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A brief inaccurate history of algebraic geometry

���� - ���� Projective geometry. Emergence of ’analytic’geometry with cartesian
coordinates, as opposed to ’synthetic’ (axiomatic) geometry in the style
of Euclid. (Celebrities: Plücker, Hesse, Cayley)

���� - ���� Complex analytic geometry. Powerful new tools for the study of geo-
metric problems overC. (Celebrities: Abel, Jacobi, Riemann)

���� - ���� Classical school. Perfected the use of existing tools without any ’dog-
matic’ approach. (Celebrities: Castelnuovo, Segre, Severi, M. Noether)

���� - ���� Algebraization. Development of modern algebraic foundations (’com-
mutative ring theory’) for algebraic geometry. (Celebrities: Hilbert,
E. Noether, Zariski)

from ���� Modern algebraic geometry. All-encompassing abstract frameworks
(schemes, stacks), greatly widening the scope of algebraic geometry.
(Celebrities:Weil, Serre, Grothendieck, Deligne, Mumford)

from ���� Computational algebraic geometry Symbolic computation and dis-
crete methods, many new applications. (Celebrities: Buchberger)
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Affine varieties

K algebraically closed field
An = Kn affine space

V ⊂ An is an affine variety if there is a set of polynomialsM ⊂ K[x�, . . . , xn] such that

V = V(M) = {p ∈ An ∶ f (p) = � for all f ∈ M}.
There is a finite subsetM′ ⊂ M such that V(M) = V(M′) (Hilbert Basis Theorem).

Projective space

Let V be a K-vector space.

P(V) = {one-dimensional subspaces of V}, the projective space of V
Pn = PKn+� = �Kn+� � {�}��∼

where v ∼ w ⇐⇒ ∃λ ∈ K×∶v = λw .
Points of Pn are denoted in homogeneous coordinates [Z�, . . . , Zn]where
[Z�, . . . , Zn] = [λZ�, . . . , λZn] for λ ∈ K×.
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Projective line
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How to think about projective space

Projective plane

We think of projective space over
an algebraically closed field just
as real affine space, togetherwith
the idea that taking intersections
always works perfectly.



Exact picture 
[Univ. of Toronto Math Network]

Real topological picture - Boy's surface 
(virtualmathmuseum.org)

How to think about projective space

Projective plane

We think of projective space over
an algebraically closed field just
as real affine space, togetherwith
the idea that taking intersections
always works perfectly.



Intuitive picture 
[freehomeworkmathhelp.com]

Exact picture 
[Univ. of Toronto Math Network]

Real topological picture - Boy's surface 
(virtualmathmuseum.org)

How to think about projective space

Projective plane

We think of projective space over
an algebraically closed field just
as real affine space, togetherwith
the idea that taking intersections
always works perfectly.



Intuitive picture 
[freehomeworkmathhelp.com]

Exact picture 
[Univ. of Toronto Math Network]

Real topological picture - Boy's surface 
(virtualmathmuseum.org)

How to think about projective space

Projective plane

We think of projective space over
an algebraically closed field just
as real affine space, togetherwith
the idea that taking intersections
always works perfectly.

How to think about projective space

Projective plane

We think of projective space over
an algebraically closed field just
as real affine space, togetherwith
the idea that taking intersections
always works perfectly.



Linear Spaces

IfW ⊂ V is a linear subspace, then PW ⊂ PV is a projective subspace, a linear space of dimen-
sion dimPW = dimW − � in PV .

dimPW = � point
dimPW = � line
dimPW = � plane
dimPW = dimPV − � hyperplane

If L = PW , L′ = PW ′, write
LL′ = P(W +W ′).

We have

dim LL′ = dim L + dim L′ − dim L ∩ L′.
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Dimension

Let X be a variety. X is reducible if it is the union of two proper, non-empty closed subvarieties;
otherwise it is called irreducible.
The Dimension of X is the largest integer k such that there exists a chain

� � X� � X� � � � Xk−� � X
of irreducible closed subvarieties.

In particular, dimPn = dimAn = n.
If X ⊂ Pn or X ⊂ An is irreducible:

dimX = � point
dimX = � curve
dimX = � surface
dimX = � threefold
dimX = n − � hypersurface

Theorem. The hypersurfaces inPn are exactly the varieties defined by a single equation.

The hypersurfaces in P� are the plane projective curves.
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Points

Proposition �.�. Any finite set of d points inPn is described by polynomials of degree at most d.

Proof. Let Γ = {p�, . . . , pd}. For q ∉ Γ, let Lq,i be a linear form with Lq,i(pi) = � and Lq,i(q) ≠ �.
Put

Fq = Lq,��Lq,d .
Then Γ = V(Fq ∶ q ∉ Γ). �
Definition. Let p�, . . . , pd ∈ Pn. If d � n + �, the points pi are independent if

dim(p��pd) = d − �,
otherwise dependent.

If d > n + �, the pi are in (linearly) general position if no n + � of them are dependent (i.e. lie in
a hyperplane).
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Projective equivalence

The group PGLn+�K = (GLn+�K)�K×I acts on Pn. Two varieties X ,Y ⊂ Pn are projectively
equivalent if there exists A ∈ PGLn+�K such that A ⋅ X = Y .
Any two ordered sets of n + � points in general position in Pn are projectively equivalent.

The group PGL�K acts on P� = A� ∪ {∞} throughMöbius transformations:

�a b
c d� ∈ PGL�K induces z � az + b

cz + d .

Two sets of four points in P� are projectively equivalent if and only if they have the same cross-
ratio, defined by

λ(z�, z�, z�, z�) = (z� − z�)(z� − z�)(z� − z�)(z� − z�).
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The twisted cubic

Let v∶P� → P�, [X�, X�]� [X�
�, X

�
�X�, X�X�

� , X
�
� ].

The image C = v(P�) is the twisted cubic in P�. It is defined by

C = V(F�, F�, F�)
where

F� = Z�Z� − Z�
�

F� = Z�Z� − Z�Z�
F� = Z�Z� − Z�

� .

It is not defined by any two of these.
For example, F� and F� define the union of C
and the line {Z� = Z� = �}.
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Exercise (1.11. in [Ha])
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Corollary �.�. If L is any secant line ofC (i.e. L = pqwith p, q ∈ C), there exist µ, ν with
Qµ ∩Qν = C ∪ L.

Proof. For any r ∈ pq, r ≠ p, r ≠ q, the space
�Fλ ∶ Fλ(r) = ��

is �-dimensional.
Let Fµ, Fν be a basis. Since Fµ, Fν vanish at the three points p, q, r on L, we have L ⊂ V(Fµ, Fν),
hence

Qµ ∩Qν = V(Fµ, Fν) = C ∪ L
by the exercise above. �
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The rational normal curve

The rational normal curve in Pd is the Veronese embedding of P� of degree d . It is the image
of the map

vd ∶P� → Pd , [X�, X�]� [Xd
� , X

d−�
� X�, . . . , X�Xd−�

� , Xd
� ].

Any d + � points on a rational normal curve are linearly independent. For given distinct points
p�, . . . , pd ∈ P�, we may assume pi ≠ [�, �] for all i, say pi = [Yi , �]. The matrix
�������������

Yd
� Yd−�

� Yd−�
� ⋅ Y� �

Yd
� Yd−�

� ⋅ ⋅ ⋅ �⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ �
Yd
d ⋅ ⋅ ⋅ Yd �

�������������
is a Vandermondematrix with determinant∏i< j(Yi−Yj) ≠ �, showing that vd(p�), . . . , vd(pd)
are independent.
Any curve projectively equivalent to the rational normal curve is also a rational normal curve.
In particular, if H�, . . . ,Hd is any basis of K[X�, X�]d , then

vd ∶ [X�, X�]� [H�(X�, X�), . . . ,Hd(X�, X�)]
is a rational normal curve.
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Theorem �.�. Through any d + � points in general position in Pd , there passes a unique rational
normal curve.

Construction. Let µ�, . . . , µd , ν�, . . . , νd ∈ K× and consider

G = d�
i=�(µiX� − νiX�) ∈ K[X�, X�]d+�

Hi = G
µiX� − νiX�

, i = �, . . . , d .
ThenH�, . . . ,Hd are a basis of K[X�, X�]d . For if∑d

i=� aiHi = � is any linear relation, evaluation
at [µi , νi] gives ai = �.
Thus

vd ∶ [X�, X�]� [H�(X�, X�), . . . ,Hd(X�, X�)]
is a rational normal curve. We find

vd([µ�, ν�]) = [�, �, . . . , �], . . . , vd([µd , νd]) = [�, . . . , �, �]
vd([�, �]) = �µ��µdµ�

, . . . , µ��µd
µd
� = [µ−�� , . . . , µ−�d ] and vd([�, �]) = [ν−�� , . . . , ν−�d ].

So let p�, . . . , pd+� be any d + � points in general position Pd .
We can assume pi = [ei] for i = �, . . . , d by projective equivalence. Then pd+� and pd+� have
non-zero coordinates. We can choose [µ�, ν�], . . . , [µd , νd] ∈ P� such that vd[�, �] = pd+� and
vd[�, �] = pd+�. Uniqueness is left as an exercise. �
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