0 Z_3 - Z_1 Z_2$$

$$F_2 = Z_1 Z_3 - Z_2^2.$$



It is *not* defined by any two of these. For example, F_0 and F_1 define the union of Cand the line $\{Z_0 = Z_1 = 0\}$.

Exercise (1.11. in [Ha])

b. More generally, for any $\lambda = [\lambda_0, \lambda_1, \lambda_2]$, let

$$F_{\lambda} = \lambda_0 \cdot F_0 + \lambda_1 \cdot F_1 + \lambda_2 \cdot F_2$$

and let Q_{λ} be the surface defined by F_{λ} . Show that for $\mu \neq v$, the quadrics Q_{ν} and Q_{μ} intersect in the union of C and a line $L_{\mu,\nu}$. (A slick way of doing this problem is described after Exercise 9.16; it is intended here to be done naively, though the computation is apt to get messy.) **Corollary 1.3.** If *L* is any secant line of *C* (i.e. $L = \overline{pq}$ with $p, q \in C$), there exist μ , ν with $Q_{\mu} \cap Q_{\nu} = C \cup L$.

Corollary 1.3. If *L* is any secant line of *C* (i.e. $L = \overline{pq}$ with $p, q \in C$), there exist μ , ν with

$$Q_{\mu} \cap Q_{\nu} = C \cup L.$$

Proof. For any $r \in \overline{pq}$, $r \neq p$, $r \neq q$, the space

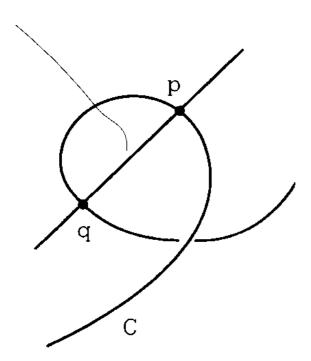
$$\left\{F_{\lambda}:F_{\lambda}(r)=0\right\}$$

is 2-dimensional.

Let F_{μ} , F_{ν} be a basis. Since F_{μ} , F_{ν} vanish at the three points p, q, r on L, we have $L \subset \mathcal{V}(F_{\mu}, F_{\nu})$, hence

 $Q_{\mu} \cap Q_{\nu} = \mathcal{V}(F_{\mu}, F_{\nu}) = C \cup L$

by the exercise above.



The rational normal curve

The **rational normal curve** in \mathbb{P}^d is the Veronese embedding of \mathbb{P}^1 of degree d. It is the image of the map

$$v_d: \mathbb{P}^1 \to \mathbb{P}^d, [X_0, X_1] \mapsto [X_0^d, X_0^{d-1}X_1, \dots, X_0X_1^{d-1}, X_1^d].$$

Any d + 1 points on a rational normal curve are linearly independent. For given distinct points $p_0, \ldots, p_d \in \mathbb{P}^1$, we may assume $p_i \neq [1, 0]$ for all i, say $p_i = [Y_i, 1]$. The matrix

Y_0^d	Y_0^{d-1}	rd-2	•	Y_0	1
Y_1^d	$Y_0^{d-1} Y_1^{d-1} Y_1^{d-1}$	•	•	•	1
•	•	•	•	•	•
•	•	•	•	•	1
Y_d^d	•	•	•	Y_d	1

is a Vandermonde matrix with determinant $\prod_{i < j} (Y_i - Y_j) \neq 0$, showing that $v_d(p_0), \ldots, v_d(p_d)$ are independent.

The rational normal curve

The **rational normal curve** in \mathbb{P}^d is the Veronese embedding of \mathbb{P}^1 of degree d. It is the image of the map

$$v_d: \mathbb{P}^1 \to \mathbb{P}^d, [X_0, X_1] \mapsto [X_0^d, X_0^{d-1}X_1, \dots, X_0X_1^{d-1}, X_1^d].$$

Any d + 1 points on a rational normal curve are linearly independent. For given distinct points $p_0, \ldots, p_d \in \mathbb{P}^1$, we may assume $p_i \neq [1, 0]$ for all i, say $p_i = [Y_i, 1]$. The matrix

Y_0^d	$Y_0^{d-1}Y$ Y_1^{d-1}	rd-2	•	Y_0	1
Y_1^d	Y_1^{d-1}	•	•	•	1
•	•	•	•	•	•
•	•	•	•	•	1
Y_d^d	•	•	•	Y_d	1

is a Vandermonde matrix with determinant $\prod_{i < j} (Y_i - Y_j) \neq 0$, showing that $v_d(p_0), \ldots, v_d(p_d)$ are independent.

Any curve projectively equivalent to *the* rational normal curve is also *a* rational normal curve. In particular, if H_0, \ldots, H_d is any basis of $K[X_0, X_1]_d$, then

$$v_d: [X_0, X_1] \mapsto [H_0(X_0, X_1), \dots, H_d(X_0, X_1)]$$

is a rational normal curve.

Construction. Let $\mu_0, \ldots, \mu_d, v_0, \ldots, v_d \in K^{\times}$ with $[\mu_i, v_i] \neq [\mu_j, v_j]$ for all $i \neq j$ and consider

$$G = \prod_{i=0}^{d} (\mu_i X_0 - \nu_i X_1) \in K[X_0, X_1]_{d+1}$$
$$H_i = \frac{G}{\mu_i X_0 - \nu_i X_1}, \quad i = 0, \dots, d.$$

Then H_0, \ldots, H_d are a basis of $K[X_0, X_1]_d$. For if $\sum_{i=0}^d a_i H_i = 0$ is any linear relation, evaluation at $[\mu_i, \nu_i]$ gives $a_i = 0$.

Construction. Let $\mu_0, \ldots, \mu_d, v_0, \ldots, v_d \in K^{\times}$ with $[\mu_i, v_i] \neq [\mu_j, v_j]$ for all $i \neq j$ and consider

$$G = \prod_{i=0}^{d} (\mu_i X_0 - \nu_i X_1) \in K[X_0, X_1]_{d+1}$$
$$H_i = \frac{G}{\mu_i X_0 - \nu_i X_1}, \quad i = 0, \dots, d.$$

Then H_0, \ldots, H_d are a basis of $K[X_0, X_1]_d$. For if $\sum_{i=0}^d a_i H_i = 0$ is any linear relation, evaluation at $[\mu_i, \nu_i]$ gives $a_i = 0$.

Thus

$$v_d: [X_0, X_1] \mapsto [H_0(X_0, X_1), \dots, H_d(X_0, X_1)]$$

is a rational normal curve. We find

$$v_d([\mu_0, v_0]) = [1, 0, \dots, 0], \dots, v_d([\mu_d, v_d]) = [0, \dots, 0, 1]$$

$$v_d([1, 0]) = \left[\frac{\mu_0 \cdots \mu_d}{\mu_0}, \dots, \frac{\mu_0 \cdots \mu_d}{\mu_d}\right] = [\mu_0^{-1}, \dots, \mu_d^{-1}] \text{ and } v_d([0, 1]) = [v_0^{-1}, \dots, v_d^{-1}].$$

Construction. Let $\mu_0, \ldots, \mu_d, v_0, \ldots, v_d \in K^{\times}$ with $[\mu_i, v_i] \neq [\mu_j, v_j]$ for all $i \neq j$ and consider

$$G = \prod_{i=0}^{d} (\mu_i X_0 - \nu_i X_1) \in K[X_0, X_1]_{d+1}$$
$$H_i = \frac{G}{\mu_i X_0 - \nu_i X_1}, \quad i = 0, \dots, d.$$

Then H_0, \ldots, H_d are a basis of $K[X_0, X_1]_d$. For if $\sum_{i=0}^d a_i H_i = 0$ is any linear relation, evaluation at $[\mu_i, \nu_i]$ gives $a_i = 0$.

Thus

$$v_d: [X_0, X_1] \mapsto [H_0(X_0, X_1), \dots, H_d(X_0, X_1)]$$

is a rational normal curve. We find

$$v_d([\mu_0, v_0]) = [1, 0, \dots, 0], \dots, v_d([\mu_d, v_d]) = [0, \dots, 0, 1]$$

$$v_d([1, 0]) = \left[\frac{\mu_0 \cdots \mu_d}{\mu_0}, \dots, \frac{\mu_0 \cdots \mu_d}{\mu_d}\right] = [\mu_0^{-1}, \dots, \mu_d^{-1}] \text{ and } v_d([0, 1]) = [v_0^{-1}, \dots, v_d^{-1}].$$

So let p_0, \ldots, p_{d+2} be any d + 3 points in general position in \mathbb{P}^d . We can assume $p_i = [e_i]$ for $i = 0, \ldots, d$ by projective equivalence. Then p_{d+1} and p_{d+2} have non-zero coordinates. We can choose $[\mu_0, v_0], \ldots, [\mu_d, v_d] \in \mathbb{P}^1$ such that $v_d[1, 0] = p_{d+1}$ and $v_d[0, 1] = p_{d+2}$. Uniqueness is left as an exercise.